DIGITAL TWIN Al and Machine Learning:
Numerical Programming and Reproducible Science

Prof. Andrew D. Bagdanov

andrew.bagdanov AT unifi.it

ok
S
> = 2,
Sz o~ IMmicC
‘J; "J‘i‘) * Media Integration and Communication Center
Y I &S
eI

Dipartimento di Ingegneria dell'Informazione
Universita degli Studi di Firenze

29 October 2020

Outline

Introduction

Tools of the Trade
Managing Data

The rules of the Game

Reflections

A. D. Bagdanov

Introduction

A. D. Bagdanov

My solutions

» If you are curious, you will find my solutions to the previous lab
exercises here (this is the same notebook, now with solutions!):

http://bit.1ly/DTwin-ML2

A. D. Bagdanov

http://bit.ly/DTwin-ML2

Overview

> So far we have seen a bit of the mathematics we will be using to
model machine learning problems.

> We also got our hands a little dirty with some basics of numpy and
how to work with numerical objects.

> Today we will take a deeper look at the numerical tools we will be
using for the rest of the course.

A. D. Bagdanov

Introduction Tools of the Trade Managing Data The rules of the Game

A recap of the tools

Scikit-learn (sklearn)

» A very complete toolkit for classical machine learning.

» We will see some of the key concepts and features of sklearn today: datasets,
model fitting, and data preprocessing.

Matplotlib

» A full-featured toolkit for producing high-quality plots and other visualizations.

» We will take a tour of the major types of plots we will use for analyzing data,
monitoring progress, and analyzing results.

Pandas

| A\

» The Pandas library is for managing, querying, and manipulating large amounts
of numerical data.

» Today we will see how to work with Pandas Dataframes and Series, and how to
query Dataframes in sophisticated ways.

Programming A. D. Bagdanov

Tools of the Trade

A. D. Bagdanov

Jupyter and the Notebook Paradigm

> What ties everything together in a sustainable way is the Jupyter
Notebook paradigm.

P> Jupyter notebooks are self-documenting: keep your notes and
observations and code and plots and experimental results all in one
place.

» Jupyter notebooks support rich content: you can write inline IATEX
formulas in markdown cells, embed interactive widgets.

» In this lecture (and in the whole course) we will barely scratch the
surface of what is possible.

> Jupyter has become the de facto standard to exploratory data
analysis and experimental machine learning.

A. D. Bagdanov

Managing Data The rules of the Game

A very useful Python 3 feature (that | forgot to present!)

Python format strings

» In Python 3 you can use a special syntax for structured, formatted
output.

» If you prefix your strings with a £ (e.g. f'Hello") then anything

enclosed in curly braces is evaluated by Python and interpolated
into the string.

foo = np.random.random()
print(f'This is a random number: {foo}')

print(f'This is a random array:\n {np.random.random((3,3))}')

This is a random number: 0.944148368485749
This is a random array:

[[0.88258024 0.46450465 0.9531795]
[0.92952619 0.10499386 0.745663]
[0.58531161 0.46065158 0.61286006]]

\[&ML: Numerical Programming

A. D. Bagdanov

Introduction Tools of the Trade Managing Data The rules of the Game

Basics

A few more Numpy idioms

Adding dimensions

B = np.array([1, 2, 3])
print(B[:, np.newaxis])
print (B[np.newaxis, :])
[[1]

[2]

(311

[[1 2 3]1]

| A

Constructing arrays piecemeal

arrays = [[1, 11, [2, 2], [3, 3]]
print (np.vstack(arrays))

print (np.hstack(arrays))

[[1 1]
[2 2]
[3 3]]
[112233]

A. D. Bagdanov

Introduction Managing Data The rules of the Game Reflections

A few more Numpy idioms

A = np.array([[1, 1], [2, 2], [3, 3]1D)
v = np.array([2, 4])

print (A)

print (v * A)

print(v[:,None] * A.T)

[[1 1]

[2 2]

[3 311

[[2 4]

[4 8]

[6 1211
[[2 4 6]
[4 8 12]]

A. D. Bagdanov

Scikit-learn: basics

» Scikit-learn (usually abbreviated sklearn) is a collection of simple
and efficient tools for predictive data analysis.

» It is built on NumPy, SciPy, and matplotlib.

» |ts functionality is broken down into macrocategories:

» Classification: supervised categorical prediction.
Regression: supervised estimation of continuous outputs.
Clustering: unsupervised latent structure discovery.
Dimensionality reduction:

Model selection: hyperparameter optimization.

