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Lecture presentations

I You can will find all class lecture presentations at this site:

http://micc.unifi.it/bagdanov/digitaltwin/

I Published here will also be links to Colaboratory Notebooks and
any supplementary material.
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Defining Artificial Intelligence

I Thinking Humanly:
"The study of mental faculties through the use of computational
models." – Charniak+McDermott, 1985.

I Thinking Rationally:
"The branch of computer science that is concerned with the
automation of intelligent behavior." – Luger+Stubblefield, 1993.

I Acting Humanly:
"The study of how to make computers do things at which, at the
moment, people are better." – Rich+Knight, 1991.

I Acting Rationally:
"[The automation of] activities that we associate with human
thinking, activities such as decision-making, problem solving,
learning. . . " – Bellman, 1978.
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Acting Humanly: The Turing Test

I Turing (1950): Computing machinery and intelligence:

"Can machines think?" −→ "Can machines behave intelligently?"
I Operational test for intelligent behavior: the Imitation Game:
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Acting Humanly: The Turing Test
I Turing predicted that by 2000, a machine might have a 30%

chance of fooling a lay person for 5 minutes.
I Anticipated all major arguments against AI for 50 years.
I Suggested major components of AI: knowledge, reasoning,

language understanding, learning.
Problem: Turing test is not reproducible, constructive, or amenable to
mathematical analysis.

"It seems probable that once the machine thinking method had
started, it would not take long to outstrip our feeble powers. They
would be able to converse with each other to sharpen their wits. At
some stage therefore, we should have to expect the machines to
take control." – Alan Turing, 1951.
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Thinking humanly: Cognitive Science

I 1960s cognitive revolution: information-processing psychology
replaced prevailing orthodoxy of behaviorism.

I Requires scientific theories of internal activities of the brain:
I What level of abstraction? "Knowledge" or "circuits"?
I How to validate? Requires:

1. Predicting and testing behavior of human subjects (top-down); or
2. Direct identification from neurological data (bottom-up).

I Both approaches (roughly, Cognitive Science and Cognitive
Neuroscience) are now distinct from AI.

I Steven Pinker on Cognitive Science
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Thinking rationally: Laws of Thought

Normative (or prescriptive) rather than descriptive:
I Aristotle: what are correct arguments/thought processes?
I Several Greek schools developed various forms of logic: notation

and rules of derivation for thoughts.
I This may or may not have proceeded to the idea of mechanization.
I Direct line through mathematics and philosophy to modern AI.

Problems:

1. Not all intelligent behavior is mediated by logical deliberation.

2. What is the purpose of thinking? What thoughts should I have?
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Acting rationally
Rational behavior: doing the right thing.
I The right thing: that which is expected to maximize goal

achievement, given the available information.
I Doesn’t necessarily involve thinking – e.g., blinking reflex – but

thinking should be in the service of rational action.
I Aristotle (Nicomachean Ethics): Every art and every inquiry, and

similarly every action and pursuit, is thought to aim at some good.

Source: Using Accounting Reform to Stimulate Sustainability Practices in Higher Education, 2011.
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A first formalism: Rational Agents

Definition (Rational Agents)
An agent is an entity that perceives and acts. This course is about
designing rational agents. Abstractly, an agent is a function from
percept histories to actions:

f : P∗ → A

For any given class of environments and tasks, we seek the agent (or
class of agents) with the best performance.

Caveat: computational limitations make perfect rationality
unachievable; so we design best program for given machine resources.
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The devil is in the details

I This mathematical formalism doesn’t even hint at a recipe for
actually building artificially intelligent systems.

I For now we will use an operational definition of AI

Definition (Artificial Intelligence)
Artificial Intelligence refers to the design and implementation of
algorithms, applications, and systems that perform tasks normally
thought to require human intelligence to perform.
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Some History
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AI Prehistory

Classical roots of AI

I Philosophy: logic, methods of reasoning, mind as physical system,
foundations of learning, language, rationality.

I Mathematics: formal representation and proof, algorithms,
computation, (un)decidability, (in)tractability, probability.

I Psychology: adaptation, phenomena of perception and motor
control, experimental techniques (psychophysics, etc).

I Linguistics: knowledge representation, grammars.
I Neuroscience: physical substrate for mental activity.
I Control theory: homeostatic systems, stability, simple optimal

agent designs.
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AI Prehistory

A prehistoric timeline

1943 McCulloch & Pitts: Boolean circuit model of brain.
1950 Turing’s “Computing Machinery and Intelligence.”
1952–69 Look, Ma, no hands!
1950s Early AI programs, including Samuel’s checkers program,

Newell & Simon’s Logic Theorist, Gelernter’s Geometry Engine.
1956 Dartmouth meeting: “Artificial Intelligence” adopted.
1965 Robinson’s complete algorithm for logical reasoning.
1966–74 AI discovers computational complexity.

