DIGITAL TWIN AI and Machine Learning: Deep Learning I: Neural Networks

Prof. Andrew D. Bagdanov andrew.bagdanov AT unifi.it

Dipartimento di Ingegneria dell'Informazione Università degli Studi di Firenze

20 November 2020

Outline

Introduction

- Connectionist Models
- Deep Neural Networks
- Modular Construction

Reflections

Introduction

AI&ML: Deep Learning I

Remaining lectures

- ► This afternoon: Deep Learning and Keras/Tensorflow.
- ▶ Next Thursday: Recurrent Neural Networks (RNNs).
- ▶ Next Friday: Convolutional Neural Networks (CNNs) + Final Exam

Digital assistants

Deep learning is profoundly changing our lives.

Natural language processing

Deep Recurrent Neural Networks (RNNs) are powering the latest generation of natural language translation technologies.

Image captioning

 Convolutional Neural Networks (CNNs) are able to extract high-level semantics from images.

Train

COCO Captions: 80 Classes

Two pug dogs sitting on a bench at the beach.

A child is sitting on a couch and holding an umbrella.

Open Images: 600 Classes

Artichoke Accordion

Waffle Balloon

nocaps Val / Test

In-Domain: Only COCO Classes

The person in the brown suit is directing a dog.

Near-Domain: COCO & Novel Classes

A person holding a black umbrella and an accordion.

Out-of-Domain: Only Novel Classes

Some dolphins are swimming close to the base of the ocean.

A. D. Bagdanov 🎆

- Self-driving cars
 - CNNs are able to integrate multi-modal inputs and are driving the latest advances in Automatic Driving Assistance (ADAS) systems.

Reinforcement learning

Deep Reinforcement Learning is being used to train robots who can learn from experience and interactions with their environment.

All thanks to...

- The humble Neural Network.
- Artificial Neural Networks (ANNs) are extremely simple, yet also extremely powerful models.
- They are, in fact, universal function approximators.

Neural Networks are not new

- As we will see, neural networks have a storied history.
- **Deep Learning**, however, is their modern incarnation.

Overview

- Today we will see what puts the deep into Deep Learning.
- We will start with an overview of the major historical milestones in the development of artificial neural networks.
- Then we will look at how modern deep neural networks are actually built:
- We will see how the basic Multilayer Perceptron (MLP) model provides a modular architecture for machine learning problems.
- We will see how to fit model parameters in order to minimize a loss function.
- And we will see how modern tools (e.g. Keras/Tensorflow) makes it easy to apply Deep Models to new problems.

Connectionist Models

Al&ML: Deep Learning I

A. D. Bagdanov

Connectionism: The Old School

What is a Deep Neural Network?

- Deep Neural Networks are a connectionist model.
- Connectionism has deep roots reaching back to Classical Greece.
- To understand this rich inheritance it is useful to go back in time and trace the roots of modern Deep Models.
- Connectionism arose from the neuroscience and psychological research communities of the 1940s and 1950s.
- These were the nascent beginning of what would become Cognitive Science.
- Though founded on solid experimental practice, what was lacking was any sort of computation basis for learning.

Connectionism: Hebbian Learning

- One of the first concrete learning rules for connectionist models (both artificial and biological).
- Hebb's Rule: if cell A consistently contributes to the activity of cell B, then the synapse from A to B should be strengthened.
- More quaintly: neurons that fire together, wire together; neurons that fire out of sync, fail to link.

Connectionism: The Old School

Connectionism: The Pandemonium Model

- In 1958 Selfridge proposed a multi-layer, parallel model of machine learning.
- The model consists of four layers, each inhabited by demons.
- Network architecture fixed a priori, connections updated using supervised learning.
- Demons yell upwards, higher-level ones listen and respond.
- High-worth demons can replace low-worth ones via combination.

Connectionism: The Old School —

Connectionism: The Perceptron

- The Perceptron is probably the simplest (and most famous) feedforward neural network.
- The perceptron algorithm was invented by Rosenblatt in 1958.
- It was designed to be a machine, and its original purpose was to perform image recognition.

