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• We propose a new approach to the construction and fitting of a 3DMM 

• The proposed 3DMM captures much of the large variability of human faces, 
thus opening the way to its use in fine grained face analysis

• It is grounded on three distinct contributions 
1. A new method to establish dense correspondence between scans 

even in the case of expressions with topological variations 

2. A new approach to capturing the statistical variability in training data 
that learns a dictionary of deformations from the deviations between 
each 3D scan and the average model (DL-3DMM)

3. The application of 3DMM to Action Unit detection and emotion 
recognition from 2D images 

Our Contribution



• Following the 3DMM pipeline, let’s first choose the training data…

• Grounding on the observations made, we aim at finding a dataset that 
include:

– Balanced proportion of males and females
– Reasonable range of ages
– Different ethnicity groups
– Face variations ( expressions )

3DMM Pipeline:  Training Data



• BU-3DFE
– Scans of 44 females and 56

males with age ranging from 
18 to 70 years old 

– Neutral plus six expressions: 
anger, disgust, fear, 
happiness, 
sadness, and surprise

– Four levels of expression 
intensity, from low to 
exaggerated (2500 scans in 
total) 

– Subjects distributed across 
different ethnic groups, 
including White, Black, Indian, 
East-Asian, Middle East Asian, 
and Hispanic Latino 

The Binghamton University 3D Facial Expression 
(BU-3DFE) dataset



• Now that we have found a suitable dataset, we need to put the scans in 
dense correspondence

• The task revealed itself to be very challenging mainly because of the 
presence of strong expressions that lead to significant topological variations 
of the surfaces

• Standard methods (e.g. non rigid ICP ) did not work well in this case

• Idea: Exploit the annotated landmarks

3DMM Pipeline: Dense Correspondence



• The face is partitioned into a set of regions 
using geodesic paths between facial 
landmarks 

• The geodesic paths are resampled with a 
predefined number of points posed at equal 
geodesic distance one from the other

Dense Correspondence



• The geodesic contour of a region guides the dense resampling of its interior 
surface

– Pairs of sampling points on opposite side of a geodesic contour are connected 
with a linear path on the surface

– This line is then sampled at the desired resolution 

• Being based on the landmarks and their connections, this approach proved 
to be robust to facial expressions and topological changes

The	interior	of	the	region	is	resampled
using	linear	paths	on	the	surface	(dots).	
These	paths	connect	corresponding	points	
on	opposite	sides	of	the	contour	

Geodesic	contour	of	the	cheek/zygoma	region

Sampled	points	of	the	geodesic	contour	
(circles)

Dense Correspondence



• Each region is re-sampled with a predefined number of points; if a region 
size changes significantly, we might get an over/under sampled region

• Not straightforward to get a uniformly sampled face model

• Huge contractions of a region might result in noisy resampling

• Large missing regions ( e.g. holes, occlusions ) might impair the resampling; 

Issues



• We have seen that many solutions exist to learn the components

• We aim at capturing both global shape variations to model identity traits and 
local variations to model facial expressions

• To address both the tasks, we exploit a Dictionary Learning based solution

3DMM Pipeline: Components Learning



• We build our DL-3DMM by learning a dictionary of deformation components 
using Online Dictionary Learning (DL) for Sparse Coding 

• Let N be the set of densely aligned training scans, each with m vertices 

• Each scan is represented as a column vector                  , whose elements 
are the linearized X, Y , Z coordinates of all the vertices  

• The average model m of the training scans is computed as

• For each training scan fi, we compute the field of deviations vi with respect 
to the average model m 

Dictionary Learning 3DMM (DL-3DMM)



• DL is usually cast as an l1-regularized least squares problem, but the 
sparsity induced by the l1 penalty can lead to directions that deform the 
average model to a noisy or a discontinuous or punctured one 

• We formulate the DL as an Elastic-Net regression that linearly combines
– The sparsity-inducing l1 penalty, where  l1 norm acts as a shrinkage operator, 

reducing the number of non-zero elements of the dictionary
– The l2 regularization, where the l2 norm avoids uncontrolled growth of the 

elements magnitude, while forcing smoothness

• Defining                                                    , with l1 and l2 the sparsity and 
regularization parameters, respectively, we have 

