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Overview

I Today will bring to a close the first part of this course.
I We will first look at a very important concept: the Bias-Variance

Decomposition.
I This gives us a conceptual model of estimator performance in

terms of generalization error.
I With this in hand, we will then look at some concrete tools from we

can use to manage the trade-off between model bias and variance:
I Cross-validation: the basis for understanding bias and variance.
I Learning curves: to understand how model variance depends on

training split size.
I Validation curves: to understand how hyperparameters affect model

performance.
I Model selection: to systematically explore hyperparameter setting

through grid search.
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The Bias-Variance Decomposition
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Bias-variance in a Nutshell

The Math

I The biasvariance decomposition is a way of analyzing a model’s
expected generalization error: the bias, the variance, and the
irreducible error resulting from noise in the problem itself.

I Say we estimate a true function f (x) by y = f̂ (x) + ε, where ε is
the noise with zero-mean and variance σ2.

I It can be shown that the expected error is equal to:

E[f (x)− f̂ (x) + ε] = (Bias[f̂ (x)])2 + Var[f̂ (x)] + σ2, where

Bias[f̂ (x)]) = E[f̂ (x)]− E[f (x ]
Var[f̂ (x)] = E[f̂ (x)2]− E[f̂ (x)]2
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Bias-variance in a Nutshell

The Main Point

I As we increase model complexity:
I Bias decreases: a better fit to data.
I Variance increases: fit model varies more with data.
I Imagine the hierachy of polynomial models:

I f (x) = c
I f (x) = ax + c
I f (x) = ax2 + bx + c
I . . .

I As we go up in this hierarchy, model complexity increases and bias
decreases.

I But, the model parameters estimated from data will wildly fluctuate
with changing data – even if drawn from the same distribution.
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Bias-variance in a Nutshell

Visualizing Bias and Variance
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Cross-validation
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Robust Evaluation of Model Performance

Cross-validation Overview

I Learning the parameters of any model and testing it on the same
data is a methodological mistake.

I A model that just memorizes the labels of the training samples
would have a perfect score.

I But, of course it would fail miserably to classify any samples not
yet seen.

I This is an extreme example of what is called overfitting.
I To avoid it, it is common practice when performing supervised

machine learning to hold out part of the available data as a test set
(as we have done since the beginning).
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Robust Evaluation of Model Performance

A Useful Flowchart
I Here is a flowchart of the cross-validation workflow for training:
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Robust Evaluation of Model Performance

Validation Set

I When evaluating different hyperparameter settings, there is still a
risk of overfitting on the test set.

I If we tweak parameters until estimator is optimal, knowledge about
the test set can "leak" into the model and evaluation metrics no
longer reflect generalization performance.

I To solve this problem, usually another part of the dataset can be
held out as a validation set: we train on training set, then evaluate
on the validation set, and when the model seems to work well the
final evaluation is done on the test set.

I However, by partitioning the available data into three sets, we
drastically reduce the number of samples used for learning.

I Moreover, the results can depend on a particular random choice for
train and validation sets.
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Robust Evaluation of Model Performance

Enter, Cross-validation

I A solution to this problem is a procedure called cross-validation.
I A test set should still be held out for final evaluation, but the

validation set is no longer needed.
I The basic approach is called k-fold cross-validation: the training

set is split into k equally-sized, smaller sets, and the following
procedure is followed for each of the k folds:

1. A model is trained using k − 1 of the folds as training data;
2. The resulting model is validated on the remaining part of the data

by computing a performance measure such as accuracy on it.

I Important: the average performance over the k folds gives us a
lower bound on the generalization of the model to unseen data.
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Robust Evaluation of Model Performance

Cross-validation (continued)
I Here is a diagram explaining the k-fold process:
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Robust Evaluation of Model Performance

Cross-validation (continued)

I In sklearn we can easily do k-fold cross-validation using the
sklearn.model_selection.cross_val_score function:

from sklearn.model_selection import cross_val_score
from sklearn.svm import LinearSVC
model = LinearSVC(C=100, verbose=3)
scores = cross_val_score(model, X_tr, y_tr, cv=3,

verbose=3, n_jobs=4)

I Some parameters to pay attention to:
I cv: number of folds to use.
I verbose: logging level – useful to have feedback for long runs.
I n_jobs: number of parallel jobs to use.
I scoring: function to use for scoring (defaults to model.score().
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Robust Evaluation of Model Performance

Cross-validation: Analysis

I Cross-validation is a powerful tool for understanding how models
(might) generalize.

I As we will see next, it is the basis for hyperparameter evaluation
and selection.

I Problem: cross-validation is expensive as multiple models must be
fit to multiple splits of data.
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Hyperparameter Selection
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Finding the Best Model

Hyperparameter Selection

I Up to now we have used cross-validation only to obtain a more
reliable estimate of the performance of our estimator.