» Preprocessing: normalization and data munging.

vvyyvyy

» The Scikit-learn User Guide is a great place to start.

A. D. Bagdanov

https://scikit-learn.org/stable/user_guide.html

Introduction 00ls Managing Data The rules of the Game

lachine Learning

Scikit-learn: the dataset object

A common dataset structure (dictionary)

from sklearn.datasets import load_boston
ds = load_boston()

print(ds.keys(Q))

print(ds['data'].shape)
print(ds['target'])

dict_keys(['data', 'target', 'feature_names', 'DESCR', 'filename'])
(506, 13)

[24. 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 15. 18.9 21.7 20.4
18.2 19.9 23.1 17.5 20.2 18.2 13.6 19.6 15.2 14.5 15.6 13.9 16.6 14.8

8.1 13.6 20.1 21.8 24.5 23.1 19.7 18.3 21.2 17.5 16.8 22.4 20.6 23.9
22. 11.9]

» Note: the convention is each row corresponds to a data point.

1&ML: Numerical Programming A. D. Bagdanov

Scikit-learn: some datasets

» Scikit-learn provides a range of common toy datasets that we will
work with:

» Boston Housing Prices: A regression dataset with 13
numeric/categorical predictive variables, one continuous target
(sklearn.datasets.load_boston())

» The Iris Plant Dataset: A classification dataset with 4 numeric
predictive variables and one categorical target in three classes
(sklearn.datasets.load_iris())

» Handwritten digits: An image classification dataset consisting of
8 x 8 pixel images of digits [0, 1,...,9] \
(sklearn.datasets.load_digits()).

A. D. Bagdanov

Introductio ools of the Trade Managing Data The rules of the Game

Machine Learning

Scikit-learn: data preprocessing

Standardization

» Standardization is a common requirement for many machine learning models —

they often behave badly individual features are badly scaled.

from sklearn import preprocessing
from sklearn.datasets import load_iris

ds = load_iris()
print(f'Original means: {ds["data"].mean(0)}")
print(f'Original sdevs: {ds["data"].std(0)}')

scaled = preprocessing.scale(ds['data'])
print(f'Scaled means: {scaled.mean(0)}')
print(f'Scaled sdevs: {scaled.std(0)}')

Original means: [5.84333333 3.05733333 3.758 1.19933333]
Original sdevs: [0.82530129 0.43441097 1.75940407 0.75969263]
Scaled means: [-1.6903e-15 -1.8429e-15 -1.6986e-15 -1.4092e-15]
Scaled sdevs: [1. 1. 1. 1.]

\[&ML: Numerical Programming

A. D. Bagdanov

Scikit-learn: data preprocessing

» Normalization means scaling samples to have unit norm — this is useful for
methods using dot products to measure similarity.

print(np.sqrt((scaled ** 2.0) .sum(1))) # Each row is a vector sample!
normalized = preprocessing.normalize(scaled)
print (np.sqrt((normalized ** 2.0).sum(1)))

[2.31866282 2.20238668 2.38940142 2.37838853 2.47614211 2.55473374
2.46767902 2.24585711 2.59157687 2.24883352 2.41964028 2.33563766

1.01457837 1.9812829 2.16357595 2.08082472 1.45321046 2.24340213
2.35353117 1.96614407 1.81690378 1.55981534 1.94398848 1.1086448]

[1. 1.
1. 1.
1.1
1.1

1.
1.

1.
1.

1.
1.

e e A A
e e e e A P A A

1.]

A. D. Bagdanov

Introduction ools Managing Data The rules of the Game

Machine Learning

Scikit-learn: models and model fitting

First an example:

from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression

ds = load_boston()
X = ds['data'] # X are our independent variables.
y = ds['target'] # y is our dependent variable.

Instantiate the model, and fit() it to our data.
model = LinearRegression()

model.fit (X, y)

predictions = model.predict (X)

RMSE = np.sqrt(np.mean((y - predictions)**2))
print(f'Coefficients: {model.coef_}')
print(f'y-intercept: {model.intercept_}')

print (f'RMSE: {RMSE}')

1&ML: Numerical Programming A. D. Bagdanov

Managing Data The rules of the Game

Scikit-learn: models and model fitting (continued)

Which produces an output:

Coefficients: [-1.0801e-01 4.6420e-02 2.0554e-02 2.686e+00
-1.7766e+01 3.8098e+00 6.9222e-04 -1.4755e+00
3.0604e-01 -1.2334e-02 -9.5274e-01 9.3116e-03

-5.2475e-01]
y-intercept: 36.459488385089855
RMSE: 4.679191295697281

» There's a lot going on here (after loading dataset and extracting variables):

» First we instantiate a regression model LinearRegression — this is
an object that holds parameters and provides methods for. . .