• The average model m, the dictionary D and the diagonal elements of the matrix 
W, namely the vector                 , constitute our DL-3DMM 

DL-3DMM Construction



DL-3DMM Construction
PCA based 3DMM

DL based 3DMM

Identity-specific Expression-specific

Global



• The choice of the fitting algorithm depends heavily on the final purpose, 
since each algorithm and technique has its own peculiarities

• Our final goal is to use the deformed 3D model to render a frontal view of 
the input face image and guide the extraction of local image descriptors for 
face recognition / expression recognition / Action Units detection

• Hence, we are not much interested in a precise and detailed reconstruction 
but rather, we need our fitting to be fast and robust to large shape 
deformations

• Indeed, we consider only the shape part, neglecting the texture model

• Our fitting algorithm falls in the “landmark-based” category

3DMM Pipeline: Fitting



3DMM Fitting

1. The	3D	head	pose	is	estimated	from	
the	correspondence	of	2D	and	3D	
landmarks

2. The	average	3D	model	is	
deformed	using	the	basis	
components

3. A	frontal	face	image	is	rendered	showing	a	subsampling of	the	mesh	
vertices	back	projected	onto	the	frontalized image.	As	a	result	of	the	
fitting,	no	vertices	fall	inside	the	open	mouth	region



• In order to estimate the pose, we detect a set of 49 facial landmarks 
on the 2D face image using a state of the art detector [*] 

• An equivalent set of vertices                                           is manually annotated 
on the average 3D model, being       the set of indices of the vertices 
corresponding to the landmark locations 

• Under an affine camera model, the relation between      and    is  

where                        contains the affine camera parameters, and  
is the translation on the image

[*]	V.	Kazemi and	J.	Sullivan.	”One	millisecond	face	alignment	with	an	ensemble	of	regression	trees”.	In	
IEEE	Conf.	on	Computer	Vision	and	Pattern	Recognition	(CVPR),	2014

3D Pose Estimation



• Firstly, we subtract the mean from each set of points and recover the affine 
matrix       solving the least squares problem 

with solution given by                      , where         is the pseudo-inverse 
matrix of

• Direct estimation via least squares solution is possible since, by 
construction, facial landmark detectors assume a consistent structure of 
the 3D face parts so they do not permit outliers or unreasonable 
arrangement of the face 

• The 2D translation is estimated as  

• The estimated pose      is represented as              and used to map each 
vertex of the 3DMM onto the image 

3D Pose Estimation



• Using the learned dictionary                                , we find the coding that 
non-rigidly transforms the average model        such that the projection 
minimizes the error in correspondence to the landmarks 

• The coding is formulated as a regularized Ridge-Regression problem 
(cost)

where ○ is the Hadamard product

• The term           is used to associate a reduced cost
to the deformation induced by the most relevant components 

Deformed	models	when	the	
regularization	term	is	removed.	
The	uncontrolled	growth	of	the	
deformation	coefficients	α leads	
to	excessive	deformations

regularization	term

Efficiently Fitting the DL-3DMM



• Since the pose     , the basis components      , the landmarks   , and             
are known, we can define                                   and 

• By considering their linearized versions                   and                     with
, we can estimate the non-rigid coefficients which 

minimize the cost of the previous regularized Ridge-Regression, in closed 
form 

denotes the diagonal matrix with vector           on its diagonal

• The pose estimation and fitting steps are alternated; better reconstructions 
are obtained by repeating the process while keeping a high regularization 
value

Efficiently Fitting the DL-3DMM



The	DL-3DMM	coefficients	
contain	the	energies	used	by	
the	dictionary	atoms	to	
reconstruct	the	training	signals;	
though	all	the	atoms	contribute	
to	the	reconstruction,	the	
actual	contribution	of	an	atom	
is	quantified	by	the	related	
coefficient.	In	this	sense,	the	
weighting											privileges	the	
more	contributing	atoms	

