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Remaining lectures

Remaining lectures

I This afternoon: Deep Learning and Keras/Tensorflow.
I Next Thursday: Recurrent Neural Networks (RNNs).
I Next Friday: Convolutional Neural Networks (CNNs) + Final Exam
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Changing times

Digital assistants

I Deep learning is profoundly changing our lives.
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Changing times

Natural language processing

I Deep Recurrent Neural Networks (RNNs) are powering the latest
generation of natural language translation technologies.
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Changing times

Image captioning
I Convolutional Neural Networks (CNNs) are able to extract

high-level semantics from images.
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Changing times

Self-driving cars
I CNNs are able to integrate multi-modal inputs and are driving the

latest advances in Automatic Driving Assistance (ADAS) systems.

AI&ML: Deep Learning I A. D. Bagdanov



Introduction Connectionist Models Deep Neural Networks Modular Construction Reflections

Changing times

Reinforcement learning
I Deep Reinforcement Learning is being used to train robots who can

learn from experience and interactions with their environment.
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Changing times

All thanks to. . .
I The humble Neural Network.
I Artificial Neural Networks (ANNs) are extremely simple, yet also

extremely powerful models.
I They are, in fact, universal function approximators.
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Changing times

Neural Networks are not new

I As we will see, neural networks have a storied history.
I Deep Learning, however, is their modern incarnation.
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Overview

Overview

I Today we will see what puts the deep into Deep Learning.
I We will start with an overview of the major historical milestones in

the development of artificial neural networks.
I Then we will look at how modern deep neural networks are actually

built:
I We will see how the basic Multilayer Perceptron (MLP) model

provides a modular architecture for machine learning problems.
I We will see how to fit model parameters in order to minimize a loss

function.
I And we will see how modern tools (e.g. Keras/Tensorflow) makes

it easy to apply Deep Models to new problems.
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Connectionist Models
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Connectionism: The Old School

What is a Deep Neural Network?

I Deep Neural Networks are a connectionist model.

I Connectionism has deep roots reaching back to Classical Greece.

I To understand this rich inheritance it is useful to go back in time and trace the
roots of modern Deep Models.

I Connectionism arose from the neuroscience and psychological research
communities of the 1940s and 1950s.

I These were the nascent beginning of what would become Cognitive Science.

I Though founded on solid experimental practice, what was lacking was any sort
of computation basis for learning.
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Connectionism: The Old School

Connectionism: Hebbian Learning
I One of the first concrete learning rules for connectionist models (both artificial

and biological).

I Hebb’s Rule: if cell A consistently contributes to the activity of cell B, then the
synapse from A to B should be strengthened.

I More quaintly: neurons that fire together, wire together; neurons that fire out
of sync, fail to link.
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Connectionism: The Old School

Connectionism: The Pandemonium Model

I In 1958 Selfridge proposed a
multi-layer, parallel model of
machine learning.

I The model consists of four layers,
each inhabited by demons.

I Network architecture fixed a priori,
connections updated using
supervised learning.

I Demons yell upwards, higher-level
ones listen and respond.

I High-worth demons can replace
low-worth ones via combination.
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Connectionism: The Old School

Connectionism: The Perceptron
I The Perceptron is probably the simplest (and most famous) feedforward neural

network.

I The perceptron algorithm was invented by Rosenblatt in 1958.

I It was designed to be a machine, and its original purpose was to perform image
recognition.

f (x) =

{
1 if x > 0

0 otherwise

The perceptron algorithm

Input: D = { (xi , yi ) }Ni=1 (training data)
Output: learned weights w
w0 ← random initialization
t ← 1
while not converged do

for (x, y) ∈ D do

ŷ = f (wT x)

wt ← wt−1 + η(y − ŷ)x
t ← t + 1
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Connectionism: The New School

Connectionism: The Multilayer Perceptron
I Let’s look at a simple Neural Network architecture known as the Multilayer

Perceptron (MLP):
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Connectionism: The New School

Connectionism: The Multilayer Perceptron
I The MLP equation (one hidden layer):

ŷ(x) = σ(wT2 σ(w
T
1 x+ b1) + b2)

I Except for the activation function σ, this is a linear system.