The perceptron algorithm

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

Input: $D = \{ (x_i, y_i) \}_{i=1}^{N}$ (training data) Output: learned weights w $w_0 \leftarrow random initialization$ $t \leftarrow 1$ while not converged do for $(x, y) \in D$ do $\hat{y} = f(w^T x)$ $w_t \leftarrow w_{t-1} + \eta(y - \hat{y})x$ $t \leftarrow t + 1$

Connectionism: The Multilayer Perceptron

Let's look at a simple Neural Network architecture known as the Multilayer Perceptron (MLP):

Connectionism: The New School

Connectionism: The Multilayer Perceptron

The MLP equation (one hidden layer):

$$\hat{\mathbf{y}}(\mathbf{x}) = \sigma(\mathbf{w}_2^T \sigma(\mathbf{w}_1^T \mathbf{x} + b_1) + b_2)$$

- Except for the activation function σ , this is a linear system.
- Common activation functions (elementwise):

•
$$\sigma(\mathbf{x}) = \tanh(\mathbf{x})$$

• $\sigma(\mathbf{x}) = (1 + e^{-\mathbf{x}})^{-1}$
• $\sigma(\mathbf{x}) = \frac{\exp(\mathbf{x})}{\sum_{i} e^{\mathbf{x}_{i}}}$ (softmax, used for outputs).

Connectionism: The Multilayer Perceptron

- How do you train a model?
- Decide on a loss function (like the negative log-likelihood):

$$L(\mathbf{y}, \hat{\mathbf{y}}(\mathbf{x})) = -\frac{1}{C} \sum_{i} y_i \log(\hat{y}_i)$$

And perform gradient descent w.r.t. all model parameters:

$$\boldsymbol{\theta}_{n+1} = \boldsymbol{\theta}_n - \varepsilon \nabla_{\boldsymbol{\theta}} L(\mathbf{y}, \hat{\mathbf{y}}(\mathbf{x}))$$

$$\boldsymbol{\theta}_{n+1} = \boldsymbol{\theta}_n - \varepsilon \sum_{i=1}^N \frac{1}{N} \nabla_{\boldsymbol{\theta}} L(\mathbf{y}, \hat{\mathbf{y}}(\mathbf{x}_i))$$

- Where ε is the learning rate.
- The standard algorithm for this is known as backpropagation and it is very clever and efficient.

Connectionism: The Multilayer Perceptron

Problems with this approach:

- Model size: many, many parameters for even small-sized images. This leads to memory and efficiency problems.
- Overfitting: many parameters (and limited training data) mean that it is easy to overfit the model to your training set.
- Undergeneralization: overfitting means that a trained model is unlikely to generalize to new data.
- Vanishing gradients: a known problem with backpropagation (due to application of the chain rule) leads to very small gradient values near the beginning of the network.
- Saturating units: traditional activation functions can lead to saturated units (outputs near 1 or 0 (or -1)), which have near-zero derivatives.
- These problems (and others) led the community to largely ignore the potential of these models for decades.

Connectionism: The New School

Connectionism: from MLP to CNNs

However, MLPs have a number extremely attractive features:

- It is an end-to-end model: we can train everything in the model using a single optimization algorithm.
- MLPs learn representations of input and classifier.
- Why can't we just use this model for image recognition problems?
- An MLP should be able to learn feature representations that are in turn good representations for classification.
- Why is this model problematic? Especially for images?

Deep Neural Networks

Al&ML: Deep Learning I

A. D. Bagdanov

Backprop: the basics

- How do you train a model?
- Decide on a loss function (like the mean-squared error):

$$\mathcal{L}(D;\theta) = \frac{1}{N} \sum_{(\mathbf{x},y)\in D} (y - f(\mathbf{x};\theta))^2$$

And perform gradient descent w.r.t. all model parameters:

$$\boldsymbol{\theta}_{n+1} = \boldsymbol{\theta}_n - \varepsilon \nabla_{\boldsymbol{\theta}} \mathcal{L}(D; \boldsymbol{\theta})$$

$$\boldsymbol{\theta}_{n+1} = \boldsymbol{\theta}_n - \varepsilon \frac{1}{N} \sum_{(\mathbf{x}, y) \in D} \nabla_{\boldsymbol{\theta}} (y - f(\mathbf{x}; \boldsymbol{\theta}))^2$$

- Where ε is the learning rate.
- The key is the gradient, but how can we easily compute this?
- ▶ Well, high-school analysis gives us the answer: the chain rule.

Backprop: the basics (continued)

- ln this formulation, $f(\mathbf{x}; \theta)$ is our deep neural network parameterized by θ .
- The MLP equation for one hidden layer is:

$$\hat{\mathbf{y}}(\mathbf{x}) = \sigma(\mathbf{W}_2^T \sigma(\mathbf{W}_1^T \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)$$

- So, in this case $\theta = (\mathbf{W}_1, \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2)$
- And σ is some non-linear activation function.
- Question: why is the non-linear activation function important?