Neural network research almost disappears.
1969–79 Early development of knowledge-based systems.
1980–88 Expert systems industry booms.
1988–93 Expert systems industry busts: “AI Winter.”
1985–95 Neural networks return to popularity.
1988– Resurgence of probabilistic and decision-theoretic methods.

Rapid increase in technical depth of mainstream AI.
“Nouvelle AI”: ALife, GAs, soft computing.
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Look, Ma, no hands!

Early successes
Game playing
I Some of the earliest work in applied AI involved games.
I Arthur Samuel built a system to play checkers in the mid-1950s
I This seminal work defined much of the foundations for classical,

search-based AI.
I Game AI has continued to be a benchmark for progress in AI.
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Look, Ma, no hands!

Early successes (continued)
Theorem proving
I In 1955, Allen Newell and Herbert A. Simon created the Logic

Theorist.
I The program would eventually prove 38 of the first 52 theorems in

Russell and Whitehead’s Principia Mathematica
I It would even find new and more elegant proofs for some.
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Look, Ma, no hands!

Early optimism

The Dartmouth Workshop
I The Dartmouth Summer Research Project on Artificial Intelligence

was a 1956 summer workshop widely considered to be the founding
event of artificial intelligence as a field.

I The workshop hosted then (and soon to be) luminaries of the field:
Marvin Minsky, John McCarthy, Claude Shannon, Oliver Selfridge,
Allen Newell, Herbert Simon, John Nash.

I The organizers thought the general question of artificial
intelligence could be resolved (or at least significant progress made
on it) over the course of one summer.
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Look, Ma, no hands!

Early optimism (continued)
"We propose that a 2-month, 10-man study of artificial intelligence be
carried out during the summer of 1956 at Dartmouth College. The study
is to proceed on the basis of the conjecture that every aspect of learning or
any other feature of intelligence can in principle be so precisely described
that a machine can be made to simulate it. An attempt will be made to
find how to make machines use language, form abstractions and concepts,
solve kinds of problems now reserved for humans, and improve themselves."
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The First AI Winter (1974-1980)

Insurmountable problems
Combinatorial explosion

I Most early approaches to AI were based on searching in configuration spaces.

I Even theorem proving is a (very general) type of search in deduction space.

I AI programs could play checkers and prove theorems with relatively few
inference steps.

I But going beyond these early successes proved extremely difficult due to the
exponential nature of the search space.

Lack of "common knowledge"

I Another difficulty was that solving many types of problems (e.g. recognizing
faces or navigating cluttered environments) requires a surprising amount of
background knowledge.

I Researchers soon discovered that this was a truly vast amount of information.

I No one in 1970 could build a database so large and no one knew how a
program might learn so much information.
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The First AI Winter (1974-1980)

Insurmountable problems (continued)
I We often don’t appreciate what exponential growth really means:
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The First AI Winter (1974-1980)

Insurmountable problems (continued)
Limited computing power

I There was not enough memory or processing speed to do anything truly useful.

I In 2011, computer vision applications required 10,000 to 1,000,000 MIPS.

I By comparison, the fastest supercomputer in 1976, the Cray-1 (retailing at $5
million to $8 million), was only capable of around 80 to 130 MIPS, and a
typical desktop computer less than 1 MIPS.

Infighting

I The perceptron neural network was introduced in 1958 by Frank Rosenblatt.

I There was an active research program throughout the 1960s but it came to a
sudden halt with the publication of Minsky and Papert’s 1969 book Perceptrons.

I It suggested that there were severe limitations to what perceptrons could do
and that Rosenblatt’s predictions had been grossly exaggerated.

I The effect of the book was devastating: virtually no research at all was done in
connectionism for 10 years.
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The heyday

The 80s Boom

Expert systems

I In the 1980s a form of AI program called an expert system was adopted by
corporations around the world.

I Knowledge became the focus of mainstream AI research.

I An expert system is a program that answers questions or solves problems about
a specific domain of knowledge and logical rules derived from experts.

I They were part of a new direction in AI research that had been gaining ground
throughout the 70s.

I AI researchers were beginning to suspect that intelligence might very well be
based on the ability to use large amounts of diverse knowledge in different ways.

I Expert systems restricted themselves to a small domain of specific knowledge
(thus avoiding the commonsense knowledge problem).

I All in all, the programs proved to be useful: something that AI had not been
able to achieve up to this point.
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The heyday

The 80s Boom (continued)
The connectionist revival

I In 1982, John Hopfield proved that a form of neural network (now called a
Hopfield net) could learn and process information.

I Around the same time, Geoffrey Hinton and David Rumelhart popularized a
method for training neural networks called backpropagation.

I Neural networks would become commercially successful in the 1990s for OCR
and speech recognition.
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The Second AI Winter

The Bubble Phenomenon

Expansion and crash

I The business community’s fascination with AI rose and fell in the 1980s in the
classic pattern of an economic bubble.

