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Visual recognition: Marr’s Vision
I The 3D Model is an object-centric representation of 3D objects in the image.

I The goal of this model is to enable object manipulation and recognition.

Vision: A computational investigation into the human representation and processing of visual information
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Visual recognition: implicit models

I Let’s consider a more-or-less Standard setup of supervised learning for visual
classification.

I We can imagine a simple pipeline like below.

I Each stage has it’s own design space and critical choices to be made.

I This appeals to the computer scientist in us since we are effectively dividing,
modularizing, and (hopefully) conquering.

Images Features Classifier
Class
Scores
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Visual recognition: why is this hard?
I A paper appeared in 2000 that summarized the state-of-the-art in visual

recognition [Smeulders et al., 2000].

I It introduced sensory gap into the conversation on visual recognition:

The sensory gap is the gap between the object in the world and the information in a
(computational) description derived from a recording of that scene.

I Think about this for a moment: we are always working with an imperfect
reconstruction of the real world.

I Images have limitations: they have finite resolution, they are subject to noise
processes, they are acquired with a sensor which is another free object in the
world.

I This sensory gap must be surpassed in order to render object recognition
invariant to scene-incidental artifacts.

Content-based image retrieval at the end of the early years
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The semantic gap

I The other key concept is the semantic gap:

The semantic gap is the lack of coincidence between the information that one can
extract from the visual data and the interpretation that the same data have for a
user in a given situation.
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Historical context: Bags of Features

I This was the state-of-the-art in 2011:
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Historical context: This was a "cat"
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Historical context: Now "learn"
I To each image representation was associated one (or more) labels.

I Then we feed these into a multi-class SVM.

I Which ran for a while. . . (for some predictable value of "a while").
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Historical context: A recipe

I Then returned the optimal decision boundaries between all classes (and all the
others).

I The process is important:

1. First: extract a handcrafted representation of fiducial points.
2. Then: encode these into a global image representation.
3. Then: fit an SVM (with or without kernel).

I Pro: the actual learning has few hyperparameters (usually just one).

I Con: many handcrafted elements with many (basically infinitely many)
hyperparameters.

I Con: learning is separate from representation.
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Connectionism: The New School

Connectionism: The Multilayer Perceptron
I Let’s look at a simple Neural Network architecture known as the Multilayer

Perceptron (MLP):
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Connectionism: The New School

Connectionism: The Multilayer Perceptron
I The MLP equation (one hidden layer):

ŷ(x) = σ(wT2 σ(w
T
1 x+ b1) + b2)

I Except for the activation function σ, this is a linear system.

I Common activation functions (elementwise):
I σ(x) = tanh(x)
I σ(x) = (1 + e−x)−1

I σ(x) = exp(x)∑
i
exi

(softmax, used for outputs).
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Connectionism: The New School

Connectionism: The Multilayer Perceptron

I How do you train a model?

I Decide on a loss function (like the negative log-likelihood):

L(y, ŷ(x)) = − 1
C

∑
i

yi log(ŷi)

I And perform gradient descent w.r.t. all model parameters:

θθθn+1 = θθθn − ε∇θθθL(y, ŷ(x))

θθθn+1 = θθθn − ε
N∑
i=1

1

N
∇θθθL(y, ŷ(xi))

I Where ε is the learning rate.

I The standard algorithm for this is known as backpropagation and it is very
clever and efficient.

AI&ML: Deep Learning II A. D. Bagdanov



A Critique Foundations A Tour Discussion References

Connectionism: The New School

Connectionism: The Multilayer Perceptron

I Problems with this approach:

I Model size: many, many parameters for even small-sized images. This
leads to memory and efficiency problems.

I Overfitting: many parameters (and limited training data) mean that it is
easy to overfit the model to your training set.

I Undergeneralization: overfitting means that a trained model is unlikely to
generalize to new data.

I Vanishing gradients: a known problem with backpropagation (due to
application of the chain rule) leads to very small gradient values near the
beginning of the network.

I Saturating units: traditional activation functions can lead to saturated
units (outputs near 1 or 0 (or -1)), which have near-zero derivatives.

I These problems (and others) led the community to largely ignore the potential
of these models for decades.
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Connectionism: The New School

Connectionism: from MLP to CNNs

I However, MLPs have a number extremely attractive features:

I It is an end-to-end model: we can train everything in the model using a
single optimization algorithm.

