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The mathematics of the 21st century
I Mastering contemporary machine learning requires a range of tools

and disciplines.
I Our goal however is to just get up to speed on the basics.

Image source: https://towardsdatascience.com/the-mathematics-of-machine-learning-894f046c568
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Linear algebra

I Skyler Speakerman recently referred to Linear Algebra as the
mathematics for the 21st Century.

I This might be slightly hyperbolic, but linear algebra is absolutely
central to modern machine learning.

I Linear algebra allows us to deal with high dimensional data in a
formal and precise way.

I It will allow us to model inputs to ML algorithms as points in high
dimensional spaces.

I And subsequently to model functional transformations of these
inputs into feature spaces.

I And finally, to model the subsequent transformations that lead to
outputs (e.g. decisions or actions or estimates).
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Linear algebra (continued)
I What is an image? Is it a data structure, with width and height

and depth, plus a corresponding array of raw data?
I We can go on. . . What is an audio recording? Or text document.
I Rather than define ad hoc data structures and algorithms, we want

to treat them all the same.
I A 512× 512 color image is a vector in a 512× 512× 3-dimensional

vector space.
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Probability and statistics

I Perhaps somewhat surprisingly, probability and statistics are less
important to modern machine learning.

I Sometimes we will want to give a probabilistic interpretation to a
model or a model output.

I However, most deep learning models are defined as pure
transformations of inputs into outputs.

I Often, these probabilistic interpretations are merely convenient
fictions.

I Nonetheless, having a basic grasp of a few statistical concepts will
be useful.

I As we will see, statistics and probability are much more useful as
tools for analyzing results.
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Probability and statistics (continued)

I For many problems we will want our models to output a probability
distribution over possible outcomes.

I Take a simple classification problem: given an input image,
estimate which digit is depicted.
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Probability and statistics
I For other problems we might want to qualify outputs of the model.
I This is the case in many regression problems where outputs at

some points might be more certain than others.
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Calculus and optimization
I Many (well, most) learning problems are formulated as

optimization problems in (potentially very many) multiple variables.
I This means that to learn means to estimate these problems by

minimizing some objective function.
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Calculus and optimization (continued)

I For the most part the grisly details of numerical optimization will
not concern us.

I We will rely on libraries and frameworks to take care of optimizing
our objective functions.

I Nonetheless, it is useful to know what is happening when we fit a
model to data.

I Typically, objective functions are highly non-convex (what does this
mean?).

I Automatic differentiation and efficient algorithms like
backpropagation (a clever implementation of the chain rule) come
to the rescue here.
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Numerical programming

I Tying everything together for this course will be practical, hand-on
examples of many of the models we will study.

I These examples rely on tools like Numpy, scikit-learn,
Tensorflow/Keras, and others.

I These tools were selected because they currently represent the best
practices in academia and industry.

I While we will not concern ourselves with low-level details of the
implementation, it is very useful to have a working knowledge of
these numerical programming tools.
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Numerical programming (example)
# Standard scientific Python imports
import matplotlib.pyplot as plt
from sklearn import datasets, svm, metrics
from sklearn.model_selection import train_test_split

# To apply a classifier on this data, we need to flatten the image, to
# turn the data in a (samples, feature) matrix:
digits = datasets.load_digits()
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))

# Create an SVM classifier and split data into train/test.
classifier = svm.SVC(gamma=0.001)
X_train, X_test, y_train, y_test = train_test_split(

data, digits.target, test_size=0.5, shuffle=False)

# We learn the digits on the first half of the digits
classifier.fit(X_train, y_train)
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Preliminaries
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Sets and set notation

Sets
I We are all familiar with the notion of a set, a collection of objects

(the members of the set) without repetition.
I We can specify finite sets by enumerating their members:
E = {0, 1}.