Backprop: the basics (continued)

We need to compute this:

$$= \nabla_{\boldsymbol{\theta}} (y - f(\mathbf{x}; \theta))^2$$

$$= \nabla_{\boldsymbol{\theta}} (y - \sigma (\mathbf{W}_2^T \sigma (\mathbf{W}_1^T \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2))^2$$

$$= -2(y - \sigma(\mathbf{W}_2^{\mathsf{T}}\sigma(\mathbf{W}_1^{\mathsf{T}}\mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2))\nabla_{\boldsymbol{\theta}}\sigma(\mathbf{W}_2^{\mathsf{T}}\sigma(\mathbf{W}_1^{\mathsf{T}}\mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2)$$

Now, let's think about the partial derivatives that will make up this gradient computation...

Backprop: in pictures

- Here is a high-level overview of backprop.
- Essence: to compute the gradient wrt a parameter we need the forward activation AND the backpropagated gradient.
- It's really just the Chain Rule:

Backprop: problems

- If the backpropagation algorithm is so "simple", why haven't we been using neural networks since the 1970s?
- There are a number of problems:
 - Saturating units: many activation functions are "flat" in their extremal values – this results in near zero gradients
 - Vanishing gradients: backprop creates a long chain of multiplied gradients – all of which are typically very small.
- Partial Solution: use non-saturating activation functions:

Backprop: problems (continued)

- Another problem is overparameterization: the (often very) many parameters in neural networks can lead to easy overfitting.
- Good exercise: count the number of weights in an MLP.
- Partial solution: use regularization to control the magnitude of weights in the network.

Backprop: Stochastic Gradient Descent (SGD)

- Problem: what happens if N (the number of training samples) is very large?
- Well, we end up taking very slow steps each iteration of gradient descent is an average over the entire dataset.
- Solution: approximate the true gradient with the gradient at a single training example:

Online Stochastic Gradient Descent

- Choose an initial vector of parameters θ and learning rate η .
- Repeat until an approximate minimum is found:
 - 1. Randomly shuffle training samples in *D*.

2. For
$$(x, y) \in D$$
:

$$\blacktriangleright \boldsymbol{\theta} := \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\{\boldsymbol{x}, \boldsymbol{y}\}; \boldsymbol{\theta})$$

Backprop: Stochastic Gradient Descent (continued)

- Another problem: evaluating the gradient on single examples leads to very noisy steps in parameter space.
- One trick to mitigate this is to use momentum: keep a running average of gradients that is slowly updated.
- Another solution is to use mini-batches: instead of a single sample, average the gradients over a small batch of samples.
- It is common to use a combination of mini-batches and momentum to stabilize training.

Backprop: ADAM

- Even with momentum and mini-batches, SGD can be slow to converge.
- One remaining problem is that the learning rate η is constant for all model parameters.
- Adam uses estimations of first and second moments of gradient to adapt the learning rate for each weight of the neural network.
- That is, it adapts to the scale of each network parameter and to the sensitivity of the loss to each.

Diederik P. Kingma and Jimmy Lei Ba. Adam : A method for stochastic optimization. 2014. arXiv:1412.6980v9

Backprop: Terminology

Some useful terminology for deep learning optimization:

- ▶ 1 epoch: one complete pass over the data.
- 1 iteration: a single gradient step.
- N: number of training samples.
- B: batch size.

Algorithm	iterations per epoch
Batch gradient descent	1
Stochastic Gradient Descent	Ν
Mini-batch Gradient Descent	$\frac{N}{B}$

Modular Construction

AI&ML: Deep Learning I

A. D. Bagdanov

Tensorflow: graph-based, numerical meta-programming

- Tensorflow is a numerical programming framework originally created by Google.
- It is a comprehensive framework for working with machine learning in general – and Deep Learning in particular.
- It has flexible ecosystem of tools, libraries, and community resources.
- It provides official APIs for Python and C++.
- It also provides transparent access to Graphics Processing Unit (GPU) and Tensor Processing Unit (TPU).
- This means: write once, run pretty much anywhere.

