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Overview
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Overview

In this lesson I will first do a quick overview of the Deformable Part
Models detector.
Then, I will present four works that radically changed the face of
object recognition.
These new models are based on a specific type of Neural Network.
Specifically, they are based on Convolutional Neural Networks
(CNNs).
I will begin the discussion of CNNs with some motivating examples
that demonstrate the basic building blocks of CNNs.
We will see how this model (sort of) arises naturally from the
Bag-of-Words model.
And we will see how it has radically changed the landscape of object
recognition.
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Deformable Part Models
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Deformable Part Models

[OTHER PRESENTATION]
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Setting the Stage
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Setting the Stage

After ten years of incremental improvements of the Bag-of-Words
model, we found ourselves reaching a sort of asymptote.
It was unclear what would be the Next Big Thing in object
recognition.
The state-of-the-art in 2012 was: Fisher Vectors + Multiple Cues +
Late Fusion (summing scores).
Meanwhile, since the 1990s there was a competing paradigm for
object recognition based on Neural Networks.
This method for object recognition had been developed in the 1990s
for character recognition.
However, it never really broke through onto the object recognition
scene.
This is due to a number of factors that are important to understand.
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Setting the Stage

Let’s look at a simple Neural Network architecture known as the
Multilayer Perceptron (MLP):
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Setting the Stage

The MLP equation (one hidden layer):

ŷ(x) = σ(wT
2 σ(wT

1 z + b1) + b2)

Except for the activation function σ, this is a linear system.
Common activation functions (elementwise):

σ(x) = tanh(x)
σ(x) = (1 + e−x)−1

σ(x) = exp(x)∑
i
exi
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Setting the Stage

How do you train a model?
Decide on a loss function:

L(y, ŷ(x)) = 1
C

∑
i

yi log(ŷi)

And perform gradient descent w.r.t. all model parameters:

θθθn+1 = θθθn − ε∇θθθL(y, ŷ(x))

θθθn+1 = θθθn − ε
N∑

i=1

1
N ∇θθθL(y, ŷ(xi))

Where ε is the learning rate.
The standard algorithm for this is known as backpropagation and it is
very clever and efficient.
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Setting the Stage

Problems with this approach:
Model size: many, many parameters for even small-sized images. This
leads to memory and efficiency problems.
Overfitting: many parameters (and limited training data) mean that it
is easy to overfit the model to your training set.
Undergeneralization: overfitting means that a trained model is unlikely
to generalize to new data.
Vanishing gradients: a known problem with backpropagation (due to
application of the chain rule) leads to very small gradient values near
the beginning of the network.
Saturating units: traditional activation functions can lead to saturated
units (outputs near 1 or 0 (or -1)), which have near-zero derivatives.

These problems (and others) led the community to largely ignore the
potential of these models for decades.
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Setting the Stage

Nonetheless, there were staunch supporters of this paradigm.
Then, one day in 2010 (or 2011), the following conversation took
place. . .

J. Malik G. Hinton Y. LeCunn Y. Bengio
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Setting the Stage

Then, at the ImageNet competition workshop at ECCV 2012 (right
here in Florence!):
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CNNs: AlexNet
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AlexNet: Introduction

We will now take a look at the International Large Scale Visual
Recognition Competition (ILSVRC) submission that changed
everything:

ImageNet Classification with Deep Convolutional Neural Networks. Alex
Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. In: Proceedings of
NIPS, 2012.

In this paper the authors defined a convolutional network architecture
that became the New Standard.
This architecture systematically addresses most of the problems with
training large network architectures.
It is a Convolutional Neural Network (CNN) that is universally called
AlexNet.
It is also a Deep Network because it has many hidden layers.
Hence the term Deep Learning.
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AlexNet: The Architecture

Let’s look first at the overall architecture and then analyze in detail
how each component addresses specific problems.
It is also helpful to examine how data flows through the network.
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AlexNet: Sharing Weights

The early layers of the network are convolutional.
This means that the weights are shared across locations of the image.
The input of size w × h × d is transformed into an output of size
w × h × d ′.
The outputs are called feature maps and they are derived by
convolving the image with a 3D tensor of size u × v × d ′.
So, the number of parameters is “merely” u ∗ v ∗ d ′ + d ′.
The output feature maps can be very large however.
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AlexNet: Pooling Features

Like in the Bag-of-Words model, we can pool local features.
In AlexNet, they authors use 3 × 3 pooling regions with a stride of 2
pixels.
This means that after some convolutional layers the feature map size
is reduced by a factor of 2.
They use max pooling: in each feature map, keep the maximum value
in each overlapping 3 × 3 pooling region.
This helps to contain the size of feature maps propagated through the
network.
And it also helps to build higher-level representations of the image.
This is because, halving the image resolution is the same as doubling
the size of subsequent convolutions.
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AlexNet: Unit Saturation

Another innovation in AlexNet is the use of the Rectified Linear Unit
(ReLU) activation function.