I We can also use the set former notation which defines sets as all
elements satisfying a predicate: E = {x | P (x)}

I Set membership is indicated by ∈: x ∈ E
I For example:

E = {i | i is an integer and there is an integer j such that i = 2j}
I We will use quantifiers ∀ (for all/every) and ∃ (there exists) for

conciseness:

E = {i | i ∈ Z and ∃j ∈ Z such that i = 2j}
I Question: what is the logical negation of ∀ and ∃?

AI&ML: Mathematical Foundations A. D. Bagdanov
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Sets and set notation

Some useful sets and notation

Useful sets
I The universal set: U (needed sometimes, usually clear from context).

I The empty set: ∅ (∀x, x /∈ ∅).
I The integers: Z (the whole numbers).

I The natural numbers: N (non-negative integers).

I The real numbers: R (what we think of as numbers).

I Note: ∅ ⊂ N+ ⊂ N ⊂ Z ⊂ R.

Logical notation
I Quantifiers: ∀, ∃ (already seen).

I Operators: p ∧ q, p ∨ q, ¬p (p and q, p or q, not p).

I Implication: p ⇒ q (if p then q).

I Equivalence: p ⇔ q ((p ⇒ q) ∧ (q ⇒ p), p iff q).
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Sets and set notation

Operations and identities
Operations

I Complement: A′ = {x ∈ U | x /∈ A} (= A)
I Union: A ∪ B = {x | x ∈ A or x ∈ B}
I Intersection: A ∩ B = {x | x ∈ A and x ∈ B}
I Set difference: A \ B = {x ∈ A | x /∈ B}
I Powerset: P(A) = {B | B ⊆ A} (a set of sets)

I Cartesian product: A× B = {(a, b) | a ∈ A and b ∈ B}

Identities

I Commutativity: A ∪ B = B ∪ A, A ∩ B = B ∩ A
I Associativity: A ∪ (B ∪ C) = (A ∪ B) ∪ C (same for ∩)

I Distributivity: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (reversed ∪ and ∩)

I De Morgen: (A ∪ B) = A′ ∩ B′
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The Real Numbers

The Real Numbers

I A real number is a value of a continuous quantity that can
represent a distance along a line.

I The real numbers include all the rational numbers, such as the
integer -5 and the fraction 4/3, and all the irrational numbers, such
as
√
2.

I Real numbers can be thought of as points on an infinitely long line
called the number line or real line, where the points corresponding
to integers are equally spaced.
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Functions

Functions: basic definitions

I A function associates with each element of one set (the domain) a
single element in another set (the codomain).

I If the function is f and the domain and codomain A and B,
respectively, we write f : A→ B to indicate that f is a function
from A to B.

I For f : A→ B, we write x 7→ f (x) and say “f maps x to f (x)”.
I We say f : A→ B is injective (or is an injection) if whenever
f (x1) = f (x2), then x1 = x2.

I We say f : A→ B is onto (or is surjective or a surjection) when
∀b ∈ B, ∃a ∈ A s.t. b = f (a).

I If f : A→ B is injective and surjective, we say that it is one-to-one
or that it is bijective.
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Functions

Cartesian products
I When we write R× R we are referring to the set of pairs of real

numbers:

R× R = { (x, y) | x ∈ R and y ∈ R }

I Which we can naturally generalize to arbitrary dimensions:

Rn = { (x1, x2, . . . , xn) | xi ∈ R for 1 ≤ i ≤ n }

I This will let us compactly define functions of multiple arguments
which return multiple arguments:

f : R2 → R
f (x) = xT x
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Linear Algebra
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Vectors

Vectors and vector spaces

I Vectors and vector spaces are fundamental to linear algebra.
I Vectors describe lines, planes, and hyperplanes in space.
I They allow us to perform calculations that explore relationships in

multi-dimensional spaces.
I At its simplest, a vector is a mathematical object that has both

magnitude and direction.
I We write vectors using a variety of notations, but we will usually

write them like this:

v =

[
2

1

]

I The boldface symbol lets us know it is a vector.
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Vectors

