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Annotation and large-scale training are expensive

Annotating images is expensive, laborious, and noisy
I Commercial rates for image annotation are about USD 0.08 per annotation.

I Let’s do some napkin calculations. . .

Large-scale training is expensive and time-consuming
I Even with massive amounts of labeled data, training a state-of-the-art

architecture can take weeks.

I For one training run. If you’re optimizing hyperparameters for a complex model,
even longer.

I Some of this can be parallelized, but then you have GPU and energy costs to
factor in.

AI&ML: Deep Learning II A. D. Bagdanov



Overview Transfer and self-supervised learning Few-shot learning Zero-shot learning Discussion References

Model adaptation

I As usual, there is no silver bullet for these issues.

I However, we can at least mitigate somewhat via:

I Transfer learning: can we exploit learned representations to derive
solutions to new problems?

I Self-supervised learning: can we mitigate the labeling burden via derived
proxy tasks?

I Few-shot learning: what if available training data is extremely limited?
I Meta-learning: can we learn how to learn new visual recognition tasks?
I Zero-shot learning: what if I have zero examples of some training classes?
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Transfer and self-supervised learning
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Transfer learning

TL: Work and reuse
I If we look at a state-of-the-art CNN, let’s ask ourselves:

I What are we investing in when training?
I Where are the features in the network?
I What, if anything, can be reused?
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Transfer learning

TL: The basic idea

I TL;DR: why on earth start from scratch?
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Transfer learning

TL: Back to basics
I Trained CNNs are feature extractors [Sharif Razavian et al., 2014]:

CNN features off-the-shelf: an astounding baseline for recognition
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Transfer learning

TL: Fine-grained recognition
I Not all recognition problems are created equal.

I Fine-grained recognition should require different features.

CNN features off-the-shelf: an astounding baseline for recognition
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Transfer learning

TL: Instance recognition
I Instance recognition, kind of a limit of fine-grained:

CNN features off-the-shelf: an astounding baseline for recognition
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Transfer learning

TL: Instance recognition
I Instance recognition, kind of a limit of fine-grained:

CNN features off-the-shelf: an astounding baseline for recognition
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Transfer learning

TL: All the devilish details
I The VGG group has an excellent and thorough exploration of transfer learning

(and not only) in CNNs [Chatfield et al., 2014].

Return of the devil in the details: Delving deep into convolutional nets
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Transfer learning

TL: All the devilish details
I Comparison with the state-of-the-art:

Return of the devil in the details: Delving deep into convolutional nets
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Transfer learning

TL: Not just recognition
I Transfer learning can be applied to almost any visual recognition or estimation

task.

I This includes object detection [Ren et al., 2015], semantic segmentation [Long
et al., 2015], crowd counting [Liu et al., 2018], you name it.

Deep residual learning for image recognition
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Self-supervised learning

CNNs are really big

Figure from: [Canziani et al., 2016]AI&ML: Deep Learning II A. D. Bagdanov
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Self-supervised learning

CNNs are really big
I One of the first observations one can make about CNNs is that they have a

HUGE number of parameters.

I Even modestly-sized, state-of-the-art networks have on the order of 150 million
trainable parameters.

I Fitting such models of course requires massive amounts of labeled training data.
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Self-supervised learning

Data collection is expensive

I Such data can be enormously expensive to collect.

I For basic image recognition problems (e.g. cats versus dogs), labeled data is
relatively easy to crowdsource.

I For other problems, the annotation task is significantly more tedious and
requires careful supervision and annotator corroboration.

I This, of course, translates into higher annotation costs.

I Self-supervision offers the prospect of synthesizing training signal for free and
has been applied to representation learning for object recognition:

I Context prediction: force CNNs to learn how to predict local image (or
video) context.

I Low-level semantics: use the basic building blocks of images to learn
useful representations.

I Niche problems: especially in cases where data is especially scarce, define
proxy tasks related to the primary goal.
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Self-supervised learning

Self-supervised learning

I Self-supervised learning (SSL) offers the promise of learning generically useful
features.

I The main idea is to synthesize training signal using domain (or other)
knowledge.

I This synthetic supervisory signal should be obtainable for free or for very little
cost.

I Most of the work on self-supervision has concentrated on learning generic
representation for recognition.

I This representations can then be fine-tuned for specific tasks on limited,
fully-supervised training data.

I Let’s look at some representative works in this direction.
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Self-supervised learning

SSL: Spatial context prediction
I An appealing approach is to train a network to predict the local context of

image patches.
I Feed a network a pair of patches, train to predict which neighbor the second

one is wrt the first.
I Local context prediction: [Doersch et al., 2015]

Unsupervised visual representation learning by context prediction
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Self-supervised learning

SSL: Spatial context prediction

I The network architecture is Siamese.

