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Transfer and self-supervised learning Fe ot learning Zero-shot learning Discussion

Annotation and large-scale training are expensive

Annotating images is

» Commercial rates for image annotation are about USD 0.08 per annotation.

» |Let's do some napkin calculations. ..

Large-scale training is and

» Even with massive amounts of labeled data, training a state-of-the-art
architecture can take weeks.

» For one training run. If you're optimizing hyperparameters for a complex model,
even longer.

» Some of this can be parallelized, but then you have GPU and energy costs to
factor in. )

A. D. Bagdanov
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Model adaptation

» As usual, there is no silver bullet for these issues.
» However, we can at least mitigate somewhat via:

P> Transfer learning: can we exploit learned representations to derive
solutions to new problems?

P Self-supervised learning: can we mitigate the labeling burden via derived

proxy tasks?

Few-shot learning: what if available training data is extremely limited?

Meta-learning: can we learn how to learn new visual recognition tasks?

Zero-shot learning: what if | have zero examples of some training classes?

vvyy
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TL: Work and reuse

» If we look at a state-of-the-art CNN, let’s ask ourselves:
» What are we investing in when training?
» Where are the features in the network?
» What, if anything, can be reused?
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TL: The basic idea

» TL;DR: why on earth start from scratch?

Training images |

Source task | Source task labels

!T,\‘ L
Convolutional layers Fully-connected layers African elephant

.I Wall clock

C1-C2-C3-C4-C5

6144-dim Green snake
} vector
Y Yorkshire terrier
Transfer
parameters
.Chair
P Background
3: Classifier €1-C2-C3-C4-C5 [ res o ez Fa — Fb B
learning 4096 or ]
6144-dim ol Person
9216-dim 4096 or vector
vector  6144-dim ﬂ .
TV/monitor
Training i iid h vectar New adaptation
raining images  Sliding patches layers trained
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TL: Back to basics

» Trained CNNs are feature extractors [ l:

CNN
Representation

Learn Extract Features
£ Normalized RGB, gradient,
Pose LBP

Strong
DPM

|ﬂﬂ Best state of the art 00 CNN off-the-shelf 88 CNN off-the-shelf + i [

CNN features off-the-shelf: an astounding baseline for recognition
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TL: Fine-grained recognition
» Not all recognition problems are created equal.

» Fine-grained recognition should require different features.

CNN features off-the-shelf: an astounding baseline for recognition
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TL: Fine-grained recognition
» Not all recognition problems are created equal.

» Fine-grained recognition should require different features.

Method Part info mean Accuracy
Sift+Color+SVM[ - ] X 17.3
Pose pooling kernel[19] v 28.2
RF[+7] v 19.2
DPD[50] ' 51.0
Poof] "] v 56.8
CNN-SVM X 53.3
CNNaug-SVM X 61.8
DPD+CNN(DeCaf)+LogReg[ 10] v 65.0

CNN features off-the-shelf: an astounding baseline for recognition
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» Not all recognition problems are created equal.
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TL: Fine-grained recognition
» Not all recognition problems are created equal.

» Fine-grained recognition should require different features.

Method mean Accuracy
HSV [ ] 43.0
SIFT internal [27] 551
SIFT boundary [ ] 320
HOG [27] 49.6
HSV+SIFTi+SIFTb+HOG(MKL) [ /] 72.8
BOW(4000) [14] 65.5
SPM(4000) [ 1] 67.4
FLH(100) [14] 727
BiCos seg [ ] 794
Dense HOG+Coding+Pooling[2] w/o seg 167
Seg+Dense HOG+Coding+Pooling[ ] 80.7
CNN-SVM w/o seg 747
CNNaug-SVM w/o seg 86.8

CNN features off-the-shelf: an astounding baseline for recognition
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TL: Instance recognition

» Instance recognition, kind of a limit of fine-grained:

CNN features off-the-shelf: an astounding baseline for recognition
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TL: Instance recognition

» Instance recognition, kind of a limit of fine-grained:

Dim OxfordSk Paris6k Sculp6k Holidays UKBench

BoB[] NA  NA N/A  454[7] N/A N/A
BoW 200k 36.4[20] 46.0[35] 8.1[3] 540[4] 703[20]
IFV[7] 2k 418001 - = 62.6[20] 83.8[20]
VLAD[/] 32k 555[4] - - 64.6[4] -
CVLAD[57] 64k 478[52] - > 81.9[77] 89.3[57]
HE+burst[17] 64k 64.5[42] - - 780[42] -
AHE+burst[17] 64k 66.6[17] - = 794047] -

Fine vocab[26] 64k 742[26]  749[26] - 749[26] -
ASMK*+MA[ 7] 64k 80.4[17] 77.0[47] - 81.0[17] -
ASMK+MA[12] 64k 817[12] 782[42] - 822[42] -
CNN 4k 322 495 241 642 76.0
CNN-ss 32-120k 55.6 69.7  3L1 769 86.9
CNNaug-ss 415k 68.0 795 423 843 91.1
CNN+BOW[16] 2k = = = 80.2 =

