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Tutorial Goal
• The goal of this tutorial is to provide an overview of the 3D Morphable Model 

technique and its applications

• While being a relatively old technique, it is still widely used as it still plays an 
important role for many applications 

• The tutorial is divided in 4 main parts:

1. In the first part, we will present the original 3DMM formulation, its main concepts and 
limitations 

2. In the second part we will present a particular modification of the original 3DMM, so 
as to show how each step of the process contribute and influence the final model

3. Hands on! Let’s practice what we have learned

4. The last part is dedicated to the review of some recent works exploiting the 3DMM in 
conjunction with deep learning techniques, so as to show that the 3DMM is still quite 
important ( necessary!) for developing deep learning based solutions



• Part 1: Introduction to the 3D Morhpable Model – ( 9:00 – 10:00 )
– Idea and basic model (Blanz &Vetter) 
– Dense registration
– Components learning (PCA)
– 3DMM fitting
– Limitations
– Evolutions and applications

• Part 2:  A particular case: Dictionary Learning based 3DMM - (10:00 – 10:45)

Coffe Break

• Part 3: Hands on! Running some examples – (11:00 – 11:30)

• Part 4: Deep Learning and 3DMM – (11:30 – 12:15 )

• Part 5: Conclusions – (12:15 – 12:30)

Outline



Abstract
• The problem of reconstructing the 3D structure of objects or scenes from 

multiple or single images has been studied for more than three decades;

• Applications are numerous;

• Tons of solutions have been developed so far.



Abstract
• In this tutorial, we will focus on the particular case of reconstructing a 3D model 

of the human face from a single image by means of the 3D Morphable Model.



• The idea of deriving 3D information from 2D images using computer vision 
techniques is a research topic with a quite long tradition that dates back to ’80

• Now, remaining the 3D acquisition limited to certain constrained domain, the 
deployment of powerful machine learning tools has pushed forward this 
research area, with innovative and effective solutions appeared recently

• Estimating the 3D geometry from single or multiple images under the most 
general conditions, where no a priori knowledge is available about the imaged 
scene and the capturing conditions is a very challenging task

Motivation



• To make the problem solvable to some extent, priors are usually assumed

• In the case of reconstructing a 3D model of the face, the prior knowledge 
can be in the form of camera parameters and reflectance properties of the 
face considering either a single image, as in the shape from shading 
solution (Horn and Brooks, 1989), or multiple images with different 
illuminations for the photometric stereo approach (Woodham, 1980)

Motivation



• Despite differences between subject to subject,  
faces have 3D shapes with well defined characteristics

• This inspired the idea that faces can be regarded as 
laying on a (unknown) shape manifold

• Moving on such manifold it is possible to pass from 
one face to another and generate new ones

• Following a similar intuition, Blanz & Vetter [*] first popularized the idea of 
capturing the face variability in a training set of 3D scans and constructing a 
statistical face model (3D Morphable Model, 3DMM) 

• Such 3DMM includes an average component and a set of learned principal 
components of deformation allowing either to generate new face instances, or 
to deform and fit to 2D or 3D target faces 

[*]	V.	Blanz and	T.	Vetter.	“A	morphable	model	for	the	synthesis	of	3D	faces”,	In	ACM	Conf.	on	Computer	
Graphics	and	Interactive	Techniques	(SIGGRAPH),	1999

Motivation



• We represent the geometry of a face with a shape-vector 
S = (X1, Y1, Z1, X2, Y2, Z2,….,Xn, Yn, Zn)T in R3n, that contains the X, Y, Z 
coordinates of its n vertices ( point-cloud )

• For simplicity, we assume that the number of valid texture values in the texture 
map is equal to the number of vertices 

• We therefore represent the texture of a face by a texture-vector 
T = (R1, G1, B1, R2, G2, B2,….,Rn, Gn, Bn)T in R3n, that contains the R, G, B 
color values of the n corresponding vertices 

• A 3D morphable face model is then constructed using a data set of m
exemplar faces, each represented by its shape-vector Si and texture vector Ti
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The 3D Morphable Model
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The 3D Morphable Model

• In their seminal work, Blanz and Vetter first presented a complete solution to 
derive a 3DMM by transforming the shape and texture from a training set of 
3D face scans into a vector space representation

• The main idea is that arbitrary new shapes Smod and textures Tmod can be 
generated as a linear combination of some exemplar faces