Vectors and vector spaces (continued)
I What does it mean to have direction and magnitude?
I Well, it helps to look at a visualization (in at most three

dimensions):
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Vectors

Vectors and vector spaces (continued)

More formally, we say that v is a vector in n dimensions (or rather, v is
a vector in the vector space Rn) if:

v =


v1
v2
...
vn


for vi ∈ R. Note that we use regular symbols (i.e. not boldfaced) to
refer to the individual elements of v.
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Vectors

Operations on vectors
Definition (Fundamental vector operations)
I Vector addition: if u and v are vectors in Rn, then so is w = u+ v

(where we define wi = ui + vi).
I Scalar multiplication: if v is a vector in Rn, then so is w = cv for

any c ∈ R (we define wi = cvi).
I Scalar (dot) product: if u and v are vectors in Rn, we define the

scalar or dot product as:

u · v =
n∑
i=1

uivi

I Vector norm (or magnitude, or length): if v is a vector in Rn, then
we define the norm or length of v as:

||u|| =
√
u · u
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Vectors

Visualizing vectors (in 2D)
I Vector addition is easy to interpret in 2D:
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Vectors

Visualizing the dot product
I The scalar or dot product is related to the directions and

magnitudes of the two vectors:

I In fact, it is easy to recover the cosine between any two vectors.
I Note that these properties generalize to any number of dimensions.
I Question: how can we test it two vectors are perpendicular

(orthogonal)?
AI&ML: Mathematical Foundations A. D. Bagdanov
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Matrices

Matrices: basics

I A matrix arranges numbers into rows and columns, like this:

A =

[
1 2 3

4 5 6

]

I Note that matrices are generally named as a capital, boldface
letter. We refer to the elements of the matrix using the lower case
equivalent with a subscript row and column indicator:

A =

[
a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

]

I Here we say that A is a matrix of size 2× 3.
I Equivalently: A ∈ R2×3.
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Matrices

Matrices: arithmetic operations

I Matrices support common arithmetic operations:
I To add two matrices of the same size together, just add the

corresponding elements in each matrix:[
1 2 3

4 5 6

]
+

[
6 5 4

3 2 1

]
=

[
7 7 7

7 7 7

]

I Each matrix has two rows of three columns (so we describe them
as 2× 3 matrices).

I Adding matrices A+ B results in a new matrix C where
ci ,j = ai ,j + bi ,j .

I This elementwise definition generalizes to subtraction,
multiplication and division.
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Matrices

Matrices: arithmetic operations (continued)

I In the previous examples, we were able to add and subtract the
matrices, because the operands (the matrices we are operating on)
are conformable for the specific operation (in this case, addition or
subtraction).

I To be conformable for addition and subtraction, the operands must
have the same number of rows and columns

I There are different conformability requirements for other
operations, such as multiplication.
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Matrices

Matrices: unary arithmetic operations
I The negation of a matrix is just a matrix with the sign of each

element reversed:

C =

[
−5 −3 −1
1 3 5

]

−C =
[
5 3 1

−1 −3 −5

]

I The transpose of a matrix switches the orientation of its rows and
columns.

I You indicate this with a superscript T, like this:[
1 2 3

4 5 6

]T
=

1 42 5
3 6


AI&ML: Mathematical Foundations A. D. Bagdanov
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Matrices

Matrices: matrix multiplication
I Multiplying matrices is a little more complex than the elementwise

arithmetic we have seen so far.
I There are two cases to consider, scalar multiplication (multiplying

a matrix by a single number)

2×
[
1 2 3

4 5 6

]
=

[
2 4 6

8 10 12

]

I And dot product matrix multiplication:

AB = C, where ci ,j =
n∑
k=1

ai ,kbk,j

I What can we infer about the conformable sizes of A and B? What
is the size of C.
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Matrices

Matrices: multiplication is just dot products

I To multiply two matrices, we are really calculating the dot product
of rows and columns.

I We perform this operation by applying the RC rule - always
multiplying (dotting) Rows by Columns.