CNN features off-the-shelf: an astounding baseline for recognition
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TL: All the devilish detalls

» The VGG group has an excellent and thorough exploration of transfer learning
(and not only) in CNNs [ l.

v 3
Method Spool Image Aug.  Dim T M b e SR
7B e Sk lof s ws 785 W8 80 7 30 %4 m2 w5
(Il) DECAF - © t t 32K 619 702 795 8§53 772 909 511 738 570 864 680
o F— T %5 w02 78 79 9 w1 3 S ms m7 9
(b) FK IN spm - 327K 549 607 505 804 695 862 383 544 563 827 567
(9) FK xy) - 2K 534 619 500 800 675 853 357 519 538
(d) FK IN xy) - 2K 539 621 515 805 685 859 372 552 543
() FKIN xy) (B f - 4K 541 622 515 S04 682 860 373 551 542
() FKIN xy) (© f s 4K 624 634 571 Sl6 709 869 412 612 569
(g) FK IN xy) © s s 4K 616 622 568 S18 700 865 415 610 565
(h) FK IN 512 xy) - 84K 554 614 512 805 691 864 412 560 562
(i) FKIN 512 xy) (© f s 8K 627 645 566 822 713 875 430 620 593
() FK IN COL 512 - - 82K 358 411 455 754 583 839 398 473 356
(k) FK IN 512 COL+ xy) - 166K 561 610 569 8l4 696 884 490 592 564
(1) FK IN 512 COL+ xy) (© f s 166K 596 631 599 821 705 889 506 637 575
(m) CNN F - © f 4K 710 726 820 879 807 918 585 774 663
(n) CNN S - © f s 4K 748 747 872 890 837 923 588 805 694
(0) CNNM - - 4K 704 731 835 855 809 908 541 789 611
(p) CNN M - © f s 4K 80.1 744 859 882 846 921 805 662
(9) CNN M - © f m 4K 782 736 860 874 838 923 810 668
() CNNM - © s s 4K 769 748 858 881 843 922 & 793 658
(s) CNN M © t ¢ 41K 723 753 852 869 826 919 585 779 665
() CNN M - © f - 4K 742 739 847 866 820 910 558 792 621
(u) CNN M - ® f - 4K 700 734 8§35 860 808 909 539 781 612
(v) CNN M GS - - 4K 659 698 795 8§29 774 892 428 717 602
(w) CNN M GS - © f s 4K 724 741 S17 860 823 908 489 737 668
(x) CNN M 2048 - © f s 2K 769 754 855 880 834 921 611 831 685
(y) CNN M 1024 - © f s 1K 772 731 859 8§83 835 918 599 814 683
(z) CNN M 128 - © f s 128 700 729 846 867 836 894 570 815 648
(=) FK+CNN F xy) (© f s 88K 720 734 814 886 805 921 606 773 664 8§93 733
(B) FK+CNNM 2048 (xy) (O f s 86K 769 766 549 8§91 829 924 619 809 687 915 751
(¥) CNN S TUNE-RNK  — © f s 4K 763 749 8§97 922 869 952 607 829 680 955 744

Return of the devil in the details: Delving deep into convolutional nets
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TL: All the devilish detalls

» Comparison with the state-of-the-art:

ILSVRC-2012 VOC-2007 VOC-2012 Caltech-101  Caltech-256

(top-5 error) (mAP) (mAP) (accuracy) (accuracy)
(a) FK IN 512 - 68.0 - - -
(b) CNN F 16.7 774 799 - -
(c) CNN M 13.7 79.9 825 8715 + 0.80 77.03 + 0.46
(d) CNN M 2048 13.5 80.1 82.4 86.64 + 0.53 76.88 + 0.35
(e) CNN S 13.1 79.7 82.9 87.76 + 0.66 77.61 + 0.12
(f) CNN S TUNE-CLS 13.1 - 83.0 88.35 + 0.56 77.33 + 0.56
(g) CNN S TUNE-RNK 13.1 82.4 83.2 - -
(h) Zeiler & Fergus [19] 16.1 - 79.0 865+ 05 742403
(i) Razavian et al. [9], [10] 14.7 772 - - -
(j) Oquab et al. [8] 18 777 78.7 (82.8") - -
(k) Oquab et al. [16] - - 86.3" - -
(1) Wei et al. [17] - 81.5 (85.2") 81.7 (90.3") - -
(m) He et al. [29] 13.6 80.1 - 914 + 0.7 -

Return of the devil in the details: Delving deep into convolutional nets
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TL: Not just recognition

» Transfer learning can be applied to almost any visual recognition or estimation

task.
» This includes object detection [ ], semantic segmentation |
], crowd counting [ ], you name it.
2nd-place margin
winner (relative)
ImageNet Localization (wp-serror 12.0 27%
ImageNet Detection mee.s) 53.6 absolute o5 § 16%
8.5% better!
COCO Detection (mare.s:9s) 11%
COCo Segmentation (MAP@.5:.95) 25.1 28.2 12%

Deep residual learning for image recognition

A. D. Bagdanov



CNNSs are really big

Top-1 accuracy [%]
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CNNSs are really big
» One of the first observations one can make about CNNs is that they have a
HUGE number of parameters.