I Common activation functions (elementwise):
I σ(x) = tanh(x)
I σ(x) = (1 + e−x)−1

I σ(x) = exp(x)∑
i
exi

(softmax, used for outputs).
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Connectionism: The New School

Connectionism: The Multilayer Perceptron

I How do you train a model?

I Decide on a loss function (like the negative log-likelihood):

L(y, ŷ(x)) = − 1
C

∑
i

yi log(ŷi)

I And perform gradient descent w.r.t. all model parameters:

θθθn+1 = θθθn − ε∇θθθL(y, ŷ(x))

θθθn+1 = θθθn − ε
N∑
i=1

1

N
∇θθθL(y, ŷ(xi))

I Where ε is the learning rate.

I The standard algorithm for this is known as backpropagation and it is very
clever and efficient.
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Connectionism: The New School

Connectionism: The Multilayer Perceptron

I Problems with this approach:

I Model size: many, many parameters for even small-sized images. This
leads to memory and efficiency problems.

I Overfitting: many parameters (and limited training data) mean that it is
easy to overfit the model to your training set.

I Undergeneralization: overfitting means that a trained model is unlikely to
generalize to new data.

I Vanishing gradients: a known problem with backpropagation (due to
application of the chain rule) leads to very small gradient values near the
beginning of the network.

I Saturating units: traditional activation functions can lead to saturated
units (outputs near 1 or 0 (or -1)), which have near-zero derivatives.

I These problems (and others) led the community to largely ignore the potential
of these models for decades.
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Connectionism: The New School

Connectionism: from MLP to CNNs

I However, MLPs have a number extremely attractive features:

I It is an end-to-end model: we can train everything in the model using a
single optimization algorithm.

I MLPs learn representations of input and classifier.
I Why can’t we just use this model for image recognition problems?
I An MLP should be able to learn feature representations that are in turn

good representations for classification.

I Why is this model problematic? Especially for images?
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Deep Neural Networks
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The Backpropagation Algorithm

Backprop: the basics
I How do you train a model?
I Decide on a loss function (like the mean-squared error):

L(D; θ) =
1

N

∑
(xxx,y)∈D

(y − f (x; θ))2

I And perform gradient descent w.r.t. all model parameters:

θθθn+1 = θθθn − ε∇θθθL(D; θ)

θθθn+1 = θθθn − ε
1

N

∑
(xxx,y)∈D

∇θθθ(y − f (x; θ))2

I Where ε is the learning rate.
I The key is the gradient, but how can we easily compute this?
I Well, high-school analysis gives us the answer: the chain rule.
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The Backpropagation Algorithm

Backprop: the basics (continued)

I In this formulation, f (x; θ) is our deep neural network
parameterized by θ.

I The MLP equation for one hidden layer is:

ŷ(x) = σ(WT2 σ(W
T
1 x+ b1) + b2)

I So, in this case θ = (W1,b1,W2,b2)
I And σ is some non-linear activation function.
I Question: why is the non-linear activation function important?
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The Backpropagation Algorithm

Backprop: the basics (continued)

I We need to compute this:

= ∇θθθ(y − f (x; θ))2

= ∇θθθ(y − σ(WT2 σ(WT1 x+ b1) + b2))2

= −2(y − σ(WT2 σ(WT1 x+ b1) + b2))∇θθθσ(WT2 σ(WT1 x+ b1) + b2)

I Now, let’s think about the partial derivatives that will make up this
gradient computation. . .
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The Backpropagation Algorithm

Backprop: in pictures
I Here is a high-level overview of backprop.
I Essence: to compute the gradient wrt a parameter we need the

forward activation AND the backpropagated gradient.
I It’s really just the Chain Rule:

AI&ML: Deep Learning I A. D. Bagdanov



Introduction Connectionist Models Deep Neural Networks Modular Construction Reflections

The Backpropagation Algorithm

Backprop: problems
I If the backpropagation algorithm is so "simple", why haven’t we been using

neural networks since the 1970s?

I There are a number of problems:

I Saturating units: many activation functions are "flat" in their
extremal values – this results in near zero gradients

I Vanishing gradients: backprop creates a long chain of multiplied
gradients – all of which are typically very small.

I Partial Solution: use non-saturating activation functions:
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The Backpropagation Algorithm

Backprop: problems (continued)

I Another problem is overparameterization: the (often very) many
parameters in neural networks can lead to easy overfitting.