» Then we fit the model parameters with the fit () method.

» Finally we apply the trained model to data in X by calling the
predict () method.

A. D. Bagdanov

\[&ML: Numerical Programming

Scikit-learn: models and model fitting (continued)

» You should almost always use the predict () method to apply
trained models.

> But, sklearn objects allow us to extract trained parameters if we
want them.

» We have a vector of 13 coefficients (corresponding to the 13
independent variables in X) and one scalar y-intercept (the bias).

» Our regression model is:
y=Wx+b

> So if we want to we can manually compute predictions like this:

model.coef_ @ X.T + model.intercept_

A. D. Bagdanov

Scikit-learn: metrics

» How do we know how well our model has fit the data?

» In the sklearn.metrics package you will find a vast number of
different metric used for evaluating performance of many types of
models.

» For regression, measures of error or correlation are usually used:

from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
print(np.sqrt(mean_squared_error(predictions, y)))
print (mean_absolute_error (predictions, y))

4.679191295697281
3.2708628109003115

A. D. Bagdanov

https://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics

Introduction Managing Data The rules of the Game Reflections

Matplotlib: the visualization workhorse
» The basic (and not so basic!) plotting library for numerical
programming in Python is Matplotlib.

> Matplotlib is a Python 2D plotting library which produces
publication quality figures.

» |t can be used in Python scripts, the Python and IPython shells,
and Jupyter notebooks.

» There is a HUGE number of addons and extensions to Matplotlib.

The short version

import matplotlib.pyplot as plt # Standard import alias.
plt.plot([1, 2, 3, 4])

plt.plot([1, 2, 3, 4] *x* 2)

plt.ylabel('some numbers, and some numbers squared')
plt.show() # Not always needed (e.g in a notebook

A. D. Bagdanov

https://matplotlib.org/index.html

Matplotlib: plotting nultiple sets of data

> Matplotlib is a state-based plotting library designed to be familiar
to Matlab users.

> If you issue multiple plot commands, the default is to plot them on
the same axes.

> Let's look at how we can use this to analyze the behavior of my
gradient descent implementation.

A. D. Bagdanov

ools of the Trade Managing Data The rules of the Game

Matplotlib: plotting multiple sets of data (continued)

My implementation

» Here is my implementation of steepest descent (as a function).

» Note how | have instrumented this code to collect the sequence of intermediate
solutions.

First refactor code into a function.

def gd(f, f_prime, x0=0.0, eta=0.1, maxiter=10):
x_star = x0 # Initialize initial "guess".
solutions = [x_star] # This list will track our solution.

Standard descent loop.

for it in range(maxiter):
x_star -= eta * f_prime(x_star)
solutions.append(x_star)

Return current solution and list of intermediate solutions.
return (x_star, np.array(solutions))

\I&ML: Numerical Programming A. D. Bagdanov

Introduction Managing Data The rules of the Game Reflections

Matplotlib: plotting multiple sets of data (continued)

A visual analysis

rng = np.arange(-5, 5, 0.1)

plt.plot(rng, tpara(np.arange(-5, 5, 0.1)))

for eta in [0.9, 0.8, 0.5, 0.2, 0.1]:
(solution, intermediates) = gd(tpara, tpara_prime, eta=eta, x0=-5)
plt.plot(intermediates, tpara(intermediates), '.-', ms=10)

P | often use these types of quick and dirty plots to gain insight.

A. D. Bagdanov

Matplotlib: reading the FM
» | should comment at this point that the Matplotlib documentation
is extensive.
P> For even simple plotting functionality, the functions provided by
Matplotlib provide a vast number of features.

matplotlib.pyplot.plot

matplotLib.pyplot plot(*args, scalex=True, scaley=True, data=None, **kwargs) [source]
Plot y versus x as lines and/or markers.
Call signatures:
plot([x], y, [fmt], *, data=Nonme, *‘kwargs)
plot([x], y, [fmt], [x2], y2, [fmt2], ..., *‘kwargs)
The coordinates of the points or line nodes are given by x, y.
The optional parameter fmtis a convenient way for defining basic formatting like color, marker and linestyle. Its a shortcut string notation

described in the Notes section below.