» Even modestly-sized, state-of-the-art networks have on the order of 150 million
trainable parameters.

» Fitting such models of course requires massive amounts of labeled training data.

A. D. Bagdanov



Data collection Is expensive

» Such data can be enormously expensive to collect.

» For basic image recognition problems (e.g. cats versus dogs), labeled data is
relatively easy to crowdsource.

» For other problems, the annotation task is significantly more tedious and
requires careful supervision and annotator corroboration.

» This, of course, translates into higher annotation costs.

» Self-supervision offers the prospect of synthesizing training signal for free and
has been applied to representation learning for object recognition:

P Context prediction: force CNNs to learn how to predict local image (or
video) context.

P> Low-level semantics: use the basic building blocks of images to learn
useful representations.

» Niche problems: especially in cases where data is especially scarce, define
proxy tasks related to the primary goal.

A. D. Bagdanov



Self-supervised learning

> Self-supervised learning (SSL) offers the promise of learning generically useful
features.

» The main idea is to synthesize training signal using domain (or other)
knowledge.

» This synthetic supervisory signal should be obtainable for free or for very little
cost.

» Most of the work on self-supervision has concentrated on learning generic
representation for recognition.

» This representations can then be fine-tuned for specific tasks on limited,
fully-supervised training data.

> Let's look at some representative works in this direction.

A. D. Bagdanov



SSL: Spatial context prediction

» An appealing approach is to train a network to predict the local context of
image patches.

» Feed a network a pair of patches, train to predict which neighbor the second
one is wrt the first.

» Local context prediction: | ]

Unsupervised visual representation learning by context prediction

A. D. Bagdanov



SSL: Spatial context prediction

> The network architecture is Siamese.

» Note that you must always be sure the
network can’t cheat.

P In this case, the authors discovered that
chromatic aberration is a decisive factor.

Unsupervised visual representation learning by context prediction
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SSL: Spatial context prediction

» Results on PASCAL 2007 Object Detection:

'VOC-2007 Test [acro bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train (v | mAP
DPM-v5[ /] 332 603 102 16.1 273 543 582 230 20.0 241 267 127 581 482 432 12.0 21.1 36.1 460 435] 337

[5] w/o context 526 52.6 192 254 187 473 569 42.1 16.6 414 419 277 479 515 299 20.0 41.1 364 48.6 532 385

i ] 542 520 203 240 20.1 555 687 426 192 442 491 266 570 545 434 164 366 377 594 523|417
Scratch-R-CNN[Z] 49.9 60.6 247 237 203 525 648 329 204 435 342 299 49.0 604 475 280 423 28.6 51.2 500 | 40.7
Scratch-Ours 526 60.5 23.8 243 18.1 50.6 639 292 195 435 352 27.6 465 594 465 256 424 235 50.0 506|398
Our: jecti 584 628 33.5 27.7 244 585 685 412 263 495 426 373 557 625 494 29.0 475 284 547 56.8 457
Ours-color-dropping | 60.5 66.5 29.6 28.5 26.3 56.1 704 448 24.6 455 454 351 522 602 500 281 467 42.6 548 586 46.3
Ours-Yahoo100m 56.2 63.9 29.8 27.8 239 574 69.8 356 237 474 430 295 529 620 487 284 451 33.6 49.0 555 442
ImageNet-R-CNN[21] | 642 69.7 50 41.9 320 626 71.0 60.7 32.7 585 465 56.1 60.6 66.8 542 315 528 489 579 647 ‘ 54.2
K-means-rescale [31] | 557 609 27.9 30.9 12.0 59.1 63.7 470 214 452 558 403 675 612 483 219 328 469 61.6 51.7 ‘ 45.6
Ours-rescale [31] | 61.9 633 358 32.6 172 68.0 679 548 29.6 524 629 513 67.1 643 505 244 437 549 67.1 527 [ 511
ImageNet-rescale [31] | 64.0 69.6 532 444 249 657 69.6 692 289 636 628 639 733 646 558 257 505 554 693 564 \ 56.5
VGG-K-means-rescale | 56.1 58.6 233 257 12.8 57.8 61.2 452 214 47.1 395 356 60.1 614 449 173 377 332 579 512 ‘ 424
VGG-Ours-rescale | 711 724 541 482 299 752 780 719 383 605 0623 68.1 743 742 648 32,6 565 664 740 603 ‘ 61.7
‘VGG-ImageNet-rescale | 76.6 79.6 68.5 574 40.8 799 784 854 41.7 770 693 80.1 786 746 70.1 375 660 675 774 649 ‘ 68.6

Unsupervised visual representation learning by context prediction

A. D. Bagdanov



SSL: The key idea behind temporal context
» If unlabeled images can provide self-supervisory signal, what about video?
» Formulate it like a classical proxy task for self-supervised learning.