I The collapse was in the perception of AI by government agencies and investors
– the field continued to make advances despite the criticism.

I The first indication of a crash was the sudden collapse of the market for
specialized AI hardware in 1987.

I Desktop computers from Apple and IBM were gaining speed and power and
were soon more powerful than the more expensive Lisp machines made by
Symbolics and others.

I There was no longer a good reason to buy them, and an entire industry worth
half a billion dollars was demolished overnight.
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The Second AI Winter

Not all bad news

Follow the money (or not)

I In the late 1980s most public funding for AI dried up.

I Despite this, the true believers continued to make steady theoretical and
applied progress.

I People like Jürgen Schmidhuber, Yann LeCun, Geoff Hinton, and Yoshua
Bengio make significant progress during the Second AI Winter.

I As the community came to grips with the fact that expert systems don’t scale
very well and are expensive to maintain, neural networks resurfaced as a viable
contender for the way forward.

I In particular, the first viable Convolutional Neural Networks (CNNs) were
demonstrated and the backpropagation algorithm was proven scalable (and
controllable).
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The Renaissance

The Right Place and Time
Deep learning

I Deep Learning – compositional, multi-layer neural networks – has been around
since the 1970s.

I However, we did not understand how to effectively learn the vast number of
parameters they have from data.

I And, the computers of the day were just not up to the challenge of fitting these
models.

ImageNet and GPUs

I In the early 2010s, however, the confluence of several technological and
theoretical factors combined.

I ImageNet: the availability of massive amounts of labeled data made deep
learning feasible (in principle).

I GPUs: Graphics Processing Units addressed some of the computational issues
related to training deep models.
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The Renaissance

AlexNet

I In 2012 the AlexNet Deep Convolutional Network made history.
I Everything had changed: AlexNet surpassed the current

state-of-the-art by nearly 20%.
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AI, ML, and all that

A global view

Artificial Intelligence

Machine Learning

Pattern RecognitionCognitive Science

GOFAI
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AI, ML, and all that

A local view (this course)

Machine Learning

Supervised
Learning

Deep Learning

Unsupervised
Learning
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Course overview
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Global Objectives

Something for everyone

I This course is designed for a broad and diverse audience.
I Some mathematical background is assumed, as well as some

exposure to high-level programming (e.g. Python, Java, C/C++,
Lisp, heck even Visual Basic).

I [INFORMAL SURVEY]
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Global Objectives

For the curious

I So everyone is talking about deep learning and General Artificial
Intelligence.

I But what is all the hype about?
I This course will give you a broad overview (without the hype) of

the fundamental concepts surrounding these recent advances.
I Because it’s not all hype. There is an ongoing and sweeping sea

change happening today.
I Artificial intelligence is already having significant impact in

manufacturing, advertising, smart city management,
transportation, entertainment, you name it.

I For the curious: this course should provide you the grounding in
essential concepts needed to interpret, understand, and exploit
these new developments.

AI&ML: Introduction and Python Crash Course A. D. Bagdanov



Introduction Some History Course overview Python crash course Reflections

Global Objectives

For the studious practitioner

I So everyone is talking about deep learning and General Artificial
Intelligence.

I For those of you actually working daily with large (or even massive)
amounts of data, what does this mean for you?

I This course will give you hands-on experience with the tools,
models, and frameworks used today.

I You will learn how to manipulate data and extrapolate models from
it that generalize well to unseen data.
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Global Objectives

For everyone: a sign of the times. . .

I So everyone is talking about deep learning and General Artificial
Intelligence.

I Articles and whole courses are appearing daily with tantalizing titles
like "Deep Learning Zero to Hero" and "How to learn Deep
Learning in One Week!!1!".

I It has become difficult to sift the wheat from the chaff because the
signal-to-noise ratio is becoming infinitesimal.

I For everyone: this course should ground you in the fundamental
concepts and tools needed to discern charlatans from quality
sources and to make sense of AI and deep learning advances.

AI&ML: Introduction and Python Crash Course A. D. Bagdanov



Introduction Some History Course overview Python crash course Reflections

Foundations

Math and Programming

I History and Python Crash Course (today!):
I We have already contextualized the modern AI explosion in the

history of the field.
I In the second part of the lecture we will have a brief Python crash

course to introduce the programming language used for examples,
exercises and labs.

I Mathematical Foundations (tomorrow):
I Linear algebra has been called the mathematics of the 21st century

– and it is essential to understanding all of the models, techniques,
and algorithms we will see.

I Calculus is also central to how we actually learn from data and we
will see (from a high level) how learning can be formulated as a
optimization problem.
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Numerical Programming and Reproducible Science

Working with Tsunamis of Data

I Visualization:
I Central to working with massive amounts of data is effective

visualization of high dimensional data.
I We will use techniques like histograms, scatter plots, t-SNE, and

others to monitor learning progress and to summarize results.
I Data Science:

I Also central to working with Big Data is the need to manage data in
flexible and abstract ways.