I Note that you must always be sure the
network can’t cheat.

I In this case, the authors discovered that
chromatic aberration is a decisive factor.

Unsupervised visual representation learning by context prediction
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Self-supervised learning

SSL: Spatial context prediction
I Results on PASCAL 2007 Object Detection:

Unsupervised visual representation learning by context prediction
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Self-supervised learning

SSL: The key idea behind temporal context
I If unlabeled images can provide self-supervisory signal, what about video?

I Formulate it like a classical proxy task for self-supervised learning.

I The proxy needs no semantic labels – you can sample as many sequences as
you like from arbitrary video [Lee et al., 2017].

Unsupervised representation learning by sorting sequences [Lee et al., 2017]
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Self-supervised learning

The model
I In this paper, the authors train a network to order input frames.
I Input: n frames in shuffled order.
I Output: probability distribution over the n!/2 orders.

Unsupervised representation learning by sorting sequences [Lee et al., 2017]
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Self-supervised learning

Tuple sampling: motion awareness
I The authors use the magnitude of optical flow to select frames with large

motion regions.

I This flow magnitude is also used to select spatial patches with large motion.

Unsupervised representation learning by sorting sequences [Lee et al., 2017]
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Self-supervised learning

Tuple sampling: spatial jittering
I If the same spatial region of frames is sampled, the network can just learn to

subtract them.

I This is a coarse estimate of optical flow (spatio-temporal gradient).

I It is easy to sort from this (up to complete reversal), but requires no semantics.

I The solution: spatial jittering.

Unsupervised representation learning by sorting sequences [Lee et al., 2017]
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Self-supervised learning

Results: Action Recognition
I Some observations:

I Self-supervision is superior to random initialization.
I Self-supervision is inferior to pre-training on ImageNet.
I Order-prediction works better than other self-supervision approaches.

Unsupervised representation learning by sorting sequences [Lee et al., 2017]
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Self-supervised learning

Results: Image Recognition on PASCAL 2007
I Idea:

1. use three video datasets for action recognition for pre-training;
2. fine-tune the backbone on the 20 PASCAL classes (using training

images).
I Observations:

I Self-supervision is still worse than pre-training on ImageNet.
I OPN works very well and is pretty efficient.

Unsupervised representation learning by sorting sequences [Lee et al., 2017]
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Self-supervised learning

SSL: Low-level semantics

I So far we have posed high-level semantic tasks to networks for self-supervised
learning (e.g. spatial or temporal context [Noroozi et al., 2017; Kim et al.,
2018; Lee et al., 2017]).

I There is another body of self-supervised learning work that instead looks at
low-level cues.

I Natural images have statistical properties that influence their perceptions and
how we learn internal representations [Simoncelli and Olshausen, 2001].

I Training deep CNNs to reconstruct these statistics can be a rich source of
self-supervisory signal.
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Self-supervised learning

SSL: Colorization
I Color is a strong semantic cue for humans and colorization of grayscale images

can be used for self-supervision [Zhang et al., 2016].

Colorful image colorization
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Self-supervised learning

SSL: Colorization results

I Colorization indeed seems to be a frontrunner as a self-supervised proxy task
[Larsson et al., 2017].

[Zhang et al., 2016] [Larsson et al., 2017]
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Self-supervised learning

SSL: Counting low-level visual primitives

I Counting unsupervised image
features is a powerful way to learn
image representations.

I This takes advantage of that fact
that anything counted in sub-images
must sum to the total count.

I You must be careful that what is
being counted, though, is meaningful
[Noroozi et al., 2017].

Representation learning by learning to count
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Self-supervised learning

SSL: Counting low-level visual primitives

Representation learning by learning to count
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Self-supervised learning

SSL: Niche problems
I A problem for which annotation is tedious and expensive is crowd counting.

I Given an image, the task is to estimate the number of persons present in the
scene.

I Given the difficulty of annotation, most crowd counting datasets have at most
around 1000 labeled images.

An observation

I For many niche problems, we can define much more specific and useful proxy
tasks for self-supervised learning.

I These domain-specific proxy tasks allow us to address the lack-of-data problem
in application areas where it is much more acute.
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Self-supervised learning

SSL: Niche problems
I We can create a proxy ranking task for which we can automatically generate

training signal.

I After pre-training a CNN using this proxy task, we transfer the weights to a
CNN that estimates absolute crowd counts on images [Liu et al., 2019].

