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Remaining lectures

» This afternoon: Deep Learning and Keras/Tensorflow.
» Next Thursday: Recurrent Neural Networks (RNNs).
» Next Friday: Convolutional Neural Networks (CNNs) + Final Exam
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Digital assistants

» Deep learning is profoundly changing our lives.

#1. Alexa | #2. Cortana "ol 24, Google Now 3

 (Amazon Edo) (Windows 10 Pione) (iPhone) (Android)
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Natural language processing

» Deep Recurrent Neural Networks (RNNs) are powering the latest
generation of natural language translation technologies.

Source sentence Target sentence
A
r A N\ r A
les pauvres sont démunis the poor dont have any money <END>

<START> the poor don’t have any money

Encoder (RNN) Decoder (RNN)
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Image captioning

» Convolutional Neural Networks (CNNs) are able to extract
high-level semantics from images.

Train
COCO Captions: B0 Classes

Two pug dogs
sitting on a bench
at the beach.

A child is sitting on
a couch and holding
y an umbrella,

Open Images: 600 Classes

]

Goat Artichoke Accordion
3
Dolphin Waffle Balloon

nocaps Val / Test

In-Domain: Only COCO Classes

3 The person in

Ll the brown suit is
directing a dog.

Near-Domain: COCO & Novel Classes
™
A person holding a
black umbrella

and an accordion.

Out-of-Domain: Only Novel Classes
; Some dolphins
are swimming
close to the base
of the ocean.
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Self-driving cars

> CNNs are able to integrate multi-modal inputs and are driving the
latest advances in Automatic Driving Assistance (ADAS) systems.

Riconoscimento
Segnaletica

Controllo adattivo' Parcheggio assistito

velocita di eroeiera

Telecamera a 360°

Awiso di
. Radar lungo raggio (~250 m) superamento corsia

. LIDAR (~150 m)

. Radar corto/medio raggio (~20 m)

. Ultrasuoni (2-4 m)
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Changing times

Reinforcement learning

» Deep Reinforcement Learning is being used to train robots who can
learn from experience and interactions with their environment.

Deep Learning | A. D. Bagdanov



All thanks to. ..

» The humble Neural Network.

» Artificial Neural Networks (ANNs) are extremely simple, yet also
extremely powerful models.

> They are, in fact, universal function approximators.
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Activation
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Neural Networks are not new

> As we will see, neural networks have a storied history.
» Deep Learning, however, is their modern incarnation.

|

> <&

Interest over time

l W pmanAnin, Note
Average Jan 1, 200. Jul1, 2009 Jan1,2015
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Overview

> Today we will see what puts the deep into Deep Learning.

> We will start with an overview of the major historical milestones in
the development of artificial neural networks.

> Then we will look at how modern deep neural networks are actually
built:

» We will see how the basic Multilayer Perceptron (MLP) model
provides a modular architecture for machine learning problems.

> We will see how to fit model parameters in order to minimize a loss
function.

» And we will see how modern tools (e.g. Keras/Tensorflow) makes
it easy to apply Deep Models to new problems.
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Connectionist Models
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What is a Deep Neural Network?

» Deep Neural Networks are a connectionist model.
» Connectionism has deep roots reaching back to Classical Greece.

» To understand this rich inheritance it is useful to go back in time and trace the
roots of modern Deep Models.

» Connectionism arose from the neuroscience and psychological research
communities of the 1940s and 1950s.

» These were the nascent beginning of what would become Cognitive Science.

» Though founded on solid experimental practice, what was lacking was any sort
of computation basis for learning.
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Connectionism: Hebbian Learning

> One of the first concrete learning rules for connectionist models (both artificial

and biological).

» Hebb's Rule: if cell A consistently contributes to the activity of cell B, then the
synapse from A to B should be strengthened.

» More quaintly: neurons that fire together, wire together,; neurons that fire out

of sync, fail to link.

Wij = XX
1
Wi = E X,-pij
P Inputs
Awi = nxy

= 77Xi§ Wi Xi
J

1 O— W1

Post-synaptic
response

T2 O w2 Z Yy

X3 O—— W3
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Connectionism: The Pandemonium Model

P |n 1958 Selfridge proposed a
multi-layer, parallel model of

\ machine learning.
> :

Cognitive The model consists of four layers,
Dermians each inhabited by demons.
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I
][]
|/

[- ]
\_
[-]

X

> Network architecture fixed a priori,
connections updated using
supervised learning.
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Computation » Demons yell upwards, higher-level
ones listen and respond.
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Data or Image . . .
Demons low-worth ones via combination.
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Connectionism: The Perceptron
> The Perceptron is probably the simplest (and most famous) feedforward neural
network.
» The perceptron algorithm was invented by Rosenblatt in 1958.