• The 3D morphable model is defined as the set of faces (Smod(a), Tmod(b)), 
parameterized by the coefficients a = (a1, a2,…,am) and b = (b1, b2,…,bm) 

• Arbitrary new faces can be generated by varying the parameters a and b that 
control shape and texture 
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The 3D Morphable Model

• For a useful face synthesis system, it is important to be able to quantify the 
results in terms of their plausibility of being faces 

• Therefore, the probability distribution for the coefficients ai and bi are 
estimated from the example set of faces 

• This distribution enables us to control the likelihood of the coefficients ai and 
bi and consequently regulates the likelihood of the appearance of the 
generated faces 

• A multivariate normal distribution is fit to the data set of faces, based on the 
averages of shape S and texture T and the covariance matrices CS and CT
computed over the differences                      and 

• Principal Component Analysis (PCA) is applied to the scans

SSS ii -=D TTT ii -=D



• PCA performs a basis transformation to an orthogonal coordinate system 
formed by the eigenvectors si and ti of the covariance matrices

• The probability for coefficients ai is given by

with         being the eigenvalues of the shape covariance matrix  CS

• The probability foe coefficients bi	 is computed similarly
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The 3D Morphable Model



• The idea of using Principal Component Analysis (PCA) as linear 
dimensionality reduction technique to capture the characterizing dimensions 
of human faces, and so construct a 3D morphable face model capable of 
generating plausible faces is the key idea of the 3DMM

• The PCA computation and the morphing between faces requires full (i.e., 
dense) correspondence across all of the faces in the training set
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The 3D Morphable Model



• This step is fundamental to make the learned components meaningful

• This can be seen as a sort of mesh re-parametrization, where corresponding 
points must have the same anatomical reference across all the scans 

• We need to make sure that the each vertex has the same semantic meaning 
across all the scans e.g. nose tip, lip corner

• All the scans also need to share the same number of vertices

• If these not hold, the principal components will not make any sense!

Dense Correspondence: Why



• A reference 3D face is chosen

• A modification of the gradient-based optical flow 
algorithm is used to establish correspondence 
between each scan and the reference face

• Each scan is represented by its RGB texture values and 3D coordinates

• Based on these correspondence, each mesh is re-parametrized with respect to 
the reference face so that corresponding points have the same index in the 
vector

• Can fail in case of “unusual” faces

Optical Flow for Dense Correspondence



1. A dense point-to-point correspondence between the vertices of a set of 3D 
training faces is established 

2. An average model is computed from the aligned scans

3. PCA is computed on the aligned scans to retrieve the principal components

4. The average model and the principal components constitute the 3DMM 

5. New textured models are generated deforming the average model with a linear 
combination of the principal components

The 3D Morphable Model: Summary



• To increase the versatility of the model, it is 
segmented to isolate specific areas i.e. 
eyes, nose, mouth

• Each area is deformed separately and an 
image blending technique is used to make 
smooth transitions between areas

• The deviation of a prototype from the 
average is added (+) or subtracted (-) 

• A standard morph (*) is located halfway 
between average and the prototype. 

• Adding and subtracting deviations 
independently for shape (S) and texture (T) 
on each of four segments produces a 
number of distinct faces

Segmented 3D Morphable Model



• 3DMM is used either to generate arbitrary faces or to reconstruct a face image

• To reconstruct a face given an image the coefficients of the 3DMM are optimized 
along with a set of rendering parameters such that they produce an image as 
close as possible to the input 

• In an analysis-by-synthesis loop, the algorithm creates a texture mapped 3D face 
from the current model parameters, renders an image, and updates the 
parameters according to the residual difference

Matching the 3DMM to Images



• 3DMM matching requires both 3DMM parameters and rendering parameters 

• Rendering parameters contain the camera position, object scale, image plane 
rotation and translation, ambient light, directed light, color contrast, camera 
distance, light direction ecc.