σ(x) = max(0, x)
This activation function does not saturate like sigmoids.
The result is a 6x speedup in training.
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AlexNet: Reducing Overfitting

Even with convolutional weight sharing, AlexNet still has 60M
parameters.
To reduce overfitting, the authors use two extra (now standard)
tricks:

Data augmentation: random translations and reflections of input
images are generated, plus random variation in principal directions of
RGB space.
Dropout: an advanced trick from the Neural Network community which
randomly removes half of the inputs to select layers at training time.
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AlexNet: More Tricks

The AlexNet paper is an excellent resource because it explains all of
the tricks necessary to get a deep network to learn:

Local response normalization: keep local variation in feature maps
under control (section 3.3).
Momentum: limits the “skateboard” effect when following valleys in
the loss surface, equivalent to L1 (or L2) regularization of weights
(section 5).
Mini-batch Stochastic Gradient Descent (SGD): with 1.2M training
samples, we cannot consider the entire dataset in one batch; instead,
randomly sample mini-batches of 128 images (section 5).
Multiple GPUs: AlexNet was too big to fit in a single GPU (in 2012),
so feature maps are split over two GPUs (section 3.2).
Model averaging: state-of-the-art results are obtained by training
multiple CNNs and averaging outputs.
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AlexNet: Results

The proof is in the pudding:

And in the representations the network learns:
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AlexNet: BOW vs. DCNNs

Feature detection:
In BOW, we use handcrafted features as input to pooling and finally
classification layers.
In DCNNs, we learn convolutional features, which are then pooled, and
then shoved into classification layers.

Local feature pooling:
In BOW we use spatial pooling to add structure to our final
representation (Spatial Pyramids).
In DCNNs, we use max pooling to reduce feature map size and create
higher-level features.

Global feature pooling:
In BOW, we compute a global image representation via pooling.
In DCNNs, we compute a global image representation via
fully-connected (sometimes called dense) layers.

Training:
In BOW, we use handcrafted representations, followed by shallow
classifier learning (e.g. an SVM).
In DCNNs, we perform end-to-end training of the entire architecture.
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AlexNet: Reflections

AlexNet took the object recognition world by storm.
Many of the elements of the model are not really new.
However, this was the first work to convincingly demonstrate how
state-of-the-art object recognition systems can be trained end-to-end
on real problems.
This was made possible by a number of confluent development:

The availability of enormous amounts of annotate data (ImageNet,
with 1.2M training images).
Modern GPUs, which make convolutions super fast.
Decades of persistent theoretical development (ReLUs, fast backprop,
dropout, etc).
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CNNs: Very Deep Networks
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Very Deep Networks

Very soon after the ILSVRC 2012 results, the community began
experimenting with newer, deeper architectures for CNNs.
We will look at an architecture that became (and still is) a standard
one.

Very Deep Convolutional Networks for Large-Scale Image Recognition.
Karen Simonyan and Andrew Zisserman. In: arXiv preprint
arXiv:1409.1556, 2014.

In this paper the authors performed a thorough exploration of the
architectural parameter space.
They varied the hyperparameters (e.g. number of layers, size of
convolutions, etc).
And established a new baseline for CNN-based object recognition.
These networks are known as VGG16 and VGG19 (VGG = Visual
Geometry Group from Oxford).
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VGG: The Setup

Input to the networks is a fixed, 224 × 224 × 3 image tensor.
The mean RGB value is first subtracted from all training images to
center the data.
All convolutions are 3 × 3 × d or 1 × 1 × d in size (d is an arbitrary
number of feature maps) with a stride of 1.
The idea is: if you need larger convolutions, just go deeper.
Max pooling is done over non-overlapping 2 × 2 windows with a stride
of 2 (2x reduction in size).
All hidden layer use a ReLU activation function, but do not do local
response normalization.
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VGG: The Configurations

The following configurations were considered:
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VGG: Training

The training procedure is similar to AlexNet:
The training is carried out by optimising the multinomial logistic
regression objective using mini-batch gradient descent.
The batch size is 256, with momentum of 0.9
Training was regularised by weight decay (the L2 penalty multiplier set
to 104 and dropout on the first two fully-connected layers.
The learning rate was initially set to 102 and decreased by a factor of
10 when the validation set accuracy stopped improving.
Learning was stopped after 370K iterations (74 epochs).