>>> plot(x, y)
>>> plot(x, y, *bo')
>> plot(y)

>>> plot(y, 'r+') # ditto, but with red plusses

lot x and y using default line style and color

You can use Line2D properties as keyword arguments for more control on the appearance. Line properties and fmt can be mixed. The
following two calls yield identical results;

>>> plot(x, y, 'go--', linewidth=2, markersize=12)
>>> plot(x, y, col reen’, marker='o', linestyle='dashed',
. linewidth=2, markersize=12)

A. D. Bagdanov

Matplotlib: histogramming
» Of course, using plt.plot() presumes that we have naturally ordered data.

» Usually this is not the case — in fact, a large part of ML and data science is
about finding structure in our data.

» A useful tool for gaining insight about the distribution is the histogram.

» A histogram quantizes univariate data into fixed-width bins and counts the
frequency of each discretized value.

» In Matplotlib the function we want is plt.hist():
plt.hist(y, bins=20)

10 20 30 40 50

A. D. Bagdanov

Matplotlib: scatterplotting

» Of course, if we have independent variables in our data (like for our regression
problem) we can use an independent variable to induce an order.

» What we want here is called a scatter plot (plt.scatter() in Matplotlib).
» This puts the independent variable on the x-axis and the target on the y-axis.

plt.scatter(X[:,51, y)

50 1

40 1

304

20 4

10 1

4 5 6 7 8 9

A. D. Bagdanov

Matplotlib: subplots

» But we have 13 dependent variables in our Boston dataset. . .
> Matplotlib allows us to create figure containing subplots using the
plt.subplot () function.
plt.figure(figsize=(10, 8))
for p in range(0, 9):
plt.subplot(3, 3, p+l)
plt.scatter(X[:,pl, y)

A. D. Bagdanov

Matplotlib: subplots (contmued)

50 1 50 0 -. [
40 40 L
o g'o
30108 o 30] .0|
.’ ‘ .
20 20 | ' °
e e 15

10 A LS e ° 10

[} o® ° [}

0 20 40 60 80 0 25 50 75 100 0 10 20
50 L3 50 50 4 L o0 00 o ..

°

40 - 40 '
301 H 30 ° o‘ °
204 l 20 i °
101 10

0.00 025 050 0.75 1.00 0.4 06 08
50 1 .
40
30 .
20
10 -

25 50 7.5 100 125 0 10 20

A. D. Bagdanov

Matplotlib: making things pretty
» Our plots so far are useful, but they have a big defect: they look like crap.
» Let's prettify them a bit with useful annotations.

plt.legend(labels=[f'η={eta}' for eta in [0.9, 0.8, 0.5, 0.2, 0.1]],
loc='lower right')

A. D. Bagdanov

Matplotlib: making things pretty (continued)
> And we can add labels and titles (a la Matlab):

plt.xlabel ('$x~*$"')

plt.ylabel('$f(x)$")

plt.title('Steepest descent for varying $\eta')

Steepest descent for varying n

A. D. Bagdanov

Managing Data

A. D. Bagdanov

Pandas: overview

» The Python Pandas library is the most preferred tools for data
scientists for data manipulation and analysis.

» Along with Matplotlib and Numpy it is a fundamental library for
scientific computing in Python.

» |t provides fast, flexible, and expressive data structures to facilitate
easier data analysis.

» |t provides so much functionality, in fact, that is can be
overwhelming to new users.

> Here | will give a high-entropy overview of the important features
and concepts.

A. D. Bagdanov

Introduction Tools of the Trade Managing Data The rules of the Game

Pandas

Pandas: the three important concepts

» A Pandas DataFrame is a two-dimensional, size-mutable, tabular data structure
with labeled axes (rows and columns).

» Arithmetic operations align on both row and column labels.

» |t is a dictionary container for Series objects — you can think of it as a
wrapped array.

i
Series

> A Pandas Series is a one-dimensional with axis labels (an index).

» Series support both integer- and label-based indexing, and wrap most of the
np.array functionality.

» Statistical methods from ndarray have been overridden to automatically exclude
missing data.

Numerical Programming A. D. Bagdanov

ntroduction [ac The rules of the Game

Pandas: the three important concepts (continued)

» A Pandas Index is an immutable array implementing an ordered, sliceable set.

P |t is the basic object storing axis labels for Pandas.

> Note: we will almost always use integer indexes (i.e. row indices).