I We will use Jupyter notebooks (in the form of Google Colaboratory)
to organize, document, and guarantee reproducibility.

I We will use the Pandas library to perform data analysis, to manage
data and datasets, and to prepare data for our experiments.
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Classical Supervised Learning

Supervised learning

I Let’s say are analyzing the correlation between height and weight.
I (Aside: we will often use synthetic examples of this type to

illustrate key concepts and techniques.)
I And let’s say that we have only two data points:

(67.9, 170.85) and (61.9, 122.5).
I Ideally, we wish to infer a relation between height and weight that

explains the data.
I A good first step us usually to visualize.
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Classical Supervised Learning

Supervised learning (continued)
I So, we have a situation like this. . .
I What can we do?
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Classical Supervised Learning

Supervised learning (continued)
I Well, some grade-school algebra lets us connect the dots:

y = 8.013x − 373.247
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Classical Supervised Learning

Supervised learning (continued)
I Now lets say that we have a lot more data.
I Does our "model" generalize?
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Classical Supervised Learning

Supervised learning (continued)
I Scratching the surface a bit more, we discover not a single

distribution, but rather two.
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Classical Supervised Learning

Supervised learning (continued)
I What if our goal is to classify samples into one of two classes?
I We must infer a decision boundary that generalizes to new data.
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Classical Supervised Learning

Supervised learning (continued)
I OK, that seems simple.
I But, why should we prefer one solution over another? Or another?
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Classical Supervised Learning

Supervised learning (continued)
I OK, that seems simple.
I But, why should we prefer one solution over another? Or another?
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Classical Supervised Learning

Supervised learning (continued)
I And what the heck do we do here?
I And how should this look in more than two dimensions?

8 6 4 2 0 2 4 6 8
x

8

6

4

2

0

2

4

6

8

y

Label
0
1

AI&ML: Introduction and Python Crash Course A. D. Bagdanov



Introduction Some History Course overview Python crash course Reflections

Classical Supervised Learning

Supervised learning: take home message

I Supervised learning is about learning from labeled examples – it is
sometimes called learning from a teacher.

I The goal is to learn a model (i.e. to fit model parameters) that
explains the observed data.

I And at the same time is able to generalize to unseen data.
I We will see that there is a delicate balance between fitting the data

and guaranteeing generalization to new data – which is the
ultimate goal.

I Models we will see: linear discriminants and regression, Support
Vector Machines (SVMs), kernel machines, decision trees.
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Unsupervised Learning

Unsupervised learning: learning without teachers

I Can we learn even without a teacher?
I Well, even very small children are able to learn via exploration of

their environment.
I And, after all the amount of unlabeled data vastly outnumbers the

available labeled data.

AI&ML: Introduction and Python Crash Course A. D. Bagdanov



Introduction Some History Course overview Python crash course Reflections

Unsupervised Learning

Unsupervised learning: pure data
I Let’s say someone gives us some data (in two dimensions).
I Say, something like this:

10 8 6 4 2 0 2 4
x

12

10

8

6

4

2

0

2

y

AI&ML: Introduction and Python Crash Course A. D. Bagdanov



Introduction Some History Course overview Python crash course Reflections

Unsupervised Learning

Unsupervised learning: recovering latent structure
I We would like to learn the structure of the data.
I And recover a hypothesis like this:
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Unsupervised Learning

Unsupervised learning: take home message

I Again, we would like to learn a hypothesis that generalizes to new
data we want to apply the model to.

I Unsupervised learning is about learning from unlabeled data.
I There is actually a spectrum of supervision regimes: unsupervised,

semi-supervised, weakly-supervised, self-supervised,
fully-supervised. . .

I Learning from non-fully supervised data is an extremely hot topic in
machine learning today.

I Models we will see: K-means clustering, agglomerative clustering,
Principal Component Analysis (PCA), t-SNE.
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Unsupervised Learning

Unsupervised learning: take home message
I A slide borrowed from Yann LeCun:
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Deep Learning

Deep composable models
I Deep Neural Networks: we will see how modern neural networks

work, how to apply then to supervised learning problems, and how
to train them and monitor their performance.

I Computer Vision and Deep Convolutional Neural Networks: we will
see how convolutions can be used to solve the weight explosion
problem and how to apply CNNs to object recognition problems.
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Deep Learning

Better than human?

I AlphaGo Trailer
I AlphaStar

AI&ML: Introduction and Python Crash Course A. D. Bagdanov
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Tools, libraries, and frameworks

The tools of the trade

I Python: the language of choice for modern machine learning.
I Jupyter/Colab: a notebook-based system for reproducible and

self-documenting science.
I Numpy: Python bindings to mathematical programming libraries.
I Scikit-learn: a toolkit with many implemented learning algorithms.
I Pandas: data management, analysis, and manipulation library par

excellence for Python.
I Matplotlib/Seaborn: visualization libraries built on top of

Python/Numpy/Pandas.
I Tensorflow/Keras: a graph-based, automatic differentiating

framework for deep learning in Python.
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Who the heck am I?