» |t was designed to be a machine, and its original purpose was to perform image
recognition.

The perceptron algorithm

Input: D = {(x;,y) },-N:1 (training data)
Output: learned weights w
. wo < random initialization
Flx) = 1 |fx>9 e 1
0 otherwise while not converged do
for (x,y) € D do
y = f(wa)
W = we1 +n(y — )X
t—t+1
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Connectionism: The Multilayer Perceptron

P> Let's look at a simple Neural Network architecture known as the Multilayer
Perceptron (MLP):

Input Layer Hidden Layer Output Layer
M neurons N neurons K neurons

vnm

Z3

ZM
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Connectionism: The Multilayer Perceptron
» The MLP equation (one hidden layer):
§(x) = o(wio(wix + br) + b2)
» Except for the activation function o, this is a linear system.

» Common activation functions (elementwise):
» o(x) = tanh(x)
> o(x)=(1+e) !
> o(x) = ef:p—(:x)i (softmax, used for outputs).

10 10

o8

0s
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Connectionism: The Multilayer Perceptron

>
>

How do you train a model?

Decide on a loss function (like the negative log-likelihood):

L(y.3(x)) Zy, log(:)
And perform gradient descent w.r.t. aII model parameters:
0,11 = 0,—¢eVol(y, ¥(x))
N
1 .~
O = O,— EZ 7 VoL (y.9(x))

Where ¢ is the learning rate.

The standard algorithm for this is known as backpropagation and it is very
clever and efficient.
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Connectionism: The Multilayer Perceptron

» Problems with this approach:

» Model size: many, many parameters for even small-sized images. This
leads to memory and efficiency problems.

P Overfitting: many parameters (and limited training data) mean that it is
easy to overfit the model to your training set.

» Undergeneralization: overfitting means that a trained model is unlikely to
generalize to new data.

P Vanishing gradients: a known problem with backpropagation (due to
application of the chain rule) leads to very small gradient values near the
beginning of the network.

P> Saturating units: traditional activation functions can lead to saturated
units (outputs near 1 or 0 (or -1)), which have near-zero derivatives.

» These problems (and others) led the community to largely ignore the potential
of these models for decades.
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Connectionism: from MLP to CNNs

» However, MLPs have a number extremely attractive features:

P |t is an end-to-end model: we can train everything in the model using a
single optimization algorithm.

» MLPs learn representations of input and classifier.

> Why can't we just use this model for image recognition problems?

> An MLP should be able to learn feature representations that are in turn
good representations for classification.

» Why is this model problematic? Especially for images?
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Deep Neural Networks
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Backprop: the basics

» How do you train a model?
» Decide on a loss function (like the mean-squared error):

LD =5 Y (-0
(x.y)eD

» And perform gradient descent w.r.t. all model parameters:

0h1 = 0,—eVeL(D;0)
1
Ont1 = 0,— an D Vely — f(x:0))
(x,y)eD
» Where € is the learning rate.

» The key is the gradient, but how can we easily compute this?

v

Well, high-school analysis gives us the answer: the chain rule.
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Backprop: the basics (continued)

» In this formulation, f(x;8) is our deep neural network
parameterized by 6.

» The MLP equation for one hidden layer is:
§(x) = o(WJ o (W] x +by) + by)

» So, in this case 6 = (W1, b1, W5, by)
» And o is some non-linear activation function.

» Question: why is the non-linear activation function important?
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Backprop: the basics (continued)

» We need to compute this:

Ve(y — f(x;6))?
Vo(y — o(WJo(W] x4 by) + by))?
= 2(y —o(WJo(WIx+b1)+b))Veo (W] o (W] x +b1) + by)

» Now, let’s think about the partial derivatives that will make up this
gradient computation. ..

A. D. Bagdanov



Backprop: In pictures
» Here is a high-level overview of backprop.
> Essence: to compute the gradient wrt a parameter we need the
forward activation AND the backpropagated gradient.
> It's reaIijust the Chain Rule:

=3 forward propagation
OL 0z

8 .
X D22 Obo —>» backpropagation

h _)(_L z, ‘=Y
» Oh 2 H 5

9L _ oL 925 %, HE
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Backprop: problems

» |f the backpropagation algorithm is so "simple", why haven't we been using
neural networks since the 1970s?