I By training multiple times on random train/validation splits we
make the most of available data.

I But this still leaves open the question of how to effectively select
the hyperparameters of our model.

I Up to now we have used models that have relatively few
hyperparameters.

I When we look at deep models based on neural networks, however,
there will be significantly more.

I Fortunately, cross-validation also gives us a tool for robustly
estimating performance over a grid of hyperparameters.
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Finding the Best Model

Hyperparameter Selection: Validation Curves

I An excellent way to get an overview of the sensitivity of a model to
one hyperparameter is to plot a validation curve.

from sklearn.model_selection import validation_curve
(train_scores, val_scores) = validation_curve(

LinearSVC(), X_tr, y_tr,
"C", [0.1, 1.0, 10, 100, 1000],
cv=3)

val_scores

array([[0.85090745, 0.85135743, 0.82478248],
[0.85180741, 0.84535773, 0.85238524],
[0.84910754, 0.85300735, 0.83408341],
[0.83620819, 0.84640768, 0.85358536],
[0.85525724, 0.86170691, 0.84983498]])
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Finding the Best Model

Hyperparameter Selection: Validation Curves
I Useful: validation_curve returns the cross-validated scores for

all folds for all parameters.
I This allows us to make useful plots:

See: https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html
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Finding the Best Model

Hyperparameter Selection: Learning Curves

I An important factor in the variance of any model is the size of the
training split.

I According to Geoffrey Hinton: "More labeled data is the best
possible model regularizer. . . "

I Using sklearn.model_selection.learning_curve() we can
evaluate model performance as a function of test split size:

from sklearn.model_selection import learning_curve
train_sizes, train_scores, test_scores = learning_curve(

LinearSVC(),
X_tr, y_tr, cv=3)
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Finding the Best Model

Hyperparameter Selection: Learning Curves
I Again, this returns all scores for all folds for all training set sizes.
I From these we can produce nice plots like:

See: https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
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Finding the Best Model

Hyperparameter Selection: Grid Search

I Grid search is an unsophisticated, brute-force technique that works
very well in practice.

I There are two main variations: Uniform and Random Grid Search
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Finding the Best Model

Hyperparameter Selection: Grid Search (continued)
I The first thing to do is understand which hyperparameters are of

interest.
I This almost always requires a detailed perusal of the

documentation.
I Consider a linear SVM with hinge loss: the model essentially has

only one hyperparameter: the C used to weight model complexity
versus empirical loss:

f (x) = wT x+ b

L(D;w, b) = min
w
||w||2 +

∑
(x,y)∈D

Cmax(0, 1− yf (x))

class(x) =

{
−1 if f (x) ≤ 0
+1 if f (x) > 0
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Finding the Best Model

Hyperparameter Selection: Grid Search (continued)
I The key class in sklearn is

sklearn.model_selection.GridSearchCV.
I What must provide to GridSearchCV is a grid of parameters to

search:
from sklearn.model_selection import GridSearchCV
model = LinearSVC(max_iter=2000)
param_grid = {'C': [0.001, 0.1, 1.0, 10, 20, 50, 100, 1000]}
search = GridSearchCV(model, param_grid, cv=3, verbose=3, n_jobs=4)
search.fit(X_tr, y_tr)
test_score = accuracy_score(y_te, search.best_estimator_.predict(X_te))
print(f'Best parameters: {search.best_params_}')
print(f'Best cross-val score: {search.best_score_}')
print(f'Score on test set: {test_score}')

Fitting 3 folds for each of 8 candidates, totalling 24 fits
...
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Finding the Best Model

Hyperparameter Selection: Grid Search (continued)

I What if we have more hyperparameters?
I For example, in LinearSVC we can also choose the type of penalty

(L1 or L2).
I Well, we can just add them to the grid:

...
param_grid = {'C': [0.001, 0.1, 1.0, 10, 20, 50, 100, 1000],

'penalty': ['l1', 'l2']}
...

Fitting 3 folds for each of 16 candidates, totalling 48 fits
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Reflections
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Model Selection

I Model selection is a fundamental fact of life when working with
machine learning algorithms.

I Most of the models we have seen so far are low-variance models:
they perform fairly stably over a range of hyperparameter settings.

I This is why these models are the tried-and-true techniques for
supervised learning: they often just work.

I In the next part of the course we will start looking at neural
network models.

I They can achieve significantly better performance. . .
I . . . at the cost, however, of significantly complicating the model

selection process.
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The Bias-Variance Decomposition

I Nutshell: The more complex the model f̂ (x) is, the more data
points it will capture, and the lower the bias will be; however,
complexity will make the model "move" more to capture the data
points, and hence its variance will be larger.

I Caveat: The Bias-Variance Decomposition is useful as a
conceptual model – in practice the bias and variance of models is
difficult to estimate.
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Model Selection Lab

I The laboratory notebook for today:

http://bit.ly/DTwin-ML5
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