DIGITAL TWIN Al and Machine Learning:
Deep Learning |: Neural Networks

Prof. Andrew D. Bagdanov

andrew.bagdanov AT unifi.it

ok
S
> = 2,
Sz o~ IMmicC
‘J; "J‘i‘) * Media Integration and Communication Center
Y I &S
eI

Dipartimento di Ingegneria dell'Informazione
Universita degli Studi di Firenze

20 November 2020

Outline

Introduction

Connectionist Models
Deep Neural Networks
Modular Construction

Reflections

A. D. Bagdanov

Introduction

A. D. Bagdanov

Remaining lectures

» This afternoon: Deep Learning and Keras/Tensorflow.
» Next Thursday: Recurrent Neural Networks (RNNs).
» Next Friday: Convolutional Neural Networks (CNNs) + Final Exam

A. D. Bagdanov

Digital assistants

» Deep learning is profoundly changing our lives.

#1. Alexa | #2. Cortana "ol 24, Google Now 3

 (Amazon Edo) (Windows 10 Pione) (iPhone) (Android)

A. D. Bagdanov

Natural language processing

» Deep Recurrent Neural Networks (RNNs) are powering the latest
generation of natural language translation technologies.

Source sentence Target sentence
A
r A N\ r A
les pauvres sont démunis the poor dont have any money <END>

<START> the poor don’t have any money

Encoder (RNN) Decoder (RNN)

A. D. Bagdanov

Image captioning

» Convolutional Neural Networks (CNNs) are able to extract
high-level semantics from images.

Train
COCO Captions: B0 Classes

Two pug dogs
sitting on a bench
at the beach.

A child is sitting on
a couch and holding
y an umbrella,

Open Images: 600 Classes

]

Goat Artichoke Accordion
3
Dolphin Waffle Balloon

nocaps Val / Test

In-Domain: Only COCO Classes

3 The person in

Ll the brown suit is
directing a dog.

Near-Domain: COCO & Novel Classes
™
A person holding a
black umbrella

and an accordion.

Out-of-Domain: Only Novel Classes
; Some dolphins
are swimming
close to the base
of the ocean.

A. D. Bagdanov

Self-driving cars

> CNNs are able to integrate multi-modal inputs and are driving the
latest advances in Automatic Driving Assistance (ADAS) systems.

Riconoscimento
Segnaletica

Controllo adattivo' Parcheggio assistito

velocita di eroeiera

Telecamera a 360°

Awiso di
. Radar lungo raggio (~250 m) superamento corsia

. LIDAR (~150 m)

. Radar corto/medio raggio (~20 m)

. Ultrasuoni (2-4 m)

A. D. Bagdanov

Introduction Connectionist Models Deep Neural Ne Modular Construction

Changing times

Reinforcement learning

» Deep Reinforcement Learning is being used to train robots who can
learn from experience and interactions with their environment.

Deep Learning | A. D. Bagdanov

All thanks to. ..

» The humble Neural Network.

» Artificial Neural Networks (ANNs) are extremely simple, yet also
extremely powerful models.

> They are, in fact, universal function approximators.

Inputs Weights

Activation
function

z a
g >

Sum

x

A. D. Bagdanov

Neural Networks are not new

> As we will see, neural networks have a storied history.
» Deep Learning, however, is their modern incarnation.

|

> <&

Interest over time

l W pmanAnin, Note
Average Jan 1, 200. Jul1, 2009 Jan1,2015

A. D. Bagdanov

Overview

> Today we will see what puts the deep into Deep Learning.

> We will start with an overview of the major historical milestones in
the development of artificial neural networks.

> Then we will look at how modern deep neural networks are actually
built:

» We will see how the basic Multilayer Perceptron (MLP) model
provides a modular architecture for machine learning problems.

> We will see how to fit model parameters in order to minimize a loss
function.

» And we will see how modern tools (e.g. Keras/Tensorflow) makes
it easy to apply Deep Models to new problems.

A. D. Bagdanov

Connectionist Models

A. D. Bagdanov

What is a Deep Neural Network?

» Deep Neural Networks are a connectionist model.
» Connectionism has deep roots reaching back to Classical Greece.