» The proxy needs no semantic labels — you can sample as many sequences as
you like from arbitrary video [ 1.

Can you sort these?

Unsupervised representation learning by sorting sequences || ]

A. D. Bagdanov



The model

» In this paper, the authors train a network to order input frames.

» Input: n frames in shuffled order.

» Output: probability distribution over the n!/2 orders.

(a) Data Sampling

(b) Order Prediction Network

Feature Extraction

1024

Unsupervised representation learning by sorting sequences ||

Pairwise Feature Extraction

'

Order Prediction

{ab.ed}
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) t
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fe4 s
fe2 |
v
&3 i fer23)
fe2 |
t
fed | b
fe3 ]
fe-4 X
ter3)
P
| Shared parameters

{ab,d,c}
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Tuple sampling: motion awareness

» The authors use the magnitude of optical flow to select frames with large
motion regions.

» This flow magnitude is also used to select spatial patches with large motion.

Unsupervised representation learning by sorting sequences || ]
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Tuple sampling: spatial jittering
» If the same spatial region of frames is sampled, the network can just learn to
subtract them.
> This is a coarse estimate of optical flow (spatio-temporal gradient).

» |t is easy to sort from this (up to complete reversal), but requires no semantics.

» The solution: spatial jittering.

Unsupervised representation learning by sorting sequences || ]
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Results: Action Recognition

» Some observations:

» Self-supervision is superior to random initialization.
» Self-supervision is inferior to pre-training on ImageNet.
» Order-prediction works better than other self-supervision approaches.

Initialization CaffeNet VGG-M-2048
random 47.8 51.1
ImageNet 67.7 70.8
Misra et al. [24] 50.2 -
Purushwalkam et al. [30]* - 554
Vondrick et al. [39] 52.1 -
binary 51.6 56.8
3-tuple Concat 52.8 57.0
3-tuple OPN 53.2 58.3
4-tuple Concat 55.2 59.0
4-tuple OPN 56.3 59.8
Unsupervised representation learning by sorting sequences || ]
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Results: Image Recognition on PASCAL 2007

» |dea:
1. use three video datasets for action recognition for pre-training;
2. fine-tune the backbone on the 20 PASCAL classes (using training
images).
» Observations:
» Self-supervision is still worse than pre-training on ImageNet.
> OPN works very well and is pretty efficient.

Method Pretraining time Source Supervision Classification  Detection
Krizhevsky et al. [17] 3 days ImageNet labeled classes 78.2 56.8
Doerch et al. [6] 4 weeks ImageNet context 55.3 46.6
Pathak et al. [29] 14 hours ImagetNet+StreetView context 56.5 44.5
Norrozi et al. [26] 2.5 days ImageNet context 68.6 51.8
Zhang et al. [43] - ImageNet reconstruction 67.1 46.7
Wang and Gupta (color) [41] 1 weeks 100k videos, VOC2012 motion 58.4 44.0
Wang and Gupta (grayscale) [41] 1 weeks 100k videos, VOC2012 motion 62.8 47.4
Agrawal et al. [2] - KITTIL SF motion 529 41.8
Misra et al. [24] - < 10k videos motion 543 39.9
Ours (OPN) < 3 days < 30k videos motion 63.8 46.9
Unsupervised representation learning by sorting sequences [ ]
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SSL: Low-level semantics

» So far we have posed high-level semantic tasks to networks for self-supervised
learning (e.g. spatial or temporal context | ;
: 1.
» There is another body of self-supervised learning work that instead looks at
low-level cues.

» Natural images have statistical properties that influence their perceptions and
how we learn internal representations [ 1.

» Training deep CNNs to reconstruct these statistics can be a rich source of
self-supervisory signal.