» There are a number of problems:

» Saturating units: many activation functions are "flat" in their
extremal values — this results in near zero gradients

» Vanishing gradients: backprop creates a long chain of multiplied
gradients — all of which are typically very small.

» Partial Solution: use non-saturating activation functions:

sigmoid ) RelU

@ == | B =maz(0, 2)
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Backprop: problems (continued)

» Another problem is overparameterization: the (often very) many
parameters in neural networks can lead to easy overfitting.

> Good exercise: count the number of weights in an MLP.

» Partial solution: use regularization to control the magnitude of
weights in the network.

A. D. Bagdanov
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The Backpropagation Algorithn

Backprop: Stochastic Gradient Descent (SGD)

» Problem: what happens if N (the number of training samples) is
very large?

> Well, we end up taking very slow steps — each iteration of gradient
descent is an average over the entire dataset.

P> Solution: approximate the true gradient with the gradient at a
single training example:

Online Stochastic Gradient Descent

» Choose an initial vector of parameters 8 and learning rate 7.
» Repeat until an approximate minimum is found:

1. Randomly shuffle training samples in D.
2. For (x,y) € D:
> 0:=0-nVeL({x,y}:0)

1&ML: Deep Learning | A. D. Bagdanov



Backprop: Stochastic Gradient Descent (continued)

» Another problem: evaluating the gradient on single examples leads
to very noisy steps in parameter space.

» One trick to mitigate this is to use momentum: keep a running
average of gradients that is slowly updated.

» Another solution is to use mini-batches: instead of a single sample,
average the gradients over a small batch of samples.

» [t is common to use a combination of mini-batches and momentum
to stabilize training.

A. D. Bagdanov



Backprop: ADAM
» Even with momentum and mini-batches, SGD can be slow to
converge.

» One remaining problem is that the learning rate 7 is constant for
all model parameters.

> Adam uses estimations of first and second moments of gradient to
adapt the learning rate for each weight of the neural network.

» That is, it adapts to the scale of each network parameter and to
the sensitivity of the loss to each.

Diederik P. Kingma and Jimmy Lei Ba. Adam : A method for stochastic optimization. 2014. arXiv:1412.6980v9
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Backprop: Terminology

» Some useful terminology for deep learning optimization:
» 1 epoch: one complete pass over the data.
» 1 iteration: a single gradient step.
» N: number of training samples.
» B: batch size.

Algorithm iterations per epoch

Batch gradient descent
Stochastic Gradient Descent
Mini-batch Gradient Descent

wz = —
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Modular Construction
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Tensorflow: graph-based, numerical meta-programming

» Tensorflow is a numerical programming framework originally
created by Google.

» It is a comprehensive framework for working with machine learning
in general — and Deep Learning in particular.

» |t has flexible ecosystem of tools, libraries, and community
resources.

» |t provides official APIs for Python and C++.

P |t also provides transparent access to Graphics Processing Unit
(GPU) and Tensor Processing Unit (TPU).

» This means: write once, run pretty much anywhere.

A. D. Bagdanov



Tensorflow: graph-based, numerical meta-programming

» One of Tensorflow's defining features is that it is a
meta-programming environment for numerical programming.

» When you write an expression (e.g. foo = a * b) in Tensorflow,
it does not execute it.

» Rather, it constructs a computation graph that represents the
expressed computation.

» From this representation, we can do things like automatic
differentiation.

> Good news: we never have to compute gradients by hand!

v

Less good news: graph-based programming can be confusing.
> Let’s take a very brief tour.
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Tensorflow: tf.Graph

» Consider the following:

import tensorflow as tf

# Make a new graph.

graph = tf.Graph()

with graph.as_default():
x = tf.constant([1.0, 2.0, 3.0], name='x")
y = tf.constant([4.0, 5.0, 6.0], name='y')
result = tf.multiply(x, y, name='result')

result &
Operation: Mul

reSUIT Attributes (1)
T {"type""DT_FLOAT"}

X D Inputs (2)
y .

y
Outputs (0)

Add to main graph
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Tensorflow: tf.Graph (continued)

» Let's do something a bit more interesting:

graph2 = tf.Graph()

with graph2.as_default():
x = tf.Variable(1.0, name='x"')
result = x**2 + x + 10
dr_dx = tf.gradients([result], [x])

add_1

y O—»¢
add
gradients
o0, EH
‘pow
k3 y O—» 2
/ ,
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Tensorflow: tf.Session

» Well, that's fine and all... | guess.
» But, how do we actually make it do something?