A. D. Bagdanov

Pandas: basic DataFrame usage

» Let's create and DataFrame from a random array.
import numpy as np

import pandas as pd

data = np.random.random((1000, 4))
df = pd.DataFrame(data, columns=['A', 'B', 'C', 'D'])
df .describe()

A B c D

count 1000.000000 1000.000000 1000.000000 1000.000000
mean 0.510549 0.503621 0.495730 0.471495
std 0.283081 0.290694 0.293699 0.287029
min 0.001521 0.000076 0.001319 0.000416
25% 0.273882 0.258171 0.232633 0.227963
5006 0.517267 0.499417 0.492677 0.466878
75% 0.752321 0.745992 0.754617 0.714475
max 0.999547 0.998621 0.999480 0.997759

A. D. Bagdanov

Pandas: basic DataFrame usage (continued)

» A nice feature of Pandas is that it keeps track of column labels (and indexes)
when performing computations:

print(df.min(0),'\n'); print(df.max(1)); print(type(df.min(1)))

.001521
.000076
.001319
.000416
dtype: float64

0.937014
1 0.570628

998 0.842050

999 0.735416

Length: 1000, dtype: float64

<class [kandas.core.series.Series'>

A. D. Bagdanov

Pandas: basic usage (continued)

» Perhaps most importantly, we can use column names to index:
Indexing 1is *semantic* and flexible.
df ['A'] # Returns a Series
df . A # Returns the *same* series.
newdf = df[['A', 'B']] # Returns a DataFrame

ADDs a new column to newdf derived from A and B.
newdf ['A/B'] = newdf.A / newdf.B

We can filter rows using boolean queries.
newdf [newdf ['A/B'] > 100.0]

Qut[83]:
A B AIB

66 0825944 0003580 230719818
334 0713525 0000453 1576.654724
537 0.374274 0001938 193.141976
812 0892326 0008207 108.728546
816 0.309119 0.000076 4078.517572

990 0.741138 0002853 259.750430

A. D. Bagdanov

Pandas: datasets revisited

» Especially if you are working with a lot of data, you will probably want to
convert your data into a Pandas DataFrame.

» Most of the tools (Matplotlib, sklearn) are able to transparently work with
Pandas.

» Pandas has a ton of import/export functions for reading/writing to/from CSV,
Excel, and other formats.

» Note: when importing — especially from CSV — make sure you get what you
really want for column names.

» ALSO Note: if you import data from external formats often the targets will be
included in the resulting DataFrame — this is usually a Very Bad Idea.

url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris
df = pd.read_csv(url)

A. D. Bagdanov

The rules of the Game

A. D. Bagdanov

Overview

» In this last part of the lecture today | want to give a simple recipe
that we will try to follow for most ML problems we will look at.

» These are a loose sort of best practices you can follow when
working with data.

» There is, of course, no strict set of rules that you can (or should)
blindly follow.

» In fact, one of the overarching objectives of this course is to give
you some exposure and experience to a set of tools and techniques.

» Enough so that you can develop your own practices and draw

well-founded conclusions about your own learning and data analysis
problems.

A. D. Bagdanov

Step 1a: Data design

> The first step, of course, is to get your hands on some data.

» Depending on the data, you should design a Pandas Dataframe to
encapsulate it.

» Think about data types — are features continuous, categorical, or
discrete.

» Pick good names for the columns in your dataset — you will be
using them a lot, [?A’, ’B’, ..., ’Z’] is probably a bad idea.

A. D. Bagdanov

Step 2b: Getting a feel for the data

» When you have data in a DataFrame, you can start to get a feel
for it.

» Look at the descriptive statistics that describe () gives you.

v

What you are looking for are surprises and insights.

» Are there any undefined values in your data? How will you deal
with them?

A. D. Bagdanov

Step 2c: Visualization

> An important tool for data exploration is visualization.

» This is especially true if you have very many features (high
dimensionality).

P> Use simple plots, scatter plots, and histograms to get a better
picture of the nature and behavior of your data.

> More advanced plotting capabilities can be employed as needed:

» Seaborn: prettier plots, better Pandas integration
» Bokeh: interactive plotting widgets, great for exploration.

A. D. Bagdanov

https://seaborn.pydata.org/
https://bokeh.org/

Step 2d: Normalization and standardization

» Are some (or all) features badly scaled with respect to others?

» Do you have categorical variables that might need to be embedded
or mapped to other spaces?

» You might think about standardization or normalization at this
point.

» However, the decision about how to preprocess data is often
intimately tied to downstream modeling decisions.

A. D. Bagdanov

Step 2e: lterate

» Finally, repeat.