I Good exercise: count the number of weights in an MLP.
I Partial solution: use regularization to control the magnitude of

weights in the network.
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The Backpropagation Algorithm

Backprop: Stochastic Gradient Descent (SGD)

I Problem: what happens if N (the number of training samples) is
very large?

I Well, we end up taking very slow steps – each iteration of gradient
descent is an average over the entire dataset.

I Solution: approximate the true gradient with the gradient at a
single training example:

Online Stochastic Gradient Descent
I Choose an initial vector of parameters θ and learning rate η.
I Repeat until an approximate minimum is found:

1. Randomly shuffle training samples in D.
2. For (xxx, y) ∈ D:

I θθθ := θθθ − η∇θθθL({xxx, y } ;θθθ)
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The Backpropagation Algorithm

Backprop: Stochastic Gradient Descent (continued)

I Another problem: evaluating the gradient on single examples leads
to very noisy steps in parameter space.

I One trick to mitigate this is to use momentum: keep a running
average of gradients that is slowly updated.

I Another solution is to use mini-batches: instead of a single sample,
average the gradients over a small batch of samples.

I It is common to use a combination of mini-batches and momentum
to stabilize training.
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The Backpropagation Algorithm

Backprop: ADAM
I Even with momentum and mini-batches, SGD can be slow to

converge.
I One remaining problem is that the learning rate η is constant for

all model parameters.
I Adam uses estimations of first and second moments of gradient to

adapt the learning rate for each weight of the neural network.
I That is, it adapts to the scale of each network parameter and to

the sensitivity of the loss to each.

Diederik P. Kingma and Jimmy Lei Ba. Adam : A method for stochastic optimization. 2014. arXiv:1412.6980v9
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The Backpropagation Algorithm

Backprop: Terminology

I Some useful terminology for deep learning optimization:
I 1 epoch: one complete pass over the data.
I 1 iteration: a single gradient step.
I N: number of training samples.
I B: batch size.

Algorithm iterations per epoch
Batch gradient descent 1

Stochastic Gradient Descent N

Mini-batch Gradient Descent N
B
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Modular Construction
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Basics

Tensorflow: graph-based, numerical meta-programming

I Tensorflow is a numerical programming framework originally
created by Google.

I It is a comprehensive framework for working with machine learning
in general – and Deep Learning in particular.

I It has flexible ecosystem of tools, libraries, and community
resources.

I It provides official APIs for Python and C++.
I It also provides transparent access to Graphics Processing Unit

(GPU) and Tensor Processing Unit (TPU).
I This means: write once, run pretty much anywhere.
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Basics

Tensorflow: graph-based, numerical meta-programming

I One of Tensorflow’s defining features is that it is a
meta-programming environment for numerical programming.

I When you write an expression (e.g. foo = a * b) in Tensorflow,
it does not execute it.

I Rather, it constructs a computation graph that represents the
expressed computation.

I From this representation, we can do things like automatic
differentiation.

I Good news: we never have to compute gradients by hand!
I Less good news: graph-based programming can be confusing.
I Let’s take a very brief tour.
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Basics

Tensorflow: tf.Graph
I Consider the following:

import tensorflow as tf

# Make a new graph.
graph = tf.Graph()
with graph.as_default():

x = tf.constant([1.0, 2.0, 3.0], name='x')
y = tf.constant([4.0, 5.0, 6.0], name='y')
result = tf.multiply(x, y, name='result')
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Basics

Tensorflow: tf.Graph (continued)
I Let’s do something a bit more interesting:

graph2 = tf.Graph()
with graph2.as_default():

x = tf.Variable(1.0, name='x')
result = x**2 + x + 10
dr_dx = tf.gradients([result], [x])

AI&ML: Deep Learning I A. D. Bagdanov



Introduction Connectionist Models Deep Neural Networks Modular Construction Reflections

Basics

Tensorflow: tf.Session

I Well, that’s fine and all. . . I guess.

I But, how do we actually make it do something?