I For this to work, the number of columns in the first matrix must be
the same as the number of rows in the second matrix so that the
matrices are conformable.

I An example:

[
1 2 3

4 5 6

]
·

9 87 6
5 4

 = [? ?
? ?

]
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Matrices

Matrices: inverses

I The identity matrix I is a square matrix with all ones on the
diagonal, and zeros everywhere else.

I So, IA = BI, and Iv = v.
I The inverse of a square matrix mathbf A is denoted A−1.
I A−1 is the unique (if it exists) matrix such that:

A−1A = AA−1 = I

AI&ML: Mathematical Foundations A. D. Bagdanov
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Matrices

Matrices: solving systems of equations
I We can now use this to our advantage:[

67.9 1.0

61.9 1.0

] [
m

b

]
=

[
170.85

122.50

]

I Multiplying both sides by the inverse:[
67.9 1.0

61.9 1.0

]−1 [
67.9 1.0

61.9 1.0

] [
m

b

]
=

[
67.9 1.0

61.9 1.0

]−1 [
170.85

122.50

]

I And we have:

I

[
m

b

]
=

[
m

b

]
=

[
67.9 1.0

61.9 1.0

]−1 [
170.85

122.50

]
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Matrices

Matrices: linear versus affine

I Matrix multiplication computes linear transformations of vector
spaces.

I We are also interested in affine transformations that don’t
necessarily preserve the origin:

I An affine transformation is a linear transformation followed by a
translation:

f (x) = Ax+ b

I Note: an affine transformation in n dimensions can be modeled by
a linear transformation in n + 1 dimensions.
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Tensors

A general structure for dense data

I There is nothing magic about one dimension (vectors) or two
dimensions (matrices).

I In fact, the tools we use are completely generic in that we can
define dense, homogeneous arrays of numeric data of any
dimensionality.

I The generic term for this is a tensor, and all of the math
generalizes to arbitrary dimensions.

I Example: a color image is naturally modeled as a tensor in three
dimensions (two spatial, one chromatic).

I Example: a batch of b color images of size 32× 32 is easily
modeled by simply adding a new dimension: B ∈ Rb×32×32×3.

AI&ML: Mathematical Foundations A. D. Bagdanov
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Calculus and Optimization
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Basics

Return to our illustrative example
I Let’s say we want to find the minimal value of the function
f (x) = x2.

I Here’s a recipe:
1. Start with an initial guess x0.
2. Take a small step in the direction of steepest descent; call this xi+1.
3. If |f (xi+1)− f (xi)| < ε, stop.
4. Otherwise: repeat from 2.

AI&ML: Mathematical Foundations A. D. Bagdanov
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Basics

Gradient descent
I Maybe the only thing imprecise about this recipe is the definition of

small step in the direction of steepest descent.
I Well, in one variable we know how to do this:

xi+1 = xi − η
d

dx
f (xi)

I So the derivative gives us the direction, and the parameter η
defines what "small" means.

I This recipe also works in more dimensions:

xi+1 = xi − η∇xf (xi)

I Let’s dissect this. . .
AI&ML: Mathematical Foundations A. D. Bagdanov
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Basics

Fitting models with gradient descent
I Many of the models we will see have a form like:

f (x; θ) : Rn → Rm

I That is: function f is parameterized by parameters θ.
I Goal: find a θ∗ that optimize some fitness criterion L on data D:

θ∗ = argminL(D, θ)

I Example (least squares):

D = { (xi , yi) | 1 ≤ i ≤ n }

θ =

[
m

b

]
L(D, θ) =

∑
i

||(mxi + b)− yi ||2

AI&ML: Mathematical Foundations A. D. Bagdanov
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Statistics
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Probability and statistics

Discrete probability distributions
To specify a discrete random variable, we need a sample space and a
probability mass function:
I Sample space Ω: Possible states x of the random variable X