Tensorflow: graph-based, numerical meta-programming

- One of Tensorflow's defining features is that it is a meta-programming environment for numerical programming.
- When you write an expression (e.g. foo = a * b) in Tensorflow, it does not execute it.
- Rather, it constructs a computation graph that represents the expressed computation.
- From this representation, we can do things like automatic differentiation.
- ► Good news: we never have to compute gradients by hand!
- Less good news: graph-based programming can be confusing.
- Let's take a very brief tour.

Tensorflow: tf.Graph

Consider the following:

import tensorflow as tf

```
# Make a new graph.
graph = tf.Graph()
with graph.as_default():
    x = tf.constant([1.0, 2.0, 3.0], name='x')
    y = tf.constant([4.0, 5.0, 6.0], name='y')
    result = tf.multiply(x, y, name='result')
```


Tensorflow: tf.Graph (continued)

```
Let's do something a bit more interesting:
graph2 = tf.Graph()
with graph2.as_default():
    x = tf.Variable(1.0, name='x')
    result = x**2 + x + 10
    dr_dx = tf.gradients([result], [x])
```


Tensorflow: tf.Session

- Well, that's fine and all... I guess.
- But, how do we actually make it do something?
- In order to execute a computation in Tensorflow, you must do so in a session:

```
graph2 = tf.Graph()
with graph2.as_default():
    x = tf.Variable(1.0, name='x')
    result = x**2 + x + 10
    dr_dx = tf.gradients([result], [x])
```

```
with tf.Session(graph=graph2) as sess:
    print(sess.run(result, feed_dict={x: 2.0}))
    print(sess.run(dr_dx, feed_dict={x: 2.0}))
```

16.0 [5.0]

Tensorflow: generality at a price

- The graph-based nature of Tensorflow is both a curse and a blessing.
- It is extremely powerful these simple examples don't even scratch the surface.
- All operations, for example, can be defined in terms of arbitrary tensors.

```
import numpy as np
graph2 = tf.Graph()
with graph2.as_default():
    # Define an input variable.
    x = tf.Variable(np.random.rand(13, 1).astype('float32'), name='x')
    # Define our weight matrix and bias.
    W = tf.Variable(np.random.rand(13, 1).astype('float32'), name='W')
    b = tf.Variable(0.0, name='b')
    result = tf.matmul(tf.transpose(W), x) + b
    dr_dTheta = tf.gradients([result], [W, b])
```

Tensorflow: generality at a price

```
with tf.Session(graph=graph2) as sess:
    sess.run(tf.global_variables_initializer())
    sample = np.random.rand(13, 1)
    print(f'Output:\n{sess.run(result, feed_dict={x: sample})}')
    print(f'Gradient:\n{sess.run(dr_dTheta, feed_dict={x: sample})}')
```

```
Output:
[[3.8426936]]
Gradient:
[array([[0.9956546], [0.5471455], [0.55688864],
       [0.4037869], [0.5371017], [0.51199615],
       [0.22210105], [0.98923653], [0.8349015],
       [0.11137984], [0.96884817], [0.67522067],
       [0.1807481]], dtype=float32), 1.0]
```

Tensorflow: the Good News

- The good news is that we don't have to program at such a low level all the time.
- ► There are several high-level frameworks built on top of Tensorflow.
- These frameworks hide the graph-based, meta-programming complexity of the underlying library.
- One such framework is Keras, which is specifically designed to support high-level programming for Deep Learning.
- It effectively encapsulates models in a way that makes is easy (well, easier) to define, train, execute, and test.
- We usually write Keras/Tensorflow to indicate that we are using Keras with the Tensorflow backlend.

Keras: layer-wise composition

This is another view of a Multi-layer Perceptron (MLP) for classification:

I et's see how to build a model like this in Keras.

Sequential Models in Keras

Keras: a catalog of layer types

tf.keras.layers.Dense

Just your regular densely-connected NN layer:

output = activation(dot(input, kernel) + bias)
where activation is the element-wise activation function
passed as the activation argument, kernel is a weights
matrix created by the layer, and bias is a bias vector created
by the layer (only applicable if use_bias is True).

We only need to specify the number of outputs and (if it's the first layer) number of inputs:

```
fc1 = tf.keras.Dense(6, input_shape=(4,))
```

- fc2 = tf.keras.Dense(4)
- fc3 = tf.keras.Dense(3)

Sequential Models in Keras

Keras: a catalog of layer types (continued)

keras.layers.Activation

Apply a function elementwise to its input:
 Applies an activation function to an output.