A. D. Bagdanov



shot learning

SSL: Colorization

» Color is a strong semantic cue for humans and colorization of grayscale images
can be used for self-supervision |

Colorful image colorization

A. D. Bagdanov



SSL: Colorization

» Color is a strong semantic cue for humans and colorization of grayscale images

can be used for self-supervision [ ]
Lightness L Color ab Lab Image
convi conv2  conv3 conv4 convs convé conv? conv8
atrous / dilated & trous / dilated
512 512 512 512 256
) ]l W U
32 32 32 32
. i
distribution
RGB(a,b|L=50) log(P(a,b)) les(PladL))
- Le[0,25) Le25; u)
Cl s 1§
iy f“ 3
110 " u7
110055 g 3 o110 3
b b

Colorful image colorization
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SSL: Colorization results

» Colorization indeed seems to be a frontrunner as a self-supervised proxy task

[ ]

ialization Archi Class.  Seg.
%mAP  %mIU
ImageNet @Fov)  VGG-16 | 869 695
— Random (ours) AlexNet 462 235
Dataset and Task Generalization on PASCAL [37] Random [37] AlexNet 533 108
Class. Det. Seg. k-means [20, 5] AlexNet 56.6 32.6
(%mAP) (%mAP) (%mlIU) k-means [20] VGG-16 56.5 -
fine-tune layers [Ref] fc8 fc6-8 all [Ref] all [Ref] al] h-means [20] GoogLeNet 550
ImageNet [38] - 76.8 78.9 T79. 36)] 42] 48. Pathak et al. [32] AlexNet 56.5  29.7
Gaussian 10 - - 53.3 10] 43.4 10 19.8 Wang & Gupta [39] AlexNet 587 -
Autoencoder 16] 24.8 16.0 53.8 [10] 41.9 [10] 25.2 Donahue et al. [5] AlexNet 60.1 352
k-means [36] 16] 32.0 39.2 56.6 [36] 45.6 [16] 32.6 Doersch et al. [1, 5] AlexNet 65.3 -
Agrawal et al. [8] 16] 31.2 31.0 54.2 [36] 43.9 - - Zhang et al. (col) [43] ~ AlexNet 656 35.6
Wang & Gupta [15] - 28.1 52.2 58.7 [36] 47.4 -  — Zhang et al. (s-b) [+4]  AlexNet 671 360
*Doersch et al. [14] [16] 44.7 55.1 65.3 [36] 51.1 - - Noroozi & Favaro [29]  Mod. AlexNet | 68.6 -
*Pathak et al. [10] [10] - — 565 [10] 445 [10] 2.7 Larsson et al. [21] VGG-16 - 502
*Donahue ct al. [16] — 382 50.2 58.6 [16] 46.2 [16] 34.9 O method AloxNet 659 354
Ours (gray) ~ 524615659 - 461 - 350 wreyy VGG-16 72 560
Ours (color) - 52.4 61.5 65.6 - 469 - 35.6 +Fov)  ResNet-152 773 60.0

[ ] [ ]
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SSL: Counting low-level visual primitives

» Counting unsupervised image
features is a powerful way to learn
image representations.

» This takes advantage of that fact

that anything counted in sub-images
must sum to the total count.

» You must be careful that what is
being counted, though, is meaningful

[ ]

Representation learning by learning to count

A. D. Bagdanov



SSL: Counting low-level visual primitives

e ’

7:%\

Tiox ,Tgox Tgox»‘ Tyiox:

shared
weights

o(Doy) ¢(T1ox) ¢(Tz0x) ¢(T50x) ¢(Tiox)

max{0, M —

Representation learning by learning to count

114x114x3

d(D ox)

Part A Part B
Method | MAE MSE | MAE MSE
Cross-scene [34] [ 181.8  277.7 320 498
MCNN [10 1102 1732 264 413
Switching-CNN [11 904 1350 216 334
CP-CNN [33 73.6 1064 20.1 30.1
ACSCP [38 75.7  102.7 172 274
CSRNet [36 682 115.0 106 160
ic-CNN [41 68.5 116.2 10.7 16.0
Ours: Multi-task (Query-by-example) 72.0 106.6 144 238
Ours: Multi-task (Keyword) | 73.6 1120 | 137 214

A. D. Bagdanov



Transfer and self-supervis learning earning t learning

earning

SSL: Niche problems

» A problem for which annotation is tedious and expensive is crowd counting.

» Given an image, the task is to estimate the number of persons present in the
scene.

» Given the difficulty of annotation, most crowd counting datasets have at most
around 1000 labeled images.

An observation

» For many niche problems, we can define much more specific and useful proxy
tasks for self-supervised learning.

» These domain-specific proxy tasks allow us to address the lack-of-data problem
in application areas where it is much more acute.

A. D. Bagdanov



SSL: Niche problems

> We can create a proxy ranking task for which we can automatically generate

training signal.

P> After pre-training a CNN using this proxy task, we transfer the weights to a

CNN that estimates absolute crowd counts on images | 1.

Note: we are no longer learning general image representations — the proxy task
should have some direct link to the primary task.

Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank

A. D. Bagdanov



Few-shot learning

SSL: Niche problems

» \We can use the observation that sub-images must contain the same number or
fewer persons that the super-image.