» In order to execute a computation in Tensorflow, you must do so in a session:

graph2 = tf.Graph()

with graph2.as_default():
x = tf.Variable(1.0, name='x")
result = x**2 + x + 10
dr_dx = tf.gradients([result], [x])

with tf.Session(graph=graph2) as sess:
print(sess.run(result, feed_dict={x: 2.0}))
print(sess.run(dr_dx, feed_dict={x: 2.0}))

16.0
[5.0]
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Tensorflow: generality at a price

» The graph-based nature of Tensorflow is both a curse and a blessing.
» |t is extremely powerful — these simple examples don't even scratch the surface.
» All operations, for example, can be defined in terms of arbitrary tensors.

import numpy as np
graph2 = tf.Graph()
with graph2.as_default():
# Define an input variable.
x = tf.Variable(np.random.rand(13, 1).astype('float32'), name='x')
# Define our weight matrix and bias.
W = tf.Variable(np.random.rand(13, 1).astype('float32'), name='W')
b = tf.Variable(0.0, name='b')
result = tf .matmul (tf.transpose(W), x) + b
dr_dTheta = tf.gradients([result], [W, bl)

A. D. Bagdanov



Tensorflow: generality at a price

with tf.Session(graph=graph2) as sess:
sess.run(tf.global_variables_initializer())
sample = np.random.rand(13, 1)
print (f'Output:\n{sess.run(result, feed_dict={x: sample})}')
print(f'Gradient:\n{sess.run(dr_dTheta, feed_dict={x: sample})}')

Output:

[[3.8426936]]

Gradient:

[array([[0.9956546 1, [0.5471455 1, [0.55688864],
[0.4037869 1, [0.5371017 ], [0.51199615],
[0.22210105], [0.98923653], [0.8349015 ],
[0.11137984], [0.96884817], [0.67522067],
[0.1807481 11, dtype=float32), 1.0]
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Tensorflow: the Good News

» The good news is that we don't have to program at such a low
level all the time.

» There are several high-level frameworks built on top of Tensorflow.

» These frameworks hide the graph-based, meta-programming
complexity of the underlying library.

» One such framework is Keras, which is specifically designed to
support high-level programming for Deep Learning.

> |t effectively encapsulates models in a way that makes is easy (well,
easier) to define, train, execute, and test.

» We usually write Keras/Tensorflow to indicate that we are using
Keras with the Tensorflow backlend.

A. D. Bagdanov



Keras: layer-wise composition

» This is another view of a Multi-layer Perceptron (MLP) for
classification:

Input Dense #1 Dense #2 Softmax

> Let's see how to build a model like this in Keras.

A. D. Bagdanov
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Sequential Models in Keras

Keras: a catalog of layer types

tf.keras.layers.Dense

» Just your regular densely-connected NN layer:

output = activation(dot (input, kernel) + bias)
where activation is the element-wise activation function
passed as the activation argument, kermel is a weights
matrix created by the layer, and bias is a bias vector created
by the layer (only applicable if use_bias is True).

» We only need to specify the number of outputs and (if it's the first
layer) number of inputs:

fcl = tf keras.Dense(6, input_shape=(4,))
fc2 = tf . keras.Dense(4)
fc3 = tf.keras.Dense(3)

Al&ML: Deep Learning | A. D. Bagdanov
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ential Models in Keras

Keras: a catalog of layer types (continued)

keras.layers.Activation

> Apply a function elementwise to its input:
Applies an activation function to an output.

Arguments:
activation: Activation function, such as tf.nn.relu, or

string name of built-in activation function, such as "relu" or
"softmax"

> |et's use it to create our output layer:

output = tf.keras.Activation('softmax')

\[&ML: Deep Learning |
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Keras: the tf.keras.Sequential model type

» But wait... How does fc2 know what it's input should be? Or even what it's
input size should be?
> Well, fc1 at least knows it's input size (if not its input tensor).
» The answer is doesn't until we compose them together into a model.
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense, Activation

# Create a Sequential model, add layers in sequence.
model = tf.keras.Sequential()

model.add(Dense (6, input_shape=(4,)))

model . add (Dense(4))

model . add (Dense(3))

model .add (Activation('softmax'))

model.predict(np.array([[1, 2, 3, 4]11))

-> array([[0.00421561, 0.9916352 , 0.00414928]], dtype=float32)
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Keras: a regression model

P> Let's change our model a little first:

from tensorflow.keras import models, layers

# Define our first model: a simple Ordinary Linear Regression

model = models.Sequential()
model .add (layers.Dense(1l, activation='linear', input_shape=(13,)))

» What does this remind you of?