> What you discover via visualization and data exploration can often
change how you decide to model your data.

» [t is most important to ensure you understand your data and have
a good data model going forward.

> Take your time.

A. D. Bagdanov

Step 2a: Decide how to model your problem

» What type of learning problem are you faced with?
» Is it supervised (do you have target values?):

> |s it a regression (continuous target) problem?

> |s it a classification (categorical outputs) problem?

» During exploratory data analysis (step 1) you should have acquired
an idea of which features are correlated with targets.

» |s it an unsupervised learning problem (do you only have blobs of
data?):
» In this case during exploratory data analysis you should have
acquired an idea if there is latent structure to learn.

A. D. Bagdanov

Step 2b: Pick a model parameterization

» Depending on which type of learning problem (supervised or
unsupervised), you can now think about selecting a model to try.

» Do there appear to be simple and linear correlations between
features and targets?

» Or, is the correlation structure not immediately evident (which
might indicate that linear models won't work)?

» Whichever model you start with, you should have a good idea of
what the model parameters are that will be estimated.

P> General advice: start with a simple model and gradually increase
complexity.

A. D. Bagdanov

Step 2c: Understand hyperparameters

» Most models, in addition to the learnable parameters, will have one
of more hyperparameters.

» Some of these are architectural choices (e.g. whether to fit both
slope AND y-intercept in a regression).

» Some will be continuous parameters that cannot be fit by
gradient-based optimization (e.g. regularization wights).

» The important thing here is to be aware of what hyperparameters
exist and to pick reasonable defaults.

A. D. Bagdanov

Step 2d: Understand how to evaluate

v

Finally, we need to know how to evaluate the performance of our
models.

For regression, this might be a simple RMS error.
For classification, you might be interested in accuracy.

This can be a delicate decision, however.

vVvyyy

Question: let's say you have an unbalanced binary classification
problem (one class has 1000x more example than the other). Why
might accuracy not be a good choice?

A. D. Bagdanov

Step 3a: The very least: training/testing

» This might be the easiest, but MOST IMPORTANT step.
» Whenever you are working with machine learning you MUST be
sure to work with independent training and testing sets.
> These are usually referred to as splits:
» Training split: a randomly chosen portion (say, 75%) of the data you
set aside ONLY for estimating model parameters.
» Testing split: a portion (the remaining 25%) of the data you use
ONLY FOR EVALUATING PERFORMANCE.
» Very important: using independent training/testing splits like this is
the only way to guarantee generalization.

A. D. Bagdanov

Step 3a: Even better: training/validation/testing

» If you have enough data, an even better way is to have three splits:
» Training split: a randomly chosen portion (say, 60%) of the data you
set aside ONLY for estimating model parameters.
» Validation split: a randomly chosen portion (50% of the remaining
data) used to monitor learning and to select hyperparameters.
» Testing split: a portion (the remaining part) of the data you use
ONLY FOR EVALUATING PERFORMANCE.

> Later we will see how cross-validation techniques can be used to
make the most of available data without violating the independence
of train/validation/test splits.

A. D. Bagdanov

Step 3a: ALWAYS obey this rule

> If you want to draw conclusions about the performance of your
models, you must use independent splits.

» | cannot emphasize this enough.

A. D. Bagdanov

Step 4: Fit your model, evaluate, repeat.

» Now we can actually start doing some machine learning.

» Frameworks like sklearn provide tools with a consistent API (e.g.
model.fit () to estimate parameters).
» Frameworks like sklearn also usually provide most of the evaluation
(and splitting) functions you need.
> We usually talk about building a pipeline that, given data and
values for hyperparameters:
1. Fits the model to the training data.
2. Evaluates the model on the test (or validation) data.
3. Visualizes model output and/or performance as appropriate.
» Having a pipeline allows us to repeatably perform experiments with
different hyperparameters, with different data, etc.

A. D. Bagdanov

Reflections

A. D. Bagdanov

An art and a science

> Data science is really part science and part art.
P |t is an experimental science in this respect:

> We formulate hypotheses about the nature and behavior of our data.
This can exploit prior knowledge about the source of the data.
And it can involve insight gained through exploratory data analysis.
We then design experiments to validate our hypotheses.
We perform (often many) experiments to confirm or refute our

hypotheses.
» To do this, we need to bring a wide array of tools and techniques to

bear.

vvyyvyy

A. D. Bagdanov

Laboratory

> The laboratory notebook for today:

http://bit.ly/DTwin-ML3

http://bit.ly/DTwin-ML3