» To understand this rich inheritance it is useful to go back in time and trace the
roots of modern Deep Models.

» Connectionism arose from the neuroscience and psychological research
communities of the 1940s and 1950s.

» These were the nascent beginning of what would become Cognitive Science.

» Though founded on solid experimental practice, what was lacking was any sort
of computation basis for learning.

A. D. Bagdanov

Connectionism: Hebbian Learning

> One of the first concrete learning rules for connectionist models (both artificial

and biological).

» Hebb's Rule: if cell A consistently contributes to the activity of cell B, then the
synapse from A to B should be strengthened.

» More quaintly: neurons that fire together, wire together,; neurons that fire out

of sync, fail to link.

Wij = XX
1
Wi = E X,-pij
P Inputs
Awi = nxy

= 77Xi§ Wi Xi
J

1 O— W1

Post-synaptic
response

T2 O w2 Z Yy

X3 O—— W3
Weights

A. D. Bagdanov

Connectionism: The Pandemonium Model

P |n 1958 Selfridge proposed a
multi-layer, parallel model of

\ machine learning.
> :

Cognitive The model consists of four layers,
Dermians each inhabited by demons.

Decision Demon

I
][]
|/

[-]
_
[-]

X

> Network architecture fixed a priori,
connections updated using
supervised learning.

=]
/
.
ﬂ\

Computation » Demons yell upwards, higher-level
ones listen and respond.

I:l\
I:l/

>

: /
|]—

» High-worth demons can replace
Data or Image . . .
Demons low-worth ones via combination.

7
]

[]
[]

A. D. Bagdanov

Connectionism: The Perceptron
> The Perceptron is probably the simplest (and most famous) feedforward neural
network.
» The perceptron algorithm was invented by Rosenblatt in 1958.

» |t was designed to be a machine, and its original purpose was to perform image
recognition.

The perceptron algorithm

Input: D = {(x;,y) },-N:1 (training data)
Output: learned weights w
. wo < random initialization
Flx) = 1 |fx>9 e 1
0 otherwise while not converged do
for (x,y) € D do
y = f(wa)
W = we1 +n(y —)X
t—t+1

A. D. Bagdanov

Connectionism: The Multilayer Perceptron

P> Let's look at a simple Neural Network architecture known as the Multilayer
Perceptron (MLP):

Input Layer Hidden Layer Output Layer
M neurons N neurons K neurons

vnm

Z3

ZM

A. D. Bagdanov

Connectionism: The Multilayer Perceptron
» The MLP equation (one hidden layer):
§(x) = o(wio(wix + br) + b2)
» Except for the activation function o, this is a linear system.

» Common activation functions (elementwise):
» o(x) = tanh(x)
> o(x)=(1+e) !
> o(x) = ef:p—(:x)i (softmax, used for outputs).

10 10

o8

0s

A. D. Bagdanov

Connectionism: The Multilayer Perceptron

>
>

How do you train a model?

Decide on a loss function (like the negative log-likelihood):

L(y.3(x)) Zy, log(:)
And perform gradient descent w.r.t. aII model parameters:
0,11 = 0,—¢eVol(y, ¥(x))
N
1 .~
O = O,— EZ 7 VoL (y.9(x))

Where ¢ is the learning rate.

The standard algorithm for this is known as backpropagation and it is very
clever and efficient.

A. D. Bagdanov

Connectionism: The Multilayer Perceptron

» Problems with this approach:

» Model size: many, many parameters for even small-sized images. This
leads to memory and efficiency problems.

P Overfitting: many parameters (and limited training data) mean that it is
easy to overfit the model to your training set.

» Undergeneralization: overfitting means that a trained model is unlikely to
generalize to new data.

P Vanishing gradients: a known problem with backpropagation (due to
application of the chain rule) leads to very small gradient values near the
beginning of the network.

P> Saturating units: traditional activation functions can lead to saturated
units (outputs near 1 or 0 (or -1)), which have near-zero derivatives.

» These problems (and others) led the community to largely ignore the potential
of these models for decades.