I Note: we are no longer learning general image representations – the proxy task
should have some direct link to the primary task.

Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank
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Self-supervised learning

SSL: Niche problems
I We can use the observation that sub-images must contain the same number or

fewer persons that the super-image.
I Key to this approach is a multi-task training objective.

I2 I3

I1

I1 I2 I3

C(I1) C(I2) C(I3)≥ ≥

I2

Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank
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Self-supervised learning

SSL: Niche problems
I Using the multi-task loss we can simultaneously train the self-supervised and

fully-supervised tasks.
I This helps guarantee that the network is counting useful features, instead of

just random correlations (loosely speaking).

Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank

AI&ML: Deep Learning II A. D. Bagdanov



Overview Transfer and self-supervised learning Few-shot learning Zero-shot learning Discussion References

Self-supervised learning

SSL: Niche problems
I The result is a high-quality density map that can be integrated to estimate

counts:

Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank
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Self-supervised learning

SSL: Niche problems
I An ablation study demonstrates effectiveness:

I And results are comparable to the state-of-the-art:

Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank
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Self-supervised learning

SSL: Retrospective
I A retrospective on self-supervised visual representation learning looks at the

design space of self-supervised learners [Kolesnikov et al., 2019].

I Some findings:
I Architecture matters.
I Proxy-task performance does not always correlate downstream.

Revisiting Self-Supervised Visual Representation Learning
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Few-shot learning
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Few-shot learning: Overview

Few-shot learning: Overview

I Sometimes the poverty of data is more acute; or rather it is built right into the
problem description.

I Few-shot learning (FSL) refers to learning problems where the number of
examples per class is extremely limited.

I One usually refers to M-way, N-shot classification, where M is the number of
classes and N is the number of training samples per class.

I Typical configurations: M = 5, N ∈ {1, 5}.
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Few-shot learning: Overview

FSL: Setup
I Few-shot learning often uses meta-learning, or learning to learn.

Figure from: [Ravi and Larochelle, 2017]
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Zero-shot learning
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Zero-shot learning: Overview

Zero-shot learning: Overview
I What if you want to learn visual recognizers but have no training data for

classes of interest?

I Are we just plain out of luck?

I An early approach to zero-data task learning uses synthetic task descriptions as
a sort of psuedo-label [Larochelle et al., 2008].

I Learning is performed on a disjoint set of semantic prototypes and paired image
instances.
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Zero-shot learning: Overview

Zero-shot learning: Overview
I Modern Zero-Shot Learning (ZSL) inherits much from zero-data learning.
I Most ZSL is based on embeddings: semantic feature embedding of images, and

semantic attribute embeddings of classes [Lampert et al., 2013; Akata et al.,
2013].
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Zero-shot learning: Overview

Zero-shot learning: Overview

I What do we mean by semantic feature embedding and semantic attribute
embedding for zero-shot learning?

I For images, we have seen how CNNs like ResNet and VGG are great feature
extractor. So we use them.

I What about class semantics? One option is to use attributes [Xian et al., 2018]:

I Each class is represented by a single binary attribute vector (which could be an
average of class instances).

I To learn a new class, we only require its attributes.
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Zero-shot learning: Overview

Zero-shot learning: Overview
I What if we don’t have attribute representations for the categories of interest

(attributes, after all, aren’t free).
I If we have textual descriptions, we can use word or document embeddings.
I Some choices are word2vec [Mikolov et al., 2013], doc2vec [Le and Mikolov,

2014], or GloVe [Pennington et al., 2014]:
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Zero-shot learning: Overview

Zero-shot learning: Overview

I Zero-shot Learning (ZSL) in computer vision has seen some explosive growth in
interest in recent years.

I Let’s take a look at some recent approaches to ZSL and see what makes them
tick.

I Much of what we will see here is based on an excellent and comprehensive
review published recently [Xian et al., 2018].
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Problem definition

Zero-shot learning

I In ZSL we are given a training set of image and class labels:

S = { (xi , y) | i = 1, . . . N }
yi ∈ Y tr (Y tr is the set of training classes)

I Our goal is to minimize a regularized empirical risk:

L =
1

N

N∑
1

L(yn, f (xn;W )) + Ω(W )

f (x ;W ) = argmax
y∈Y
F (x, y ;W )

I At test time, for zero-shot learning we must assign images to an unseen class
label Y ts ⊂ Y.