Initialization:
CNNs are extremely sensitive to initialization of the weights.
For training VGG networks, the authors use a combination of random
initialization and pre-training.
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VGG: Training Image Size

Note that training images are all scaled to 224 × 224 pixels before
passing them through the network.
This is the same as AlexNet, and clearly can affect the image content
by introducing artifacts (consider portrait images).
In VGG networks, images are isotropically scaled so that the smallest
dimension has fixed size.
Then subimage of size 224 × 224 is randomly cropped from the scaled
image.
The authors evaluated randomly scaling to between 256 and 384
pixels for the smallest dimension.
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VGG: Testing Image Size

At testing time, there are five strategies for image scaling evaluated
(and their combinations):

Dense: the network is fully convolutionalized (I will explain this on the
next slide), evaluated densely on the input image, and results are
globally pooled.
Single-scale: a single isotropic scale is used.
Multi-scale: like at training time, images are scaled to three discrete
isotropic scales. of th
Multi-crop: multiple, random crops are taken from the
fully-convolutional output for average pooling.
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VGG: Fully-convolutionalization

Below is a diagram of a typical ConvNet.
How can we make it independent of the image size?
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VGG: Results

Even when only considering a single input scale, the results are
impressive.
Note: deeper is better, LRN doesn’t help, scale jittering at test time
does.
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VGG: Results

Using multiple scales leads to even better performance:

As does fusing multiple cropping strategies:
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VGG: Us versus Them

Finally, model averaging over multi-scale, multi-crop models leads to
state-of-the-art performance:
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VGG: Analysis

The VGG16 and VGG19 networks are still in common use today
(though used in novel ways).
In this paper the authors significantly improved over the previous
generation by going deeper.
Again, most of the ideas are not new, but systematic exploration of
the design space led to significant improvements.
Note that the networks are deeper, but have a smaller memory
footprint at training time due to carefully balancing the size of feature
maps.
Dense evaluation of the network at test time can also increase
performance, leading to fully convolutional networks that are
independent of input image size.
The architecture is still a classical ConvNet.
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CNNs: Even Deeper Networks
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GoogLeNet: A New Architecture

Of course, Google had to jump into the game.
We will now consider a different architecture for CNNs, one that will
allow us to go even deeper:

Going Deeper with Convolutions. C Szegedy, W Liu, Y Jia, P Sermanet, S
Reed, D Anguelov, D Erhan, V Vanhoucke, and A Rabinovich. In:
Proceedings of CVPR 2015.

This will use the idea of fully convolutional networks to both go
deeper and to limit size of intermediate feature maps.

Prof. Andrew D. Bagdanov (DINFO) Object Recognition in Images and Video: CNNs 27 April 2017 39 / 54



GoogLeNet: Observations

Trend: bigger and deeper networks (and multiple models at that).
Problems:

Problem 1: bigger networks need a lot more annotated training data,
which is extremely expensive to collect.
Problem 2: hardware resources are finite, including memory and CPU
cycles.
CPU hog: convolutional layers over many feature maps.

Ideas:
Use multiple, multi-resolution convolutions at each layer to better
capture local structure.
Use fully-convolutionalř layers (i.e. 1 × 1 × d) convolutions to *reduce
feature map dimensionality before expensive convolutions.
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GoogLeNet: Inception

Thus, the Inception Module was born:

Naive With dimension reduction

The naive module concatenates multiple feature map representations
at each level.
This includes expensive 5x5 and 3x3 convolutions.
The full Inception Module applies 1x1 convolutions to reduce
dimensionality by first convolving with 1x1 filters.
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GoogLeNet: Putting it Together

The GoogLeNet name is an homage to the first ConvNet proposed by
Yann LeCun in 1989.
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GoogLeNet: A Tour

Let’s take a detailed look at the monster of a figure 3.
First the stem.
Then a cascade of Inception Modules.
Then the auxiliary loss layers.
The final output layers.
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GoogLeNet: Training

The training procedure of GoogLeNet is a complete mess.
This is typical of the type of training that happens leading up to a
competition.
They experimented with many configurations, keeping some,
discarding others.
In any case, they use SGD on CPUs (they’re Google, they have CPUs
at their disposal).
Final results are based on a combination of 7 trained GoogLeNet
variants.
At test time they pass 144 224 × 224 RGB images through the
network and average the outputs.
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GoogLeNet: Results

The progress in two years was significant:

And the effect of all of the tricks were also significant:
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GoogLeNet: Reflections

The GoogLeNet architecture has 12x fewer parameters than AlexNet.
And it makes less than 1/3 of the errors.
This architecture demonstrates that CNNs can be tamed in size
complexity.
In the long run, this is important for deployment on limited hardware.
GoogLeNet also popularized the fully convolutional layer architecture,
which has been used (for example) for object segmentation.
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CNNs: Fast-RCNN
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Fast-RCNN: The Idea

We will now look at a network designed for object detection rather
than just recognition.

Fast-RCNN. R Girshick. In: Proceedings of ICCV 2015.
This is a detection technique that actually uses a method from the
pre-CNN revolution (Selective Search):

Main idea: propose likely object locations in a class-independent way,
using only image content; classify each proposal.
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Fast-RCNN: The Idea

Problem: how to do this efficiently?
[SWITCH PRESENTATION]
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Deeper, Bigger, and Better
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Deeper, Bigger, and Better
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Deeper, Bigger, and Better

We have come a long way in five short years.
However, though we have left behind (for the most part) the era of
handcrafted features, we have entered the era of handcrafted
architectures.
It can be hard to make sense out of the confusing array of CNN
architectures out there.
It is even harder to optimally train these networks.
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Discussion
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Discussion

Discuss
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