I MLPs learn representations of input and classifier.
I Why can’t we just use this model for image recognition problems?
I An MLP should be able to learn feature representations that are in turn

good representations for classification.
I Why is this problematic?
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Connectionism: The New School

Connectionism: from MLP to CNNs
I The early layers of a CNN are convolutional (surprise surprise).
I This means that the weights are shared across locations of the image.
I The input of size w × h × d is transformed into an output of size w × h × d ′.
I The outputs are called feature maps and they are derived by convolving the

image with a 3D tensor of size u × v × d ′.
I So, the number of parameters is “merely” u ∗ v ∗ d ′ + d ′.
I The output feature maps can be very large however.
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Connectionism: The New School

Connectionism: from MLP to CNNs
I What’s the link to MLPs?

Figure from: https://github.com/leonardoaraujosantos
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AlexNet: The Shot Heard ’round the World

AlexNet: Introduction
I We will now take a look at the International Large Scale Visual Recognition

Competition (ILSVRC) submission that changed everything [Krizhevsky et al.,
2012].

I This architecture systematically addresses most of the problems with training
large network architectures on large datasets.

I It is a Convolutional Neural Network (CNN) that is universally called AlexNet.

I It is also a Deep Network because it has many hidden layers.

ImageNet Classification with Deep Convolutional Neural Networks
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AlexNet: The Shot Heard ’round the World

AlexNet: The Architecture
I Let’s look first at the overall architecture and then analyze in detail how each

component addresses specific problems.
I It is also helpful to examine how data flows through the network.

ImageNet Classification with Deep Convolutional Neural Networks
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AlexNet: The Shot Heard ’round the World

AlexNet: Pooling Features
I Like in the Bag-of-Words model, we can pool local features.

I AlexNet uses 3× 3 pooling regions with a stride of 2 pixels.

I This means that after some convolutional layers the feature map size is reduced
by a factor of 2.

I They use max pooling: in each feature map, keep the maximum value in each
overlapping 3× 3 pooling region (in each feature map).

I This helps to contain the size of feature maps propagated through the network.

I And it also helps to build higher-level representations of the image.

I This is because, halving the image resolution is the same as doubling the size of
subsequent convolutions.

ImageNet Classification with Deep Convolutional Neural Networks
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AlexNet: The Shot Heard ’round the World

AlexNet: Unit Saturation
I Another innovation in AlexNet is the use of the Rectified Linear Unit (ReLU)

activation function.
σ(x) = max(0, x)

I This activation function does not saturate like sigmoids.
I The result is a 6x speedup in training.

ImageNet Classification with Deep Convolutional Neural Networks
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AlexNet: The Shot Heard ’round the World

AlexNet: Reducing Overfitting
I Even with convolutional weight sharing, AlexNet still has 60M parameters.

I To reduce overfitting, the authors use two extra (now standard) tricks:

I Data augmentation: random translations and reflections of input
images are generated, plus random variation in principal directions of
RGB space.

I Dropout: an advanced trick from the Neural Network community
which randomly removes half of the inputs to select layers at
training time.

ImageNet Classification with Deep Convolutional Neural Networks
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AlexNet: The Shot Heard ’round the World

AlexNet: More Tricks
I The AlexNet paper is an excellent resource because it explains all of the tricks

necessary to get a deep network to learn:

I Local response normalization: keep local variation in feature maps
under control (section 3.3).

I Momentum: limits the “skateboard” effect when following valleys in
the loss surface, equivalent to L1 (or L2) regularization of weights
(section 5).

I Mini-batch Stochastic Gradient Descent (SGD): with 1.2M training
samples, we cannot consider the entire dataset in one batch;
instead, randomly sample mini-batches of 128 images (section 5).

I Multiple GPUs: AlexNet was too big to fit in a single GPU (in
2012), so feature maps are split over two GPUs (section 3.2).

I Model averaging: state-of-the-art results are obtained by training
multiple CNNs and averaging outputs.

ImageNet Classification with Deep Convolutional Neural Networks
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AlexNet: The Shot Heard ’round the World

AlexNet: Results
I The proof is in the pudding:

I And in the representations the network learns:

ImageNet Classification with Deep Convolutional Neural Networks
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AlexNet: The Shot Heard ’round the World

AlexNet: Reflections

I AlexNet took the object recognition world by storm.

I Many of the elements of the model are not really new.

I However, this was the first work to convincingly demonstrate how
state-of-the-art object recognition systems can be trained end-to-end on real
problems.

I This was made possible by a number of confluent development:

I The availability of enormous amounts of annotate data (ImageNet,
with 1.2M training images).

I Modern GPUs, which make convolutions super fast.
I Decades of persistent theoretical development (ReLUs, fast

backprop, dropout, etc).
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AlexNet: The Shot Heard ’round the World

Reflections: CNNs are really big
I One of the first observations one can make about CNNs is that they have a

HUGE number of parameters.

I Even modestly-sized, state-of-the-art networks can have on the order of 150
million trainable parameters.