(outcomes of the experiment, output of the system, measurement).
I Discrete random variables have a finite number of states.
I Events: Possible combinations of states (subsets of Ω)
I Probability mass function P (X = x): A function which tells us how

likely each possible outcome is:

P (X = x) = PX(x) = P (x)

P (x) ≥ 0 for each x∑
x∈Ω
P (x) = 1

P (A) = P (x ∈ A) =
∑
x∈A
P (X = x)

AI&ML: Mathematical Foundations A. D. Bagdanov
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Probability and statistics

Discrete probability distributions (continued)

I Conditional probability: Recalculated probability of event A after
someone tells you that event B happened:

P (A|B) =
P (A ∩ B)
P (B)

P (A ∩ B) = P (A|B)P (B)

I Example: rolling dice [on board]
I Bayes Rule:

P (B|A) =
P (A|B)P (B)
P (A)

AI&ML: Mathematical Foundations A. D. Bagdanov
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Probability and statistics

Discrete probability distributions (continued)
Expectation and variance characterize the mean value of a random
variable and its dispersion:
I Expectation: E(X) =

∑
x P (X = x)x

I Expectation of a function: E(f (X)) =
∑
x P (X = x)f (x)

I Moments: the expectation of a power of X: Mk = E(Xk)
I Variance: Average (squared) fluctuation from the mean:

Var(X) = E((X − E(X))2)
= E(X2)− E(X)2

= M2 −M21

I Standard deviation: square root of variance.
I Aside: Difference between expectation/variance of random variable

and empirical average/variance.
AI&ML: Mathematical Foundations A. D. Bagdanov
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Probability and statistics

Multivariate probability distributions

Bivariate distributions characterize systems with two observables:
I Joint distribution: P (X = x, Y = y), a list of all probabilities of all

possible pairs of observations.
I Marginal distribution: P (X = x) =

∑
y P (X = x, Y = y)

I Conditional distribution: P (X = x |Y = y) = P (X=x,Y=y)
P (y=y)

I X|Y has distribution P (X|Y ), where P (X|Y ) specifies a
’lookup-table’ of all possible P (X = x |Y = y).

Conditioning and marginalization come up in Bayesian inference ALL the
time: Condition on what you observe, Marginalize out the uncertainty.

AI&ML: Mathematical Foundations A. D. Bagdanov
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Probability and statistics

Expectation and covariance of multivariate distributions

I Conditional distributions are just distributions which have a
(conditional) mean or variance.

I Note: E(X|Y ) = f (Y ) – If I tell you what Y is, what is the average
value of X?

I Covariance is the expected value of the product of fluctuations:

Cov(X, Y ) = E ((X − E(X))(Y − E(Y ))) (1)

= E(XY )− E(X)E(Y ) (2)

Var(X) = Cov(X,X) (3)

AI&ML: Mathematical Foundations A. D. Bagdanov
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Probability and statistics

Independence of random variables

I Intuitively, two events are independent if knowing that the first
took places tells us nothing about the probability of the second:
P (A|B) = P (A) (P (A)P (B) = P (A ∩ B)).

I If X and Y are independent, we write X ⊥ Y : knowing the value of
X does not tell us anything about Y .

I If X and Y are independent, Cov(X, Y ) = 0.

AI&ML: Mathematical Foundations A. D. Bagdanov
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Probability and statistics

Multivariate distributions: the same, but different

I Multivariate distributions are the same as bivariate distributions –
just with more dimensions.

I X, x are vector valued.
I Mean: E(X) =

∑
x xP (x)

I Covariance matrix:

Cov(Xi , Xj) = E(XiXj)− E(Xi)E(Xj)
Cov(X) = E(XX>)− E(X)E(X)>

I Conditional and marginal distributions: Can define and calculate
any (multi or single-dimensional) marginals or conditional
distributions we need: P (X1), P (X1, X2), P (X1, X2, X3|X4), etc..
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Probability and statistics

Continuous random variables
I A random variable X is continuous if its sample space X is

uncountable.
I In this case, P (X = x) = 0 for each x (measure zero support).
I If pX(x) is a probability density function for X, then:

P (a < X < b) =

∫ b
a
p(x)dx

I The cumulative distribution function is FX(x) = P (X < x). We
have that pX(x) = F ′(x), and F (x) =

∫ x
−∞ p(s)ds.