A. D. Bagdanov

Connectionism: from MLP to CNNs

» However, MLPs have a number extremely attractive features:

P |t is an end-to-end model: we can train everything in the model using a
single optimization algorithm.

» MLPs learn representations of input and classifier.

> Why can't we just use this model for image recognition problems?

> An MLP should be able to learn feature representations that are in turn
good representations for classification.

» Why is this model problematic? Especially for images?

A. D. Bagdanov

Deep Neural Networks

A. D. Bagdanov

Backprop: the basics

» How do you train a model?
» Decide on a loss function (like the mean-squared error):

LD =5 Y (-0
(x.y)eD

» And perform gradient descent w.r.t. all model parameters:

0h1 = 0,—eVeL(D;0)
1
Ont1 = 0,— an D Vely — f(x:0))
(x,y)eD
» Where € is the learning rate.

» The key is the gradient, but how can we easily compute this?

v

Well, high-school analysis gives us the answer: the chain rule.

A. D. Bagdanov

Backprop: the basics (continued)

» In this formulation, f(x;8) is our deep neural network
parameterized by 6.

» The MLP equation for one hidden layer is:
§(x) = o(WJ o (W] x +by) + by)

» So, in this case 6 = (W1, b1, W5, by)
» And o is some non-linear activation function.

» Question: why is the non-linear activation function important?

A. D. Bagdanov

Backprop: the basics (continued)

» We need to compute this:

Ve(y — f(x;6))?
Vo(y — o(WJo(W] x4 by) + by))?
= 2(y —o(WJo(WIx+b1)+b))Veo (W] o (W] x +b1) + by)

» Now, let’s think about the partial derivatives that will make up this
gradient computation. ..

A. D. Bagdanov

Backprop: In pictures
» Here is a high-level overview of backprop.
> Essence: to compute the gradient wrt a parameter we need the
forward activation AND the backpropagated gradient.
> It's reaIijust the Chain Rule:

=3 forward propagation
OL 0z

8 .
X D22 Obo —>» backpropagation

h _)(_L z, ‘=Y
» Oh 2 H 5

9L _ oL 925 %, HE

Oh ~ Ozz Oh N, 9z, B Ozo

., = o
., O *
w:e o
., 2 o

4 OL Oza

w =

2 Ows Dzg Ows

A. D. Bagdanov

Backprop: problems

» |f the backpropagation algorithm is so "simple", why haven't we been using
neural networks since the 1970s?

» There are a number of problems:

» Saturating units: many activation functions are "flat" in their
extremal values — this results in near zero gradients

» Vanishing gradients: backprop creates a long chain of multiplied
gradients — all of which are typically very small.

» Partial Solution: use non-saturating activation functions:

sigmoid) RelU

@ == | B =maz(0, 2)

A. D. Bagdanov

Backprop: problems (continued)

» Another problem is overparameterization: the (often very) many
parameters in neural networks can lead to easy overfitting.

> Good exercise: count the number of weights in an MLP.

» Partial solution: use regularization to control the magnitude of
weights in the network.

A. D. Bagdanov

Introduction Connectionist Models Deep Neural Networks Modular Construction Reflections

The Backpropagation Algorithn

Backprop: Stochastic Gradient Descent (SGD)

» Problem: what happens if N (the number of training samples) is
very large?

> Well, we end up taking very slow steps — each iteration of gradient
descent is an average over the entire dataset.

P> Solution: approximate the true gradient with the gradient at a
single training example:

Online Stochastic Gradient Descent

» Choose an initial vector of parameters 8 and learning rate 7.
» Repeat until an approximate minimum is found:

1. Randomly shuffle training samples in D.
2. For (x,y) € D:
> 0:=0-nVeL({x,y}:0)

1&ML: Deep Learning | A. D. Bagdanov

Backprop: Stochastic Gradient Descent (continued)

» Another problem: evaluating the gradient on single examples leads
to very noisy steps in parameter space.

» One trick to mitigate this is to use momentum: keep a running
average of gradients that is slowly updated.

» Another solution is to use mini-batches: instead of a single sample,
average the gradients over a small batch of samples.