Arguments:

activation: Activation function, such as tf.nn.relu, or string name of built-in activation function, such as "relu" or "softmax"

Let's use it to create our output layer:

output = tf.keras.Activation('softmax')

Keras: the tf.keras.Sequential model type

- But wait... How does fc2 know what it's input should be? Or even what it's input size should be?
- Well, fc1 at least knows it's input size (if not its input tensor).
- The answer is doesn't until we compose them together into a model.

```
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense, Activation
```

```
# Create a Sequential model, add layers in sequence.
model = tf.keras.Sequential()
model.add(Dense(6, input_shape=(4,)))
model.add(Dense(4))
model.add(Dense(3))
model.add(Activation('softmax'))
```

model.predict(np.array([[1, 2, 3, 4]]))

-> array([[0.00421561, 0.9916352 , 0.00414928]], dtype=float32)

Keras: a regression model

Let's change our model a little first:

from tensorflow.keras import models, layers

Define our first model: a simple Ordinary Linear Regression
model = models.Sequential()
model.add(layers.Dense(1, activation='linear', input_shape=(13,)))

What does this remind you of?

Keras: compiling the model

- ► We have a randomly initialized Ordinary Linear Regression model.
- Now we have to fit the model; first we compile it, specifying the loss and optimizer.
- In Keras, compiling refers to preparing the model for optimization: computing the gradient wrt the loss, and adding any graph nodes needed by the optimizer.
- # Compile the model, specifying optimizer and loss. model.compile(optimizer='adam', loss='mse', metrics=['mae'])

model.compile()

To the documentation!

Keras: fitting the model

- Whew, that's a lot of steps...
- Now, given some training data, we can fit the model:

Fit the model parameters.

history = model.fit(X_train, y_train, validation_split=0.2, epochs=100)

model.fit()

Back to the docs!

Keras: interpreting console spam

Keras model fitting generates a ton of console spam:

Train on 323 samples, validate on 81 samples Epoch 1/2000 323/323 [====] - 0s 248us/sample - loss: 33611.6093 - mean_absolute_error: 175.2687 - val_loss: 32327.7965 - val_mean_absolute_error: 174.9598

Epoch 2/2000 323/323 [====] - 0s 62us/sample - loss: 30264.9680 - mean_absolute_error: 165.8515 - val_loss: 29066.1841 - val_mean_absolute_error: 165.2556

Keras: Tensorboard

- The history object returned from model.fit() contains a ton of information about the training process.
- However, a much better way to monitor training is to use Tensorboard.
- We setup a log directory, a Tensorboard callback, and tell Keras to call it while fitting:

Some magic to make tensorboard work in Jupyter. %load_ext tensorboard %tensorboard -logdir logs Monitoring Training

Keras: Tensorboard (continued)

Monitoring Trainin

Keras: Tensorboard (continued)

Madal Cuslustia

Keras: evaluating the final model

- Keras models also have a built-in evaluate method.
- With this we can run the trained model on a test set to obtain the loss on the test set as well as any registered metrics.

from tensorflow.keras import models, layers

```
# Define our first model: a simple Ordinary Linear Regression
model = models.Sequential()
model.add(layers.Dense(1, activation='linear', input_shape=[X_train.shape[
```

```
# Compile the model, specifying optimizer and loss.
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
```

```
# Fit the model parameters.
history = model.fit(X_train, y_train, validation_split=0.2, epochs=2000)
model.evaluate(X_test, y_test)
```

-> [31.26155943029067, 4.102251]

Reflections

AI&ML: Deep Learning

Deep Learning

- Deep models like Multilayer Perceptrons (MLPs) are extremely flexible function approximators.
- They can be trained to approximate optimal functions by minimizing a loss over a set of training samples.
- Their composable nature is what makes them deep you can keep increasing the power of your approximation by adding layers or by increasing the width of layers.
- Their power is also their weakness: they can be hard to optimize and they can easily overfit even large training sets
- Nonetheless, with a little bit of (good) practice they can also be very effective in the real world.

Keras/Tensorflow

- Numerical frameworks like Keras make life MUCH easier when working with Deep Models.
- Their ability to automatically differentiate frees us from the need to manually computer gradients for optimization.
- They reflect our intuition about models: their APIs are more or less direct mappings from our modular diagrams of deep modules.
- They also facilitate transparent use of GPU/TPU resources, when available.
- The exercises we will see today do not benefit hugely from GPUs, but tomorrow when we look a Convolution Neural Networks, this will all change.

First Steps with Keras Lab

The laboratory notebook for today:

http://bit.ly/DTwin-ML6