I In order to execute a computation in Tensorflow, you must do so in a session:

graph2 = tf.Graph()
with graph2.as_default():

x = tf.Variable(1.0, name='x')
result = x**2 + x + 10
dr_dx = tf.gradients([result], [x])

with tf.Session(graph=graph2) as sess:
print(sess.run(result, feed_dict={x: 2.0}))
print(sess.run(dr_dx, feed_dict={x: 2.0}))

16.0
[5.0]
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Basics

Tensorflow: generality at a price

I The graph-based nature of Tensorflow is both a curse and a blessing.

I It is extremely powerful – these simple examples don’t even scratch the surface.

I All operations, for example, can be defined in terms of arbitrary tensors.

import numpy as np
graph2 = tf.Graph()
with graph2.as_default():

# Define an input variable.
x = tf.Variable(np.random.rand(13, 1).astype('float32'), name='x')
# Define our weight matrix and bias.
W = tf.Variable(np.random.rand(13, 1).astype('float32'), name='W')
b = tf.Variable(0.0, name='b')
result = tf.matmul(tf.transpose(W), x) + b
dr_dTheta = tf.gradients([result], [W, b])
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Basics

Tensorflow: generality at a price

with tf.Session(graph=graph2) as sess:
sess.run(tf.global_variables_initializer())
sample = np.random.rand(13, 1)
print(f'Output:\n{sess.run(result, feed_dict={x: sample})}')
print(f'Gradient:\n{sess.run(dr_dTheta, feed_dict={x: sample})}')

Output:
[[3.8426936]]
Gradient:
[array([[0.9956546 ], [0.5471455 ], [0.55688864],

[0.4037869 ], [0.5371017 ], [0.51199615],
[0.22210105], [0.98923653], [0.8349015 ],
[0.11137984], [0.96884817], [0.67522067],
[0.1807481 ]], dtype=float32), 1.0]
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Basics

Tensorflow: the Good News

I The good news is that we don’t have to program at such a low
level all the time.

I There are several high-level frameworks built on top of Tensorflow.
I These frameworks hide the graph-based, meta-programming

complexity of the underlying library.
I One such framework is Keras, which is specifically designed to

support high-level programming for Deep Learning.
I It effectively encapsulates models in a way that makes is easy (well,

easier) to define, train, execute, and test.
I We usually write Keras/Tensorflow to indicate that we are using

Keras with the Tensorflow backlend.
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Sequential Models in Keras

Keras: layer-wise composition
I This is another view of a Multi-layer Perceptron (MLP) for

classification:

I Let’s see how to build a model like this in Keras.
AI&ML: Deep Learning I A. D. Bagdanov
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Sequential Models in Keras

Keras: a catalog of layer types

tf.keras.layers.Dense
I Just your regular densely-connected NN layer:

output = activation(dot(input, kernel) + bias)
where activation is the element-wise activation function
passed as the activation argument, kernel is a weights
matrix created by the layer, and bias is a bias vector created
by the layer (only applicable if use_bias is True).

I We only need to specify the number of outputs and (if it’s the first
layer) number of inputs:

fc1 = tf.keras.Dense(6, input_shape=(4,))
fc2 = tf.keras.Dense(4)
fc3 = tf.keras.Dense(3)
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Sequential Models in Keras

Keras: a catalog of layer types (continued)

keras.layers.Activation
I Apply a function elementwise to its input:

Applies an activation function to an output.

Arguments:
activation: Activation function, such as tf.nn.relu, or
string name of built-in activation function, such as "relu" or
"softmax"

I Let’s use it to create our output layer:

output = tf.keras.Activation('softmax')
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Sequential Models in Keras

Keras: the tf.keras.Sequential model type
I But wait. . . How does fc2 know what it’s input should be? Or even what it’s

input size should be?
I Well, fc1 at least knows it’s input size (if not its input tensor).
I The answer is doesn’t until we compose them together into a model.

import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense, Activation

# Create a Sequential model, add layers in sequence.
model = tf.keras.Sequential()
model.add(Dense(6, input_shape=(4,)))
model.add(Dense(4))
model.add(Dense(3))
model.add(Activation('softmax'))

model.predict(np.array([[1, 2, 3, 4]]))

–> array([[0.00421561, 0.9916352 , 0.00414928]], dtype=float32)
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Model Fitting

Keras: a regression model

I Let’s change our model a little first:

from tensorflow.keras import models, layers

# Define our first model: a simple Ordinary Linear Regression
model = models.Sequential()
model.add(layers.Dense(1, activation='linear', input_shape=(13,)))

I What does this remind you of?
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Model Fitting

Keras: compiling the model

I We have a randomly initialized Ordinary Linear Regression model.
I Now we have to fit the model; first we compile it, specifying the

loss and optimizer.
I In Keras, compiling refers to preparing the model for optimization:

computing the gradient wrt the loss, and adding any graph nodes
needed by the optimizer.