Comparison Between DL coefficients and PCA 
eigenvalues



Deformation	
heat-maps

Models	generated	by	applying	different	deformation	magnitudes

Expression

Expression

Identity

Deformation of Single Dictionary Atoms



Fitting	an	expressive	face	with	a	3DMM:	a	3DMM	built	without	expressive	scans	fails	
in	fitting	the	expressive	face	

Importance of Expressive Training Scans



Fitting	of	face	images	with	strong	expressions

Importance of Expressive Training Scans



DL- and	PCA-based	3DMM	for	optimal	or	high	regularization	values:	
DL-3DMM	both	introduces	less	noise	in	the	3D	models	and	retains	its	
modeling	ability	even	for	high	regularization	values

DL-3DMM PCA-3DMM

DL-3DMM vs PCA-3DMM



First	row: errors	for	both	
DL- and	PCA-based	3DMM	
as	a	function	of	the	
regularization	parameter	
l and	for	different	
number	of	components.	

Second	row: effect	of	
varying	l for	the	best	
number	of	components.

Third	row:	effect	of	
varying	the	number	of	
components	for	the	best	
value	of	l

Reconstruction Error on BU-3DFE



Frontal Face Rendering

• We have now a complete 3D Morphable ( shape ) Model that is able to 
accurately fit expressive face images

• Rendering a canonical frontal view of the face exploits the knowledge of the 
3D face shape to compute a pixel-wise inverse transformation, which 
associates to each pixel a 3D location in the coordinate system of the 3D 
model 

• Once the 3D model is fit and projected onto the image, for each 3D vertex                               
we know the coordinates                              of the pixel             
corresponding to the projection of the vertex on the 2D image plane 

• Conversely, many pixels of the image have not a direct map in 3D, since 
they do not correspond to the projection of any 3D vertex 



Frontal Face Rendering

• The 3D locations of these pixels can be estimated by fitting a function h(x,y) 
across all the scattered pixels for which the 3D to 2D mapping is known 

• Defining W as the convex hull of the projected 3DMM, the 3D position gu,v of 
each pixel                    is estimated as

Original image The resampled 3DMM is 
parametrized by the image

Frontal rendering ( artifact free )



Features Localization

• On the frontal images, the deformed vertices of the 3DMM are used to 
localize and match descriptors

• Match regions with the same semantic meaning e.g. mouth corner

• LBP descriptors are used as face descriptors



Face Recognition on LFW

Comparison with other 
frontalization algorithms

Comparison with the 
state-of-the-art

• An accurate 3DMM fitting allows good performance also for “in the wild” 
scenarios



DL	better	captures	local	deformations

AU Detection on FERA dataset
• Facial Action Units (AU) codify facial muscle movements based on the 

appearance changes e.g. eyebrow raiser, lips puller etc.

• Expressions are also formally defined as combination of action units activation

Regular	grid Landmarks
On	the	original	
image

On	the	frontalized image



Emotion Recognition on FERA dataset
• Similar results are obtained for the emotion recognition task

• The gap between PCA and DL is smaller since emotions usually involve complex 
movements of the whole face

• More complex task since emotions are subjective and different subject might 
show different expressions



Expression Transfer
• Another application of our DL-3DMM is the expression transfer

• The idea is that we can fit the 3DMM to neutral faces and use the subject-specific 
model to fit an expressive face of the same subject to learn expression-specific 
deformation parameters

• Given a set of training subjects, we can learn expression-specific deformation to 
be applied to a generic face image ( in neutral expression )

Ferrari, et al., Rendering Realistic Subject-Dependent Expression Images by Learning 3DMM Deformation Coefficients, ECCV
workshops 2018



Expression Transfer
• The expression-specific parameters are learned by means of simple statistical 

indicators ( mean, median … )

• This suggests that the dictionary is effective in separating between identity and 
expression components, even without explicit divisions of the training scans

• Some examples with applied expression are shown



Practical Session

• Now that we have revised in detail the whole construction process, we can 

practice!