A. D. Bagdanov
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Keras: compiling the model

> We have a randomly initialized Ordinary Linear Regression model.

» Now we have to fit the model; first we compile it, specifying the
loss and optimizer.

» In Keras, compiling refers to preparing the model for optimization:
computing the gradient wrt the loss, and adding any graph nodes
needed by the optimizer.

# Compile the model, specifying optimizer and loss.
model . compile(optimizer="'adam', loss='mse', metrics=['mae'])

model . compile()

To the documentation!

A. D. Bagdanov


https://keras.io/models/sequential/#compile

ntroduction Connectionist Models Deep Neural Networks

Keras: fitting the model

» Whew, that's a lot of steps. ..
» Now, given some training data, we can fit the model:

# Fit the model parameters.
history = model.fit(X_train, y_train, validation_split=0.2, epochs=100)

Back to the docs!

A. D. Bagdanov


https://keras.io/models/sequential/#fit

Keras: interpreting console spam

» Keras model fitting generates a ton of console spam:

Train on 323 samples, validate on 81 samples

Epoch 1/2000

323/323 [=====] - 0s 248us/sample - loss: 33611.6093 - mean_abso-
lute _error: 175.2687 - val loss: 32327.7965 - val _mean _absolute er-
ror: 174.9598

Epoch 2/2000
323/323 [=====] - 0s 62us/sample - loss: 30264.9680 - mean_abso-
lute_error: 165.8515 - val loss: 29066.1841 - val _mean _absolute _er-
ror: 165.2556

A. D. Bagdanov



Keras: Tensorboard

» The history object returned from model.fit () contains a ton of information
about the training process.

» However, a much better way to monitor training is to use Tensorboard.
» We setup a log directory, a Tensorboard callback, and tell Keras to call it while
fitting:
logdir = 'logs/'
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)

history = model.fit(X_train, y_train, validation_split=0.2,
epochs=1000, callbacks=[tensorboard_callback])

# Some magic to make tensorboard work in Jupyter.

%load_ext tensorboard
J%tensorboard -logdir logs

A. D. Bagdanov



Keras: Tensorboard (continued)

epoch_loss

26.1
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Keras: Tensorboard (continued)

epoch_val_loss

L] 100 200 300 400 500 600 700 800 900 1k
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Keras: evaluating the final model

» Keras models also have a built-in evaluate method.

> With this we can run the trained model on a test set to obtain the loss on the
test set as well as any registered metrics.

from tensorflow.keras import models, layers

# Define our first model: a simple Ordinary Linear Regression
model = models.Sequential()
model .add (layers.Dense(1l, activation='linear', input_shape=[X_train.shape[

# Compile the model, specifying optimizer and loss.
model.compile(optimizer="'adam', loss='mse', metrics=['mae'])

# Fit the model parameters.
history = model.fit(X_train, y_train, validation_split=0.2, epochs=2000)
model.evaluate(X_test, y_test)

-> [31.26155943029067, 4.102251]

A. D. Bagdanov
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Deep Learning

» Deep models like Multilayer Perceptrons (MLPs) are extremely
flexible function approximators.

» They can be trained to approximate optimal functions by
minimizing a loss over a set of training samples.

» Their composable nature is what makes them deep — you can keep
increasing the power of your approximation by adding layers or by
increasing the width of layers.

» Their power is also their weakness: they can be hard to optimize
and they can easily overfit even large training sets

» Nonetheless, with a little bit of (good) practice they can also be
very effective in the real world.

A. D. Bagdanov



Keras/ Tensorflow

» Numerical frameworks like Keras make life MUCH easier when
working with Deep Models.

» Their ability to automatically differentiate frees us from the need
to manually computer gradients for optimization.

» They reflect our intuition about models: their APIs are more or less
direct mappings from our modular diagrams of deep modules.

» They also facilitate transparent use of GPU/TPU resources, when
available.

» The exercises we will see today do not benefit hugely from GPUs,
but tomorrow when we look a Convolution Neural Networks, this
will all change.

A. D. Bagdanov



First Steps with Keras Lab

> The laboratory notebook for today:

http://bit.1ly/DTwin-ML6
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