I For generalized zero-shot learning test images can be assigned to either seen or
unseen classes: Y tr+ts ⊂ Y.
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Affinity learning

ZSL: Linear affinity learning
I Many state-of-the-art approaches use relatively simple linear compatibility

functions:
F (x, y ;W ) = θ(x)TWφ(y)

I In this θ is a semantic image embedding (e.g. a CNN feature extractor).
I And φ is a semantic class embedding (e.g. attributes or text embedding).
I The DEVISE algorithm an unregularized ranking loss [Frome et al., 2013]:

L =
∑
y∈Ytr

[∆(yn, y) + F (xn, y ;W )− F (xn, yn;W )]+

Devise: A deep visual-semantic embedding model
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Affinity learning

ZSL: Embarrassingly Simple ZSL
I The ESZSL approach uses a linear affinity matrix with square loss and

regularizers [Romera-Paredes and Torr, 2015]:

Ω(W ) = γ||Wφ(y)||2 + λ||θ(x)TW ||2 + β||W ||T

I This bounds the Euclidean norm of projected attributes and image features.

I An advantage of this approach: the objective function is convex and has a
closed form solution.

An embarrassingly simple approach to zero-shot learning
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Affinity learning

ZSL: Non-linear affinity learning
I The Latent Embedding (LATEM) approach is a natural extension of the linear

approach [Xian et al., 2016]:

F (x, y ;W ) = max
1≤i≤K

θ(x)TWiφ(y)

I The Cross-Modal Transfer (CMT) approach maps images into the semantic
space of attributes [Socher et al., 2013]:∑

y∈Ytr

∑
x∈Xy

||φ(y)−W1 tanh(W2φ(x))||2

Zero-shot learning through cross-modal transferAI&ML: Deep Learning II A. D. Bagdanov
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ZSL: Generative models

ZSL: GFZSL
I Generative models are sort of the new frontier for ZSL.

I The Generative Framework for Zero-Shot Learning (GFZSL) models
class-conditional distributions as multivariate Gaussians [Verma and Rai, 2017].

I Unseen class parameters are computed using two learned regressions:

µy = fµ(φ(y)) and σy = fσ(θ(y))

A simple exponential family framework for zero-shot learning
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Some results

ZSL: Datasets
I It is interesting to look at the ZSL datasets in use and see how the problems

are set up.

I Note in particular the splits at evaluation time.

Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly
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Some results

ZSL: Results
I Generative modeling seems to be taking the lead.

I However, it is interesting that relatively simple and convex approaches still
perform respectably.

Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly
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Some results

GZSL: Results
I The situation is completely different for generalized ZSL, however:

Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly
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Discussion
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Discussion: Transfer learning

I In pre-CNN visual recognition, features were everything.

I Features are still everything, however now we can re-use in new ways.

I CNNs are proven semantic feature extractors, and these features can be used in
a ton of useful ways:

I Classical supervised learning: CNN features can be shoved into your
favorite classifiers as-is (SVM, K-SVM, logistic regression, etc.)

I Fine-tuning: the weights of early layers in CNNs can be transferred to a
new model with new layers (with randomly initialized weights).

I Transfer learning in this way greatly reduces the amount of labeled data needed.

I Bottom line: you should probably be using a pre-trained network as a starting
point.
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Discussion: Self-supervised learning

I Self-supervised learning is a type of unsupervised representation learning (more
on this tomorrow).

I The amount of unsupervised image and video data massively outnumber the
amount of supervised data.

I Finding new ways to exploit this is one of the holy grails of computer vision
(and machine learning in general).

I If proxy tasks, for which supervisory signal can be derived for free, can be
defined, self-supervised learning can be an effective way to learn useful
representations.

"If intelligence is a cake, the bulk of the cake is unsupervised learning,
the icing on the cake is supervised learning, and the cherry on the cake is
reinforcement learning (RL)."
– Yann LeCun @ NIPS 2016
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Discussion: Few-shot learning
I Probably the best way to mitigate the data-hungry nature of Convolutional

Neural Networks is to understand how to effectively train them with limited
data.

I Meta-learning offers some solutions: observe learners in action, and learn how
to learn new tasks (on limited data).

I Though important steps have been made, meta-learning is still lacking a killer
app in visual recognition.

I However, one candidate might be object tracking [Park and Berg, 2018].

Meta-tracker: Fast and robust online adaptation for visual object trackers
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Discussion: Zero-shot learning

I Zero-shot learning is an exciting and (relatively) new application of visual
recognition.

I In a way, it harks back to the glory days of Content-based Image Retrieval
(CBIR) [Smeulders et al., 2000].

I Think about it: if you can describe a visual category using our rich, semantic
and natural language, ZSL can recognize instances of it.

I Generative models seem to be the way forward, but Generalized Zero-shot
Learning has a ways to go [Wang et al., 2018; Antoniou et al., 2017].
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