Four countries and two continents
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Who the heck am I?

What I do
I Visual recognition: local pyramidal features, color representations

for object recognition, semi-supervised and transductive
approaches, action recognition.

I Person re-identification: iterative sparse ranking, semi-supervised
approaches to local manifold estimation.

I Multimedia and HCI for cultural heritage: visual profiling of
museum visitors, knowledge management for cultural heritage
resources, personalizing cultural heritage experiences,
human-computer interaction.

I Deep learning: applied and theoretical models for visual
recognition, network compression, lifelong learning, reinterpretation
of classical approaches in modern learning contexts.

I Other random interests: functional programming languages,
operating systems that don’t suck, long-distance bicycle touring,
Emacs, the Grateful Dead.
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Course Program

Calendar
Date @ Time Topics

09/01/2020 @ 14:00 Introduction and Python Crash Course (lab)
10/01/2020 @ 14:00 Mathematical foundations
16/01/2020 @ 14:00 Numerical programming and reproducible science (lab)
17/01/2020 @ 14:00 Supervised machine learning
23/01/2020 @ 14:00 Unsupervised machine learning
24/01/2020 @ 14:00 The bias/variance tradeoff and regularization (lab)
13/02/2020 @ 09:00 Connectionist models and neural networks
13/02/2020 @ 14:00 Deep Learning I (lab)
14/02/2020 @ 09:00 Deep model complexity and Convolutional Neural Networks
14/02/2020 @ 14:00 Deep Learning II (lab)

Notes:

I Format: 1.5 hours of lecture, break, 1.5 hours of lecture/lab, discussion.

I Most lectures have a complementary Google Colab Notebook that interactively
illustrate important topics.
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Course Program

A note on laboratories

I The laboratories for this course have been designed using Google
Colaboratory notebooks.

I To access these you must have a Google account.
I Is there anyone here that does not have a Google account?
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Intermission

Intermission

Questions? Comments?
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Python crash course
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Colaboratory

An interactive lesson

I You may access an interactive version of this lesson here:

http://bit.ly/DTwin-ML1
I Important: you must save a copy of this notebook in order to

interact with it.
I Choose "Save a copy in Drive. . . " from the File menu to do this.

AI&ML: Introduction and Python Crash Course A. D. Bagdanov
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Overview

Why python?

When write/compile/test/re-compile is too slow
I In many situations the usual write/compile/test/re-compile cycle in

C/C++/Java is too slow.
I This happens a lot when you are testing out ideas, or when you are

iterating design ideas and need to test many ideas quickly.

Enter Python
I Python is simple to use, but it is a real programming language.
I Python also offers more error checking than C, it has high-level

data types built in, such as flexible arrays and dictionaries.
I Python is an interpreted language, which can save you considerable

time during program development because no compilation and
linking is necessary.
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Overview

Python is interactive

Python supports interactive, iterative development
I The interpreter can be used interactively, which makes it easy to

experiment and to write throw-away programs
I It also allows for incremental testing during bottom-up program

development.

Python is compact, readable and efficient
I Programs written in Python are typically much shorter than

equivalent C, C++, or Java programs, for several reasons:
I the high-level data types allow you to express complex operations in

a single statement;
I statement grouping is done by indentation instead of beginning and

ending brackets; and
I no variable or argument declarations are necessary.
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Overview

The high-entropy version
Language details

I Python is strongly typed (i.e. types are enforced).

I It is also dynamically and implicitly typed (i.e. no variable declarations)

I It is case sensitive (i.e. var and VAR are two different variables).

I It uses automatic memory management with garbage collection.

I And it is object-oriented (i.e. everything is an object).

Python is interactive and helpful

I We run the Python console using the ’ipython’ command.

I This runs an interactive console (think Matlab) that can be used to run scripts,
load definitions, and inspect the definitions already made.

I We can also run IPython in notebook mode (now called Jupyter) which is a nice
way of experimenting with Python.

I [RUN NOTEBOOK NOW]
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Overview

Python is reflective and self-documenting

How to get information
I You can use the help() function to get information about

anything.
I You can use the dir() function to get a list of object members.
I Use "scratch" notebook cells experiment and as an interactive

system for figuring out how things work.
I All objects can be inspected and interrogated, poked and prodded

to see how they respond.
I Jupyter notebooks (and the IPython console) are excellent ways to

experiment and explore possibilities.
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Overview

Versions and distributions
Python versions

I In this course we will use Python 3.7
I Python 3 brings a number of improvements to the syntax and feature set of the

language.