» [t is common to use a combination of mini-batches and momentum
to stabilize training.

A. D. Bagdanov

Backprop: ADAM
» Even with momentum and mini-batches, SGD can be slow to
converge.

» One remaining problem is that the learning rate 7 is constant for
all model parameters.

> Adam uses estimations of first and second moments of gradient to
adapt the learning rate for each weight of the neural network.

» That is, it adapts to the scale of each network parameter and to
the sensitivity of the loss to each.

Diederik P. Kingma and Jimmy Lei Ba. Adam : A method for stochastic optimization. 2014. arXiv:1412.6980v9

A. D. Bagdanov

Backprop: Terminology

» Some useful terminology for deep learning optimization:
» 1 epoch: one complete pass over the data.
» 1 iteration: a single gradient step.
» N: number of training samples.
» B: batch size.

Algorithm iterations per epoch

Batch gradient descent
Stochastic Gradient Descent
Mini-batch Gradient Descent

wz = —

A. D. Bagdanov

Modular Construction

A. D. Bagdanov

Tensorflow: graph-based, numerical meta-programming

» Tensorflow is a numerical programming framework originally
created by Google.

» It is a comprehensive framework for working with machine learning
in general — and Deep Learning in particular.

» |t has flexible ecosystem of tools, libraries, and community
resources.

» |t provides official APIs for Python and C++.

P |t also provides transparent access to Graphics Processing Unit
(GPU) and Tensor Processing Unit (TPU).

» This means: write once, run pretty much anywhere.

A. D. Bagdanov

Tensorflow: graph-based, numerical meta-programming

» One of Tensorflow's defining features is that it is a
meta-programming environment for numerical programming.

» When you write an expression (e.g. foo = a * b) in Tensorflow,
it does not execute it.

» Rather, it constructs a computation graph that represents the
expressed computation.

» From this representation, we can do things like automatic
differentiation.

> Good news: we never have to compute gradients by hand!

v

Less good news: graph-based programming can be confusing.
> Let’s take a very brief tour.

A. D. Bagdanov

Tensorflow: tf.Graph

» Consider the following:

import tensorflow as tf

Make a new graph.

graph = tf.Graph()

with graph.as_default():
x = tf.constant([1.0, 2.0, 3.0], name='x")
y = tf.constant([4.0, 5.0, 6.0], name='y')
result = tf.multiply(x, y, name='result')

result &
Operation: Mul

reSUIT Attributes (1)
T {"type""DT_FLOAT"}

X D Inputs (2)
y .

y
Outputs (0)

Add to main graph

A. D. Bagdanov

Tensorflow: tf.Graph (continued)

» Let's do something a bit more interesting:

graph2 = tf.Graph()

with graph2.as_default():
x = tf.Variable(1.0, name='x"')
result = x**2 + x + 10
dr_dx = tf.gradients([result], [x])

add_1

y O—»¢
add
gradients
o0, EH
‘pow
k3 y O—» 2
/ ,

A. D. Bagdanov

Tensorflow: tf.Session

» Well, that's fine and all... | guess.
» But, how do we actually make it do something?

» In order to execute a computation in Tensorflow, you must do so in a session:

graph2 = tf.Graph()

with graph2.as_default():
x = tf.Variable(1.0, name='x")
result = x**2 + x + 10
dr_dx = tf.gradients([result], [x])

with tf.Session(graph=graph2) as sess:
print(sess.run(result, feed_dict={x: 2.0}))
print(sess.run(dr_dx, feed_dict={x: 2.0}))

16.0
[5.0]

A. D. Bagdanov

Tensorflow: generality at a price

» The graph-based nature of Tensorflow is both a curse and a blessing.
» |t is extremely powerful — these simple examples don't even scratch the surface.
» All operations, for example, can be defined in terms of arbitrary tensors.

import numpy as np
graph2 = tf.Graph()
with graph2.as_default():
Define an input variable.
x = tf.Variable(np.random.rand(13, 1).astype('float32'), name='x')
Define our weight matrix and bias.
W = tf.Variable(np.random.rand(13, 1).astype('float32'), name='W')
b = tf.Variable(0.0, name='b')
result = tf .matmul (tf.transpose(W), x) + b
dr_dTheta = tf.gradients([result], [W, bl)