» Key to this approach is a multi-task training objective.

i) = i) = iy
Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank

A. D. Bagdanov



Few-shot learning

SSL: Niche problems

» Using the multi-task loss we can simultaneously train the self-supervised and

fully-supervised tasks.
» This helps guarantee that the network is counting useful features, instead of

just random correlations (loosely speaking).

GT Density

Number of persons

Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank
A. D. Bagdanov
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SSL: Niche problems

» The result is a high-quality density map that can be integrated to estimate
counts:

A. D. Bagdanov:



SSL: Niche problems

» An ablation study demonstrates effectiveness:

Method Split1  Split2  Split3 Split4 Split5 | Ave MAE
Basic CNN 70141 39452 49757 263.56 41523 45445
+Pre-trained model 57001 35063 33489 18479 20241 328.54
+ multi-scale 532.85 30743 26675 21696  216.35 308.06
Ranking+FT 552.68 37538 241.28 211.66 247.70 32573
Multi-task (Random) 46271 34531 21871 2264  210.19 292.67
Multi-task (Hard) 46035 34391  208.23 22175 20557 287.96
Multi-task (Ours) 443.68 34031 196.76 21848  199.54 279.60

» And results are comparable to the state-of-the-art:

Part A Part B
Method | MAE MSE | MAE MSE

Cross-scene [34] | 181.8 277.7 32.0 49.8

MCNN [10] | 1102 1732 264 413

Switching-CNN [11] 90.4 135.0 216 334

CP-CNN [33] 73.6  106.4 201 301

ACSCP [38] 757 1027 17.2 274

CSRNet [36] | 682 1150 | 106  16.0

ic-CNN [41] 68.5 1162 10.7 16.0

Ours: Multi-task (Query-by-example) 72.0 106.6 144 238
Ours: Multi-task (Keyword) 73.6 1120 13.7 21.4

Exploiting Unlabeled Data in CNNs by Self-supervised Learning to Rank

A. D. Bagdanov



SSL: Retrospective

» A retrospective on self-supervised visual representation learning looks at the
design space of self-supervised learners [ 1.
» Some findings:

P Architecture matters.
P> Proxy-task performance does not always correlate downstream.
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Revisiting Self-Supervised Visual Representation Learning
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Few-shot learning: Overview

» Sometimes the poverty of data is more acute; or rather it is built right into the
problem description.

» Few-shot learning (FSL) refers to learning problems where the number of
examples per class is extremely limited.

» One usually refers to M-way, N-shot classification, where M is the number of
classes and N is the number of training samples per class.

» Typical configurations: M =5, N € {1, 5}.

A. D. Bagdanov



FSL: Setup

» Few-shot learning often uses meta-learning, or learning to learn.
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Zero-shot learning: Overview

» What if you want to learn visual recognizers but have no training data for
classes of interest?

» Are we just plain out of luck?

» An early approach to zero-data task learning uses synthetic task descriptions as

a sort of psuedo-label [ 1.
» Learning is performed on a disjoint set of semantic prototypes and paired image
instances.
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Zero-shot learning: Overview
» Modern Zero-Shot Learning (ZSL) inherits much from zero-data learning.

» Most ZSL is based on embeddings: semantic feature embeddlng of images, and
semantic attribute embeddings of classes |

1.
IMAGES FEATPRES ATTRI]?»UTES LABELS
X X Y N%
F(ajia Yi, ’bU) Ui
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Zero-shot learning: Overview

» What do we mean by semantic feature embedding and semantic attribute
embedding for zero-shot learning?

» For images, we have seen how CNNs like ResNet and VGG are great feature
extractor. So we use them.

> What about class semantics? One option is to use attributes [ I:

polar bear
black:
white:
brown:
stripes:
water:
eats fish:

zebra
black:
white:
brown:
stripes:
water:
eats fish:

» Each class is represented by a single binary attribute vector (which could be an
average of class instances).

» To learn a new class, we only require its attributes.

A. D. Bagdanov



Zero-shot learning: Overview

» What if we don't have attribute representations for the categories of interest
(attributes, after all, aren't free).

» If we have textual descriptions, we can use word or document embeddings.

» Some choices are word2vec | ], doc2vec |
], or GloVe | l:
INPUT PROJECTION QUTPUT INPUT PROJECTION  OUTPUT
w(t-2) w(t-2)
w(t-1) wi(t-1)
SUM /
}—» w(t) wi(t) I—»}
w(t+1) / x‘ o
w(t+2) w(t+2)
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Zero-shot learning: Overview

» Zero-shot Learning (ZSL) in computer vision has seen some explosive growth in
interest in recent years.

> Let's take a look at some recent approaches to ZSL and see what makes them
tick.

» Much of what we will see here is based on an excellent and comprehensive
review published recently [ ].