Python distributions

I For the examples, laboratories, and exercises in this course we will be using
Google Colaboratory (Colab for short)

I Colab is based on the Jupyter notebook system.
I The Jupyter Notebook is an open-source web application that allows you to

create and share documents containing live code, equations, visualizations and
narrative text

I Uses include: data cleaning and transformation, numerical simulation, statistical
modeling, data visualization, and machine learning.

I To access Colab you must have a Google account.
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Overview

Python package management
I Using Colab allows us to avoid Python package management hell.
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Types and data structures

Basic data types

Numbers

I Numbers: the integer numbers (e.g. 2, 4, 20) have type int, the ones with a
fractional part (e.g. 5.0, 1.6) have type float.

I Expression syntax is straightforward: the operators +, -, * and / work just like
in most other languages; parentheses (()) can be used for grouping.

I The equal sign (=) is used to assign a value to a variable.

Strings

I Besides numbers, Python can also manipulate strings, which can be expressed
in several ways.

I They can be enclosed in single quotes (’...’) or double quotes ("...") with
the same result.

I String literals can span multiple lines. One way is using triple-quotes:
"""...""" or ”’...”’.
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Types and data structures

Basic datatype examples
Numbers

»> 50 - 5*6
20
»> (50 - 5.0*6) / 4
5.0
»> 8 / 5.0
1.6

Strings

»> 'spam eggs' # single quotes
'spam eggs'
»> 'doesn\'t' # use \' to escape the single quote...
"doesn't"
»> "doesn't" # ...or use double quotes instead
"doesn't"
»> '"Yes," he said.'
'"Yes," he said.'
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Types and data structures

Basic datatype examples

Multi-line strings

print("""
Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

""")
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Types and data structures

Lists
Lists are the most commonly used compound datatype

I Python supports many compound data types that group together other values.

I The most versatile is the list, which can be written as a list of
comma-separated values (items) between square brackets.

I They can contain items of different types, but usually all have the same type.

Examples

»> squares = [1, 4, 9, 16, 25]
»> squares
[1, 4, 9, 16, 25]
»> squares[0] # indexing returns the item
1
»> squares[-1]
25
»> squares[-3:] # slicing returns a new list
[9, 16, 25]
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Types and data structures

Lists (continued)
Lists are mutable (strings are not)

I Lists are mutable data structures (you can change their values).

I Strings can be indexed like lists, but are immutable.

Examples

»> cubes = [1, 8, 27, 65, 125] # something's wrong here
»> cubes[3] = 64 # replace the wrong value
»> cubes
[1, 8, 27, 64, 125]
»> foo = '1234567'
»> foo[3]
'4'
»> foo[3] = '9'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment
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Types and data structures

Lists (continued)
Like arrays, but more flexible

I Lists are kind of like arrays (random-access), but can expand and change size.

List examples

»> cubes.append(7 ** 3) # and the cube of 7
»> cubes
[1, 8, 27, 64, 125, 216, 343]
»> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
»> letters
['a', 'b', 'c', 'd', 'e', 'f', 'g']
»> # replace some values
»> letters[2:5] = ['C', 'D', 'E']
»> letters
['a', 'b', 'C', 'D', 'E', 'f', 'g']
»> # now remove them
»> letters[2:5] = []
»> ...
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Types and data structures

Tuples and sequences

Tuples

I Tuples are like lists, but are used in different situations and for different things.

I Tuples are immutable, and usually contain a heterogeneous sequence of
elements that are accessed via unpacking (see later example) or indexing.

Example

»> t = 12345, 54321, 'hello!'
»> t[0]
12345
»> t
(12345, 54321, 'hello!')
»> # they can contain mutable objects:
... v = ([1, 2, 3], [3, 2, 1])
»> v
([1, 2, 3], [3, 2, 1])
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Types and data structures

Tuples packing and unpacking

Handling multiple values
I Tuple construction is referred to as “tuple packing” since you are

packing elements together into a single compound data structure.
I The reverse is also possible, by which tuple values are unpacked

into a sequence of variables.

Example

»> t = 12345, 54321, 'hello!'
»> (x, y, z) = t
»> x
12345
»> y
54321
»> z
'hello!'
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Types and data structures

Dictionaries
A most useful data structure

I Python relies heavily on the use of dictionaries to organize key/value pairs.

I Dictionaries are sometimes called hashes, associative arrays, or HashMap in
Java and std::Map in C++.