• The 3DMM parameters are restricted to the vector space spanned by the training 
data, thus non-face-like surfaces are avoided

• Optimizing with respect to all those parameters is complex and costly

Matching the 3DMM to Images



Facial Attributes Transfer

Original

Transferred 
attributes



• 3DMM and its variants have been used in pose robust and 3D face recognition 

• However, there are no convincing examples of 3DMMs applied to face analysis 
applications where facial expressions are involved 
– Difficulty with coping with noise, local deformations and topology variations

• Limitations derive from the methods used for the 3DMM construction
– Training data: dataset of 200 middle aged Caucasians with limited face 

variations 
– Statistical tools applied to the data: if the correspondence is not accurate, 

most principal components include noise 

Limitations of the standard approach



• The techniques presented so far constitute the original 3DMM as first presented

• However, each step of the pipeline can be modified

• The main steps are:
– Training scans collection
– Dense registration
– Components learning
– Matching ( fitting ) to images

• In the following, we will analyze some relevant methods and applications

Evolutions of the standard approach



• The data and their characteristics that are used to learn the components are of 
fundamental importance for the expressive power of the 3DMM

• For instance, if expressive scans are not included in the dataset, the 3DMM will 
not be able to model facial expressions

• The same applies for the texture, for instance if the RGB images are taken 
under controlled conditions e.g. inside a lab with constant illumination, then it 
will be hard to model more complex textures 

• Desirable qualities of a 3D face dataset are:
– Large variabilities in term of age, ethnicity, gender
– Presence of expressive scans
– High resolution of the scans
– “In the wild” textures

Training Data



• To address this issue, methods to collect large scale 
3D face datasets are lately being developed

• Booth et al.[1] developed an automatic method and 
collected a dataset of ~10K face scans so as to 
capture a larger spectrum of facial shapes

– This model produces better reconstructions with 
respect to the original approach 

• An “in the wild” texture model [2] was proposed to 
enhance and simplify the texture fitting: it is 
computed from 2D “in the wild” face images

• Instead of directly using the RGB value, the model is 
built using a dense feature representation of the 
image

• Complex rendering parameters ( illumination, light 
ecc ) are not necessary

Training Data

[1]	Booth,	James,	et	al.	"A	3d	morphable model	learnt	from	10,000	faces." CVPR.	2016.
[2]	Booth,	James,	et	al.	"3D	face	morphable models	“in-the-wild”." CVPR.	2017.



• A large number of complex scans are beneficial for learning effective 
components and model the statistical variability of human faces

• On the other hand, it adds complexity to the dense registration problem

• The optical flow approach is prone to failures if the reference scan and the 
source scan are relatively diverse

• Moreover, the human face is a non rigid object that can significantly change its 
shape and the properties of the surface

Scans Dense Registration



• Iterative Closest Point: Given a source set of points, compute for each point 
the nearest one in the target set

• Estimate a rigid transformation to bring the source points to the target

• Re-parametrize the source points

• Iterate until convergence

• Cannot handle holes or
topological variations

• Not suitable for expressive scans

ICP for Dense Correspondence



• Overcomes the problem of holes and missing regions

• Estimate an (initial) rigid transformation to bring the source points to the target

• Apply local affine transformations weighed by a stiffness parameter to the 
points so as to match the target shape and eliminate non matching points

• Iterate until convergence

• Large topological differences
still give troubles

Non Rigid ICP for Dense Correspondence

Amberg,	Brian,	et	al.	"Optimal	step	nonrigid ICP	algorithms	for	surface	registration." CVPR,	2007.



• Many other methods exist which take into account several aspects of a point 
cloud ( or mesh )

• Sparse points ( landmarks ) can be used to guide the initial estimation

• Some ICP variants account for local surface properties like normal vectors or 
curvatures

• Range images ( or depth images ) are used as well to solve the problem by 
exploiting image features

Other Methods for Dense Correspondence



• Now that we have a training set of registered 3D scans, we might want to 
apply a statistical tool to learn the deformation components

• In [1] it is shown that if the training data spans a large spectrum of variabilities, 
modeling the underlying distribution with a mixture of Gaussians is more 
suitable than PCA

• The distributions of the subpopulations might have very different means

Components Learning: Mixture of Gaussians

[1]	Koppen,	Paul,	et	al.	"Gaussian	mixture	3D	morphable face	model." Pattern	Recognition (2018)



• In [2], the face is decomposed using a wavelet transform and a set of localized 
multilinear models are learnt to account for identity and expression separately

• The de-correllated wavelet coefficients allow learning many independent low-
dimensional models

• This method achieves better results with respect to the classic PCA ( or local-
multiple PCA )

Components Learning: Multilinear Models

[2]	Brunton,	et	al.	"Multilinear	wavelets:	A	statistical	shape	space	for	human	faces	ECCV,	2014.