A. D. Bagdanov



Zero-shot learning

» In ZSL we are given a training set of image and class labels:
S = {(X/,y)|i=1,.../\/}
yi € Y (Y is the set of training classes)

» Our goal is to minimize a regularized empirical risk:

L = %ZI:L(Yn,f(Xn;W))'FQ(W)
W) = argmea;F(X.y;W)

» At test time, for zero-shot learning we must assign images to an unseen class
label Y C Y.

» For generalized zero-shot learning test images can be assigned to either seen or
unseen classes: Y+t c .

A. D. Bagdanov



/SL: Linear affinity learning

» Many state-of-the-art approaches use relatively simple linear compatibility
functions:
Flx,yiW) = 6(x)"We(y)
» In this 0 is a semantic image embedding (e.g. a CNN feature extractor).

» And ¢ is a semantic class embedding (e.g. attributes or text embedding).
» The DEVISE algorithm an unregularized ranking loss [

L= E [A(Yn,)/)-FF(Xn.,V; W)_F(anyn;W)]Jr
yeytr
A B
Traditional Deep Visual Semantic Skip-gram
Visual Model Embedding Model
label

Language Model
1

softmax layer

similarity metric

nearby word
transformation

core
visual
‘model

parameter
iniialization

embedding
vector
lookup table

label

embedding
vector

‘parameter

lookup table
initialization

source word

Devise: A deep visual-semantic embedding model
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/SL: Embarrassingly Simple ZSL

» The ESZSL approach uses a linear affinity matrix with square loss and
regularizers [ |E

QW) = y[IW(y)II” + Al6() " WI* + BlIwI"
» This bounds the Euclidean norm of projected attributes and image features.

P> An advantage of this approach: the objective function is convex and has a
closed form solution.

Training Stage

Ev"‘i,x Inference Stage

Emcd

An embarrassingly simple approach to zero-shot learning
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/SL: Non-linear affinity learning

» The Latent Embedding (LATEM) approach is a natural extension of the linear
approach [ |:

. — T [
F(x,y; W) = 1?%)%(( 0(x)" Wig(y)

» The Cross-Modal Transfer (CMT) approach maps images into the semantic

space of attributes [ IE
D) lle(y) — wa tanh(Wag ()|
YEYIr xeXy
Manifold of known classes n
=

New test image
from unknown
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ZSL: GFZSL

» Generative models are sort of the new frontier for ZSL.

» The Generative Framework for Zero-Shot Learning (GFZSL) models
class-conditional distributions as multivariate Gaussians [ l.

» Unseen class parameters are computed using two learned regressions:

py = fu(d(y)) and o, = (6(y))

A simple exponential family framework for zero-shot learning

A. D. Bagdanov



/SL: Datasets

P |t is interesting to look at the ZSL datasets in use and see how the problems
are set up.

» Note in particular the splits at evaluation

Number of Classes

time

Number of Images

At Training Time

At Evaluation Time

ss SS PS
Dataset Size  Granularity At Y yir Vi | Total  Yir  yts  yir oyt yir gts pir yts
SUN[I0]  medium fine 102 717 580+65 72 | 14380 12900 0 10320 0 0 1440 2580 1440
CUB[17] medium fine 312 200 100+50 50 | 11788 8855 0 7057 0 0 2933 1764 2967
AWAL [I]  medium coarse 85 50 27+13 10 | 30475 24295 0 19832 0 0 6180 4958 5685
AWA2 medium coarse 85 S0 27+13 10 | 37322 30337 0 23527 O 0 6985 5882 7913
aPY [ 18] small coarse 64 32 1545 12 | 15339 12695 0 5932 0 0 2644 1483 7924

Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly
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/SL: Results

» Generative modeling seems to be taking the lead.

» However, it is interesting that relatively simple and convex approaches still
perform respectably.

SUN CUB AWA1 AWA2 aPY

Method S8 PS S8 PS S8 PS S8 PS SS PS

DAP [1] 38.9 399 | 375 400 | 57.1 441 | 58.7 46.1 | 352 338
TIAP [1] 174 194 | 271 240 | 48.1 359 | 469 359 | 224  36.6
CONSE[15] 442 388 | 36.7 343 | 63.6 456 | 679 445 | 25.9 269
CMT [17] 41.9 399 | 373 346 | 589 395 | 663 379 | 269  28.0
SSE[17] 54.5 515 | 43.7 439 | 688 60.1 | 67.5 61.0 | 3L.1  34.0
LATEM [!1] 569 553 | 49.4 493 | 748 55.1 | 68.7 558 | 345 352
ALE [30] 59.1  58.1 53.2 549 | 786 59.9 | 80.3 625 | 309 39.7
DEVISE [7] 57.5  56.5 | 53.2 520 | 729 542 | 686 59.7 | 354 398
SIE [Y] 57.1  53.7 | 55.3 539 | 76.7 656 | 69.5 619 | 32.0 329
ESZSL [10] 57.3 545 | 55.1 539 | TAT  58.2 | 756 586 | 344 383
SYNC [14] 59.1 56.3 | 54.1 556 | 72.2 54.0 | T1.2 46.6 | 39.7 239
SAE [37] 424 403 | 334 333 | 80.6 53.0 | 80.7 54.1 8.3 8.3