A. D. Bagdanov

Tensorflow: generality at a price

with tf.Session(graph=graph2) as sess:
sess.run(tf.global_variables_initializer())
sample = np.random.rand(13, 1)
print (f'Output:\n{sess.run(result, feed_dict={x: sample})}')
print(f'Gradient:\n{sess.run(dr_dTheta, feed_dict={x: sample})}')

Output:

[[3.8426936]]

Gradient:

[array([[0.9956546 1, [0.5471455 1, [0.55688864],
[0.4037869 1, [0.5371017], [0.51199615],
[0.22210105], [0.98923653], [0.8349015],
[0.11137984], [0.96884817], [0.67522067],
[0.1807481 11, dtype=float32), 1.0]

A. D. Bagdanov

Tensorflow: the Good News

» The good news is that we don't have to program at such a low
level all the time.

» There are several high-level frameworks built on top of Tensorflow.

» These frameworks hide the graph-based, meta-programming
complexity of the underlying library.

» One such framework is Keras, which is specifically designed to
support high-level programming for Deep Learning.

> |t effectively encapsulates models in a way that makes is easy (well,
easier) to define, train, execute, and test.

» We usually write Keras/Tensorflow to indicate that we are using
Keras with the Tensorflow backlend.

A. D. Bagdanov

Keras: layer-wise composition

» This is another view of a Multi-layer Perceptron (MLP) for
classification:

Input Dense #1 Dense #2 Softmax

> Let's see how to build a model like this in Keras.

A. D. Bagdanov

Introduction Connectionist Models Deep Neural Networks Modular Construction

Sequential Models in Keras

Keras: a catalog of layer types

tf.keras.layers.Dense

» Just your regular densely-connected NN layer:

output = activation(dot (input, kernel) + bias)
where activation is the element-wise activation function
passed as the activation argument, kermel is a weights
matrix created by the layer, and bias is a bias vector created
by the layer (only applicable if use_bias is True).

» We only need to specify the number of outputs and (if it's the first
layer) number of inputs:

fcl = tf keras.Dense(6, input_shape=(4,))
fc2 = tf . keras.Dense(4)
fc3 = tf.keras.Dense(3)

Al&ML: Deep Learning | A. D. Bagdanov

Connectionist Models Deep Neural Networks Modular Construction Reflections

ential Models in Keras

Keras: a catalog of layer types (continued)

keras.layers.Activation

> Apply a function elementwise to its input:
Applies an activation function to an output.

Arguments:
activation: Activation function, such as tf.nn.relu, or

string name of built-in activation function, such as "relu" or
"softmax"

> |et's use it to create our output layer:

output = tf.keras.Activation('softmax')

\[&ML: Deep Learning |

A. D. Bagdanov

Keras: the tf.keras.Sequential model type

» But wait... How does fc2 know what it's input should be? Or even what it's
input size should be?
> Well, fc1 at least knows it's input size (if not its input tensor).
» The answer is doesn't until we compose them together into a model.
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import Dense, Activation

Create a Sequential model, add layers in sequence.
model = tf.keras.Sequential()

model.add(Dense (6, input_shape=(4,)))

model . add (Dense(4))

model . add (Dense(3))

model .add (Activation('softmax'))

model.predict(np.array([[1, 2, 3, 4]11))

-> array([[0.00421561, 0.9916352 , 0.00414928]], dtype=float32)

A. D. Bagdanov

Keras: a regression model

P> Let's change our model a little first:

from tensorflow.keras import models, layers

Define our first model: a simple Ordinary Linear Regression

model = models.Sequential()
model .add (layers.Dense(1l, activation='linear', input_shape=(13,)))

» What does this remind you of?

A. D. Bagdanov

Introduction Connectionist Models Deep Neural Networks Reflections

Keras: compiling the model

> We have a randomly initialized Ordinary Linear Regression model.

» Now we have to fit the model; first we compile it, specifying the
loss and optimizer.

» In Keras, compiling refers to preparing the model for optimization:
computing the gradient wrt the loss, and adding any graph nodes
needed by the optimizer.