• If we want to model local deformations 
a global model might introduce noise in 
surrounding areas

• In [3], the components are learned by 
applying a sparse implementation of the 
PCA on mesh sequences

• This results in sparse components that 
are used to model local deformations

• Modeling differences between 
individuals is somewhat harder

Components Learning: Sparse PCA

[3]	Neumann,	Thomas,	et	al.	"Sparse	localized	deformation	components." ACM	Transactions	on	Graphics	(TOG) 32.6	(2013):	179.



• While the generation of arbitrary faces starting from the underlying statistical 
model does not change i.e. linear combination of coefficients, many 
approaches to fit the 3DMM to face images are possible

• These are divided roughly in:

– Analysis-by-synthesis: minimize the difference between the input image and a 
rendered image of the 3DMM, updating the parameters iteratively

– Geometric: the 3DMM parameters are chosen so as to minimize the euclidean re-
projection error between a set of landmarks ( similar to AAM ) or curves

– Feature Based: similar to the landmark based but the optimization is intended to 
either minimize the difference in a feature space ( HOG, SIFT … ) or learn a 
regressor to map the 

3DMM Fitting



• This kind of approaches aim at finding the fitting parameters that generate a 
synthetic image as similar as possible to the input one in an iterative manner

• Require initialization

• They are accurate but complex: a lot of parameters to define and optimize
– Camera model
– Illumination model
– 3DMM shape and texture 
– Optimization algorithm

• Usually slow

• Get stuck in local minima

3DMM Fitting: Analysis by synthesis



• These approaches deform the 3DMM so as to match some geometric 
elements extracted from the face image

• Usually, a corresponding set of landmarks ( in 2D and 3D ) are used to 
estimate the projection matrix to project the 3DMM onto the image plane

• The 3DMM is deformed so as to minimize some geometric elements:
– Landmarks position
– Curves
– Contours
– …

• Faster and not computationally expensive

• Less accurate

3DMM Fitting: Geometric



• Sort of ”mix” of the previous methods

• Deform the 3DMM so as to render an image as similar as possible to the input 
one in a feature space ( HOG, SIFT … ) 

• Many rendering parameters (e.g. illumination model) are not needed since 
these are already encoded in the features 

• Features can be extracted on a dense or scattered set of points

• Can be used in conjunction with geometric methods

• Regressors can be trained to map the feature differences to parameters 
update [4]

3DMM Fitting: Feature Based

[4]	Zhu,	Xiangyu,	et	al.	"Discriminative	3D	morphable model	fitting." Face	and	Gestures,	2015.



• The 3DMM has many different applications in image face analysis, from  
computer graphics for face inverse lighting and reanimation, craniofacial 
surgery to 3D shape estimation from 2D image face data, 3D face recognition, 
pose robust face recognition etc.

• Its first application was pose robust face recognition (2D) [5]

• The 3DMM is fit to face images and recognition is performed by matching the 
shape and texture coefficients of the 3DMM

– Same subjects ( even in different poses ) should have a similar set of coefficients

Applications

CMU-PIE	dataset

[5]	Blanz,	Volker,	and	Thomas	Vetter.	"Face	recognition	based	on	fitting	a	3D	morphable model." IEEE	TPAMI (2003)



• Similarly, it has been applied for 3D expression invariant face recognition [6]

• Two separate PCA based models: identity and expressions

• To build the expression model, PCA is applied to the offset vector between an 
expressive scan and the neutral scan of the same subject

• The expression model is used to normalize the reconstructed model so as to 
remove the expression

• Recognition is performed comparing the coefficients vectors

Applications

[6]	Amberg,	Brian	et	al.	"Expression	invariant	3D	face	recognition	with	a	morphable model." FG'08.	



Other applications
• Being the 3DMM a generative model, another important ( we will see that 

later… ) application of the 3DMM is the generation of synthetic face images

• Or synthetic expressions

• 3D pose compensation or synthesis

• And so forth…



A Particular Case
• In the following, we will present a particular implementation of the 3DMM

• The goal was to build a model able to accurately fit expressive face images 
quickly so as to compensate the 3D head pose and render a frontal view of the 
face image

• We will revise the whole pipeline development so as to show how each step 
can be modified so as to reach a particular goal