I More generally: If A is an event, then

P (A ⊆ Ω) = P (X ∈ A) =
∫
x∈A
p(x)dx

P (Ω) = P (X ∈ Ω) =
∫
x∈Ω
p(x)dx = 1

AI&ML: Mathematical Foundations A. D. Bagdanov
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Probability and statistics

Probability, mass and density

I People (including me) will often say probability when they mean
probability density.

I Probability density functions do not satisfy the definitions of
probability (e.g. they can bigger than 1).

I However, people will often be sloppy and write things like
P (X = x) and say ’the probability of X’ when they really mean
’the probability density of X evaluated at x ’.

I This might be bad practice, but it is usually clear from the context
whether a random variable is discrete or continuous.

I In addition, it is good preparation for reading papers — many
machine learning papers are very sloppy about usage of these terms.
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Probability and statistics

Mean, variance, and conditioning of continuous RVs

I Mostly the same as the discrete case, just with sums replaced by
integrals.

I Mean: E(X) =
∫
x xp(x)dx

I Variance: Var(X) = E(X2)− E(X)2

I Conditioning: If X has pdf p(x), then X|(X ∈ A) has pdf:

pX|A(x) =
p(x)

P (A)
=

p(x)∫
x∈A p(x)dx
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Probability and statistics

Conditioning and independence of continuous random
variables

I pX,Y (x, y) = p(x, y), joint probability density function of X and Y .
I
∫
x

∫
y p(x, y)dxdy = 1

I Marginal distribution: p(x) =
∫∞
−∞ p(x, y)dy

I Conditional distribution p(x |y) = p(x,y)
p(y)

I Note: P (Y = y) = 0! Formally, conditional probability in the
continuous case can be derived using infinitesimal events.

I Independence: X and Y are independent if p(x, y) = p(x)p(y)
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The Gaussian distribution

The univariate Gaussian (normal) distribution

I The Univariate Gaussian:

t ∼ N (µ, σ2)

p(t|µ, σ2) =
1√
2πσ2

exp

(
−
1

2

(
t − µ
σ

)2)

I The Gaussian has mean µ and variance σ2 and precision β = 1/σ2

I What are the mode and the median of the Gaussian?
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The Gaussian distribution

Products of Gaussians

I An aside: products of Gaussian pdfs are (unnormalized) Gaussians
pdfs.

I Suppose p1(x) = N (x, µ1, 1/β1) and p2(x) = N (x, µ2, 1/β2),
then:

p1(x)p2(x) ∝ N (x, µ, 1/β)
β = β1 + β2

µ =
1

β
(β1µ1 + β2µ2)
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The Gaussian distribution

Gaussian distributions
I As they say, a picture is worth a thousand words:
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The Gaussian distribution

The multivariate Gaussian

f (x;µ,Σ) =
1√

(2π)k |Σ|
exp(−

1

2
(x− µ)TΣ−1(x− µ))
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The Gaussian distribution

The multivariate Gaussian (marginals)
I An important property of the multivariate Gaussian is that its

marginals are also Gaussian:
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Reflections
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Mathematical tools of the trade

I Most of the details and abstract properties of gradients, matrices,
tensors, et al., are not terribly important.

I Mostly, these tools are useful as a working vocabulary.
I They will allow us to formulate learning problems using this

common vocabulary – which is already useful just as a
communication tool.

I More importantly: formulating problems in this language allows us
to communicate with the tools we will use to fit models.
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Foundations and Numpy Lab

I OK, now we can go to this URL for today’s lab:

http://bit.ly/DTwin-ML2
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