Example

»> tel = {'jack': 4098, 'sape': 4139}
»> tel['guido'] = 4127
»> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
»> tel['jack']
4098
»> tel.keys()
['guido', 'irv', 'jack']
»> 'guido' in tel
True
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Control flow

If statements

Familiar, yet unfamiliar
I The if statement is probably the most common control-flow tool

in any programming language.
I It is also a good example of one of the most controversial syntactic

features of Python, the fact that indentation matters.
I Recall how in most programming languages braces ({ and })are

used to indicate scope and logically sequential blocks.
I In Python, code that is indented at the same level is considered to

be in the same block – exactly as if there were enclosing braces.
I This is used extensively in function definitions, to indicate the

logical blocks for if ... then ... else constructions, and in
class definitions.
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Control flow

If statements (continued)

Example (if)

»> x = int(input("Please enter an integer: "))
Please enter an integer: 42
»> if x < 0:
... x = 0
... print('Negative changed to zero')
... elif x == 0:
... print('Zero')
... elif x == 1:
... print('Single')
... else:
... print('More')
...
More
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Control flow

For statements
Iteration over sequences
I The for statement in Python also uses indented blocks.
I An important difference is that in Python, for loops are generalized

iterators over sequences (like Java iteration over collections).
I In most languages, for loops iterate over ranges of integers.
I In Python, iteration is always over a sequence data type like a list.

Example

»> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
»> for w in words:
... print(w, len(w))
cat 3
window 6
defenestrate 12
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Control flow

range()
When you need to iterate over integers

I Use the range() function to iterate over a sequence of numbers; it generates
lists containing arithmetic progressions.

I The given end point is never part of the generated list; range(10) generates a
list of 10 values, the legal indices for items of a sequence of length 10.

I The range can start at another number, or use a different increment.

Example

»> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
»> range(5, 10)
[5, 6, 7, 8, 9]
»> range(0, 10, 3)
[0, 3, 6, 9]
»> range(-10, -100, -30)
[-10, -40, -70]
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Control flow

Iteration over sequences
Enumerating list items

I Sometimes you need list items and their indices – this is called enumerating list
items.

I You can use len() and range() for this.

I Or, you can use the enumerate() function and unpack the pairs.

Example

»> a = ['Mary', 'had', 'a', 'little', 'lamb']
»> for i in range(len(a)):
... print(i, a[i])
»> enumerate(a)
<enumerate object at 0x7fbe30ee56e0>
»> list(enumerate(a))
[(0, 'Mary'), (1, 'had'), (2, 'a'), (3, 'little'), (4, 'lamb')]
»> for (i, name) in list(enumerate(a)):
... print(i, name)
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List comprehensions

Generalized iteration
The map paradigm

I List comprehensions provide a concise way to create lists.

I Common applications are to make new lists where each element is the result
operations applied to each member of another sequence (this is called a map).

I Or to create a subsequence of those elements that satisfy a certain condition
(this is called a filter).

Example

»> squares = []
»> for x in range(10):
... squares.append(x**2)

»> # Much better:
... squares = [x**2 for x in range(10)]
»> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
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List comprehensions

Generalized iteration (continued)
Filtering

I A list comprehension consists of square brackets containing an expression
followed by a for clause.

I Then zero or more for or if clauses.

I The result is a new list resulting from evaluating the expression in the context
of the for and if clauses which follow it.

Example

»> [x ** 2 for x in range(10) if (x % 2) == 0]
[0, 4, 16, 36, 64]

»> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

from math import pi
»> [round(pi, i) for i in range(1, 6)]
[3.1, 3.14, 3.142, 3.1416, 3.14159]
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Functions

Function definitions
The basic definition

I The keyword def introduces a function definition; it must be followed by the
function name and the parenthesized list of formal parameters.

I The statements that form the body of the function start at the next line, and
must be indented.

Example

# Print Fibonacci numbers up to n.
def fib(n):

"""Print a Fibonacci series up to n."""
a, b = 0, 1
while a < n:

print(a, ' ')
a, b = b, a+b

# Now call the function we just defined:
fib(2000)
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Functions

Function documentation
Functions are self documenting.

I The first statement of the function body can optionally be a string literal

I This string literal is the function’s documentation string, or docstring.

Example

def sq(n):
"""Return the square of n, accepting all numeric types:

»> sq(10)
100

»> sq(10.434)
108.86835599999999
...
"""
return n*n
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Functions

Default parameter values

Only pass what you need

I Default values define functions that can be called with fewer arguments.

Example

def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):
while True:

ok = raw_input(prompt)
if ok in ('y', 'ye', 'yes'):

return True
if ok in ('n', 'no', 'nop', 'nope'):

return False
retries = retries - 1
if retries < 0:

raise IOError('refusenik user')
print(complaint)
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Functions

Named parameters
Unambiguous argument passing

I Functions can be called with keyword arguments: kwarg=value.

Example

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
print("– This parrot wouldn't", action,
print "if you put", voltage, "volts through it."
print "– Lovely plumage, the", type
print "– It's", state, "!"

parrot(1000) # 1 positional
parrot(voltage=1000) # 1 keyword
parrot(voltage=1000000, action='VOOOOOM') # 2 keyword
parrot(action='VOOOOOM', voltage=1000000) # 2 keyword
parrot('a million', 'bereft of life', 'jump') # 3 positional
parrot('a thousand', state='pushing up the daisies') # 1 positional and

# 1 keyword
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Functions

Lambda expressions

Throwaway function definitions

I Sometimes you need to provide a simple function as an argument
(e.g. the comparison for a sort).