I Fitting such models of course requires massive amounts of labeled training data.
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Deep Residual Networks: Deeper and deeper

ResNets: Introduction
I From what we have seen so far, it seems like deeper networks generalize better.

I So, can we just keep stacking more and more layers onto the end of our CNNs?

I Aside from the computational complications (GPU memory is finite), this
seems like it should "just work".

I We will now look at our last state-of-the-art network architecture (known as
ResNet) which looks at this question in detail [He et al., 2016].

Deep residual learning for image recognition
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Deep Residual Networks: Deeper and deeper

ResNets: Deeper isn’t better?
I Pre-ResNet Thinking: Deeper networks should always perform

better – at least on the training data.

Deep residual learning for image recognition
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Deep Residual Networks: Deeper and deeper

ResNets: Wait, shouldn’t training error be lower?

I Using an artificial construction, we see that
the training error at least shouldn’t increase
with depth.

I Just copy pre-trained weights from plain
network into a deeper network with new,
randomly initialized weights.

Deep residual learning for image recognition
AI&ML: Deep Learning II A. D. Bagdanov
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Deep Residual Networks: Deeper and deeper

ResNets: Targets and Residuals
I Let’s say that the network is learning towards some optimal feature

representation H(x).

I The compositional and feed-forward nature of the CNN isn’t really helping.

I Instead, we can help the network out by not requiring it to pass through as
much information.

I Pass x forward and add it to the output of the residual block – now we "only"
need to learn H(x)− x .

Deep residual learning for image recognition
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Deep Residual Networks: Deeper and deeper

ResNets: Comparison
I Here is a comparison of VGG19 and ResNet-34:

Deep residual learning for image recognition
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Deep Residual Networks: Deeper and deeper

ResNets: Parametric Modularity

I And this is a common way of parametrically representing the various ResNet
configurations:
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Deep Residual Networks: Deeper and deeper

ResNets: Results

Deep residual learning for image recognition
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Deep Residual Networks: Deeper and deeper

ResNet: Results

I And the proof, as always, is in the pudding:
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CNNs: Tricks of the Trade

CNNs: How do you train CNNs?

I CNNs work great, but it’s not always sunshine and lollipops trying to get them
to work.

I The community has developed a number of tricks, techniques, and heuristics
that are proven to help.

I Let’s look at a few of them.
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CNNs: Tricks of the Trade

CNNs: Batch Normalization
I Attention to the data distribution (through the whole network) and

normalization are critical [Ioffe and Szegedy, 2015]:

Batch normalization: Accelerating deep network training by reducing internal covariate shift
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CNNs: Tricks of the Trade

CNNs: Dropout

With unlimited computation, the best way to "regularize" a fixed-sized
model is to average the predictions of all possible settings of the parameters,
weighting each setting by its posterior probability given the training data.
– Srivastava et al. [2014]

Dropout: A Simple Way to Prevent Neural Networks from Overfitting
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CNNs: Tricks of the Trade

CNNs: What’s Going On?

I Remember earlier I mentioned that one of the biases against using neural
networks was that lack of interpretability.

I As soon as the spectacular results of CNNs on object recognition started
coming in, researchers began inventing new ways to interpret the innards of
these huge networks.

I Nowadays there are many tools and tricks you can use to understand what the
network has learned.
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CNNs: Tricks of the Trade

CNNs: What’s Going On
I An early work looked at just this problem and the paper has a ton of interesting

analysis of how these networks work [Zeiler and Fergus, 2014].

I I am only going to talk about how visualizations of feature map activations
demonstrate what’s going on.

Visualizing and understanding convolutional networks
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CNNs: Tricks of the Trade

CNNs: What’s Going On
I As we go deeper into the network, feature activations correspond to higher-level

semantics.

Visualizing and understanding convolutional networks
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CNNs: Tricks of the Trade

CNNs: What’s Going On
I Until the network is really indicating the presence of "eyes" and "cat faces",

etc.

Visualizing and understanding convolutional networks
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CNNs: Tricks of the Trade

CNNs: What’s Going On

I The Grad-CAM is an intuitive way to visualize, well, what makes a cow, a cow
[Selvaraju et al., 2017]:
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Discussion
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Discussion: The burden of supervision
I What is 1.5M annotations really worth [Zhang et al., 2016]?

I If labels are equally probable, a randomly shuffled set of ImageNet labels
contains about 1.5M ∗ log2(1000) ≈ 15Mbits.

Understanding deep learning requires rethinking generalization
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Discussion: The state-of-the-art
I We have come a long way in a few years.

Figure from: [Canziani et al., 2016]
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Discussion: CNNs and the way forward
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Laboratory

I The laboratory notebook for today:

http://bit.ly/DTwin-ML8
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