# Compile the model, specifying optimizer and loss.
model.compile(optimizer='adam', loss='mse', metrics=['mae'])

model.compile()
To the documentation!

AI&ML: Deep Learning I A. D. Bagdanov
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Model Fitting

Keras: fitting the model

I Whew, that’s a lot of steps. . .

I Now, given some training data, we can fit the model:

# Fit the model parameters.
history = model.fit(X_train, y_train, validation_split=0.2, epochs=100)

model.fit()
Back to the docs!

AI&ML: Deep Learning I A. D. Bagdanov
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Monitoring Training

Keras: interpreting console spam

I Keras model fitting generates a ton of console spam:

Train on 323 samples, validate on 81 samples
Epoch 1/2000
323/323 [=====] - 0s 248us/sample - loss: 33611.6093 - mean_abso-
lute_error: 175.2687 - val_loss: 32327.7965 - val_mean_absolute_er-
ror: 174.9598

Epoch 2/2000
323/323 [=====] - 0s 62us/sample - loss: 30264.9680 - mean_abso-
lute_error: 165.8515 - val_loss: 29066.1841 - val_mean_absolute_er-
ror: 165.2556
. . .
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Monitoring Training

Keras: Tensorboard

I The history object returned from model.fit() contains a ton of information
about the training process.

I However, a much better way to monitor training is to use Tensorboard.

I We setup a log directory, a Tensorboard callback, and tell Keras to call it while
fitting:

logdir = 'logs/'
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)
history = model.fit(X_train, y_train, validation_split=0.2,

epochs=1000, callbacks=[tensorboard_callback])

# Some magic to make tensorboard work in Jupyter.
%load_ext tensorboard
%tensorboard –logdir logs
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Monitoring Training

Keras: Tensorboard (continued)
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Monitoring Training

Keras: Tensorboard (continued)
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Model Evaluation

Keras: evaluating the final model
I Keras models also have a built-in evaluate method.

I With this we can run the trained model on a test set to obtain the loss on the
test set as well as any registered metrics.

from tensorflow.keras import models, layers

# Define our first model: a simple Ordinary Linear Regression
model = models.Sequential()
model.add(layers.Dense(1, activation='linear', input_shape=[X_train.shape[1]]))

# Compile the model, specifying optimizer and loss.
model.compile(optimizer='adam', loss='mse', metrics=['mae'])

# Fit the model parameters.
history = model.fit(X_train, y_train, validation_split=0.2, epochs=2000)
model.evaluate(X_test, y_test)

–> [31.26155943029067, 4.102251]

AI&ML: Deep Learning I A. D. Bagdanov



Introduction Connectionist Models Deep Neural Networks Modular Construction Reflections

Reflections
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Deep Learning

I Deep models like Multilayer Perceptrons (MLPs) are extremely
flexible function approximators.

I They can be trained to approximate optimal functions by
minimizing a loss over a set of training samples.

I Their composable nature is what makes them deep – you can keep
increasing the power of your approximation by adding layers or by
increasing the width of layers.

I Their power is also their weakness: they can be hard to optimize
and they can easily overfit even large training sets

I Nonetheless, with a little bit of (good) practice they can also be
very effective in the real world.
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Keras/Tensorflow

I Numerical frameworks like Keras make life MUCH easier when
working with Deep Models.

I Their ability to automatically differentiate frees us from the need
to manually computer gradients for optimization.

I They reflect our intuition about models: their APIs are more or less
direct mappings from our modular diagrams of deep modules.

I They also facilitate transparent use of GPU/TPU resources, when
available.

I The exercises we will see today do not benefit hugely from GPUs,
but tomorrow when we look a Convolution Neural Networks, this
will all change.
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First Steps with Keras Lab

I The laboratory notebook for today:

http://bit.ly/DTwin-ML6

AI&ML: Deep Learning I A. D. Bagdanov

http://bit.ly/DTwin-ML6