I The lambda keyword allows you to create small anonymous
functions.

I They can be used wherever function objects are required, but are
syntactically restricted to a single expression.

Example

pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
pairs.sort(key=lambda pair: pair[1])
pairs
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Modules and packages

Defining your own modules

Rolling your own

I It’s very useful to group your code up into reusable packages.
I You can access code in saved files using the import directive.

Example
# Fibonacci numbers module (in file fibos.py).
def fib(n): # write Fibonacci series up to n

a, b = 0, 1
while b < n:

print(b),
a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:

result.append(b)
a, b = b, a+b

return result
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Modules and packages

Importing modules
The basic import form

I You can use import to import a namespace.

I Then you must use fully-qualified names to access module members.

I You can also directly import module members into the global namespace.

I And you can alias imported modules for convenience.

Example

# We already put our definition in 'fibos.py'
import fibos
fibos.fib(10)
fibos.fib2(20)

from fibos import fib, fib2
fib2(10) # Now no 'fibos' prefix.

import fibos as f
f.fib(10) # Namespace alias.
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Object-oriented programming

Overview

I Some Python code makes extensive use of object-oriented
programming techniques.

I Classes have been added to the Python language with a minimum
of new syntax to learn and remember.

I In this first crash course we will only introduce the basics.
I In particular, we will not discuss advanced topics like inheritance

and constructor chaining.
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Object-oriented programming

Basic class definition
I The simplest form of class definition looks like this:

class ClassName:
<statement-1>
.
.
.
<statement-N>

I Class definitions, like function definitions (def statements) must be executed
before they have any effect.

I The statements inside a class definition will usually be method definitions.

I Definitions inside a class normally have a peculiar form of argument list,
dictated by the calling conventions for methods.

I When a class definition is entered, a new namespace is created, and used as the
local scope - thus, all assignments to local variables go into this new namespace.

I When a class definition is exited normally (via the end), a class object is
created.
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Object-oriented programming

A simple example
Example
class MyClass:

a = None
b = None

def __init__(self, a):
print(self.a)
self.a = a
self._x = 123
self.__y = 123
b = 'meow'

I print(self.a) : doesn’t find an instance variable and thus returns the class
variable.

I self.a = a : a new instance variable a is created.

I self._x = 123 : creates an instance variable “not considered part of the public
API”.
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Object-oriented programming

Instantiating and accessing members

I Class objects support two kinds of operations: attribute references and
instantiation.

I Attribute references use the standard syntax used for all attribute references in
Python: obj.name.

I Valid attribute names are all the names that were in the class’s namespace
when the class object was created.

I Advice: don’t use class attributes, which are kind of like static class members,
instead assign attributes in the constructor.

I Class instantiation uses function notation. Just pretend that the class object is
a parameterless function that returns a new instance of the class.
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Object-oriented programming

A more complex example

I Here is a complete class definition.
I Note the self calling convention in the constructor.
I Let’s add a method to add two complex numbers. . .

Example
class Complex:

def __init__(self, realpart, imagpart):
self.r = realpart
self.i = imagpart

x = Complex(3.0, -4.5)
x.r, x.i
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Summary

Summary

I Python is a flexible, modern language with a great ecosystem.
I It is also very easy to learn by doing things with it.
I By this, I mean that you don’t need to spend a long time studying

it’s complexities before you can do useful things with it.
I General advice:

I Import only what you need from modules.
I Use import aliases to make your life easier.
I But use import aliases sparingly to make life easier on others.
I Basic skeleton is: imports, top-level variable definitions (constants

for parameters), class and function definitions, executable code.

I Use IPython consoles to experiment, and notebooks to organize
ideas and snippets.

I Most importantly: learn by do
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Reflections
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The way forward

I Tomorrow we will see some of the mathematical foundations we
will need to go forward.

I You do not need to become expert Python programmers, but you
should make sure you grasp the basic concepts.

I Everything – including the mathematical fundamentals – will be
illustrated using Python examples.

I Please take the time to review the Colab notebook from today and
ensure you are comfortable working in the notebook interface.
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Some links

I Here is the Official Python 3 Tutorial if you want to take a deeper
look at the Python programming language.

I Here is a Harvard Article on the History of AI (with many links).
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Some references

I The canonical reference for Artificial Intelligence:

Stuart Russell and Peter Norvig, Artificial Intelligence: A Mod-
ern Approach. Pearson Education Limited, 2016.

I The canonical reference for Machine Learning:

Christopher Bishop, Pattern Recognition and Machine Learn-
ing. Springer, 2006.

I A recent book on Deep Learning:

Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep learning.
MIT press, 2016.

I An excellent general book on Artificial General Intelligence:

Nick Bostrom, Superintelligence. Dunod, 2017.
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