Compile the model, specifying optimizer and loss.
model . compile(optimizer="'adam', loss='mse', metrics=['mae'])

model . compile()

To the documentation!

A. D. Bagdanov

https://keras.io/models/sequential/#compile

ntroduction Connectionist Models Deep Neural Networks

Keras: fitting the model

» Whew, that's a lot of steps. ..
» Now, given some training data, we can fit the model:

Fit the model parameters.
history = model.fit(X_train, y_train, validation_split=0.2, epochs=100)

Back to the docs!

A. D. Bagdanov

https://keras.io/models/sequential/#fit

Keras: interpreting console spam

» Keras model fitting generates a ton of console spam:

Train on 323 samples, validate on 81 samples

Epoch 1/2000

323/323 [=====] - 0s 248us/sample - loss: 33611.6093 - mean_abso-
lute _error: 175.2687 - val loss: 32327.7965 - val _mean _absolute er-
ror: 174.9598

Epoch 2/2000
323/323 [=====] - 0s 62us/sample - loss: 30264.9680 - mean_abso-
lute_error: 165.8515 - val loss: 29066.1841 - val _mean _absolute _er-
ror: 165.2556

A. D. Bagdanov

Keras: Tensorboard

» The history object returned from model.fit () contains a ton of information
about the training process.

» However, a much better way to monitor training is to use Tensorboard.
» We setup a log directory, a Tensorboard callback, and tell Keras to call it while
fitting:
logdir = 'logs/'
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)

history = model.fit(X_train, y_train, validation_split=0.2,
epochs=1000, callbacks=[tensorboard_callback])

Some magic to make tensorboard work in Jupyter.

%load_ext tensorboard
J%tensorboard -logdir logs

A. D. Bagdanov

Keras: Tensorboard (continued)

epoch_loss

26.1

26
259
258
257
25.6
255
254
253
25.2

251

25

0 100 200 300 400 500 600 700 800 900 1k

A. D. Bagdanov

Keras: Tensorboard (continued)

epoch_val_loss

L] 100 200 300 400 500 600 700 800 900 1k

A. D. Bagdanov

Keras: evaluating the final model

» Keras models also have a built-in evaluate method.

> With this we can run the trained model on a test set to obtain the loss on the
test set as well as any registered metrics.

from tensorflow.keras import models, layers

Define our first model: a simple Ordinary Linear Regression
model = models.Sequential()
model .add (layers.Dense(1l, activation='linear', input_shape=[X_train.shape[

Compile the model, specifying optimizer and loss.
model.compile(optimizer="'adam', loss='mse', metrics=['mae'])

Fit the model parameters.
history = model.fit(X_train, y_train, validation_split=0.2, epochs=2000)
model.evaluate(X_test, y_test)

-> [31.26155943029067, 4.102251]

A. D. Bagdanov

Reflections

A. D. Bagdanov

Deep Learning

» Deep models like Multilayer Perceptrons (MLPs) are extremely
flexible function approximators.

» They can be trained to approximate optimal functions by
minimizing a loss over a set of training samples.

» Their composable nature is what makes them deep — you can keep
increasing the power of your approximation by adding layers or by
increasing the width of layers.

» Their power is also their weakness: they can be hard to optimize
and they can easily overfit even large training sets

» Nonetheless, with a little bit of (good) practice they can also be
very effective in the real world.

A. D. Bagdanov

Keras/ Tensorflow

» Numerical frameworks like Keras make life MUCH easier when
working with Deep Models.

» Their ability to automatically differentiate frees us from the need
to manually computer gradients for optimization.

» They reflect our intuition about models: their APIs are more or less
direct mappings from our modular diagrams of deep modules.

» They also facilitate transparent use of GPU/TPU resources, when
available.

» The exercises we will see today do not benefit hugely from GPUs,
but tomorrow when we look a Convolution Neural Networks, this
will all change.

A. D. Bagdanov

First Steps with Keras Lab

> The laboratory notebook for today:

http://bit.1ly/DTwin-ML6

http://bit.ly/DTwin-ML6