GFZSL[1]] 62.9 60.6 | 53.0 493 | 80.5 683 | 793 63.8 | 51.3 38.4

Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly

A. D. Bagdanov



GZSL: Results

» The situation is completely different for generalized ZSL, however:

SUN CUB AWAL AWA2 aPY
Method ts tr H ts tr H ts tr H ts tr H ts tr H
DAP[] 4.2 25.1 7.2 17 67.9 3.3 0.0 887 0.0 0.0 84.7 0.0 4.8 78.3 9.0
IAP[1] 1.0 37.8 1.8 0.2 72.8 0.4 2.1 78.2 4.1 0.9 87.6 1.8 5.7 65.6  10.4
CONSE [15] 6.8 399 116 1.6 72.2 31 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0
CMT [12] 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 0.5 90.0 1.0 1.4 85.2 2.8
CMT* [12] 8.7 28.0 133 4.7 60.1 8.7 8.4 86.9 153 8.7 89.0 159 | 109 742 19.0
SSE [17] 2.1 36.4 4.0 8.5 469 144 7.0 80.5 129 8.1 82.5 148 02 78.9 0.4
LATEM [11] 147 288 195 | 152 57.3 240 7.3 7.7 133 | 1.5 773 20.0 0.1 73.0 0.2
ALE [30] 218 331 263 | 237 628 344|168 761 275 | 140 818 239 4.6 73.7 8.7
DEVISE [/] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 224 171 747 2738 4.9 76.9 9.2
SIE [9] 147 305 198 | 235 592 336 | 11.3 746 196 8.0 73.9 144 3.7 55.7 6.9
ESZSL [10] 110 279 158 | 126 638 210 6.6 75.6 121 5.9 77.8 110 2.4 70.1 4.6
SYNC [14] 7.9 433 134 | 115 709 198 8.9 87.3 162 | 10.0 905 180 7.4 66.3 133
SAE [27] 8.8 180 11.8 7.8 54.0 136 1.8 7.1 3.5 11 82.2 2.2 0.4 80.9 0.9
GFZSL [41] 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 2.5 80.1 4.8 0.0 83.3 0.0

Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly

A. D. Bagdanov
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Discussion: Transfer learning

» In pre-CNN visual recognition, features were everything.

» Features are still everything, however now we can re-use in new ways.

» CNNs are proven semantic feature extractors, and these features can be used in
a ton of useful ways:

P Classical supervised learning: CNN features can be shoved into your
favorite classifiers as-is (SVM, K-SVM, logistic regression, etc.)

» Fine-tuning: the weights of early layers in CNNs can be transferred to a
new model with new layers (with randomly initialized weights).

» Transfer learning in this way greatly reduces the amount of labeled data needed.

» Bottom line: you should probably be using a pre-trained network as a starting
point.

A. D. Bagdanov



Discussion: Self-supervised learning

> Self-supervised learning is a type of unsupervised representation learning (more
on this tomorrow).

» The amount of unsupervised image and video data massively outnumber the
amount of supervised data.

» Finding new ways to exploit this is one of the holy grails of computer vision
(and machine learning in general).

» |f proxy tasks, for which supervisory signal can be derived for free, can be
defined, self-supervised learning can be an effective way to learn useful
representations.

"If intelligence is a cake, the bulk of the cake is unsupervised learning,
the icing on the cake is supervised learning, and the cherry on the cake is
reinforcement learning (RL)."

— Yann LeCun © NIPS 2016

A. D. Bagdanov



Discussion: Few-shot learning

» Probably the best way to mitigate the data-hungry nature of Convolutional
Neural Networks is to understand how to effectively train them with limited
data.

» Meta-learning offers some solutions: observe learners in action, and learn how
to learn new tasks (on limited data).

» Though important steps have been made, meta-learning is still lacking a killer
app in visual recognition.

» However, one candidate might be object tracking [ ].

Meta-learning for 83 and &

Loss function
atframe #1

T
Frame #0 v Frame #0

. T Skip ahead check on
Initialization --- Meta updates to fit 6, = 6 Frame #0 + 6

Meta-tracker: Fast and robust online adaptation for visual object trackers
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Discussion: Zero-shot learning

» Zero-shot learning is an exciting and (relatively) new application of visual
recognition.

P> In a way, it harks back to the glory days of Content-based Image Retrieval
(CBIR) [ l.

» Think about it: if you can describe a visual category using our rich, semantic
and natural language, ZSL can recognize instances of it.

» Generative models seem to be the way forward, but Generalized Zero-shot
Learning has a ways to go [ : l.

A. D. Bagdanov
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