A Fuller Understanding of Fully Convolutional Networks

Evan Shelhamer* Jonathan Long* Trevor Darrell UC Berkeley in CVPR'15, PAMI'16

pixels in, pixels out

colorization Zhang et al.2016

monocular depth + normals Eigen & Fergus 2015

optical flow Fischer et al. 2015

boundary prediction Xie & Tu 2015 2

convnets perform classification

"tabby cat"

1000-dim vector

lots of pixels, little time?

end-to-end learning

a classification network

 $227\times227 \quad 55\times55 \quad 27\times27 \qquad 13\times13$

becoming fully convolutional

becoming fully convolutional

convolution

7

upsampling output

end-to-end, pixels-to-pixels network

end-to-end, pixels-to-pixels network

spectrum of deep features

combine where (local, shallow) with what (global, deep)

image

intermediate layers

fuse features into deep jet

(cf. Hariharan et al. CVPR15 "hypercolumn")

skip layers

skip layer refinement

1 skip

no skips

skip FCN computation

A multi-stream network that fuses features/predictions across layers

Relative to prior state-of-the-art SDS:

- 30% relative improvement for mean IoU
- 286× faster

		mean	aero plane	bicycle	bird	boat	bottle	bus	car	cat	chair	COW	dining table	dog	horse	motor bike	person	potted plant	sheep	sofa	train	tv/ monitor	submission date
			\bigtriangledown																				
\triangleright	MSRA_BoxSup [?]	FCN 75.2	89.8	38.0	89.2	68.9	68.0	89.6	83.0	87.7	34.4	83.6	67.1	81.5	83.7	85.2	83.5	58.6	84.9	55.8	81.2	70.7	18-May-2015
\triangleright	Oxford_TVG_CRF_RNN_COCO [?]	FCN 74.7	90.4	55.3	88.7	68.4	69.8	88.3	82.4	85.1	32.6	78.5	64.4	79.6	81.9	86.4	81.8	58.6	82.4	53.5	77.4	70.1	22-Apr-2015
\triangleright	DeepLab-MSc-CRF-LargeFOV-COCO-CrossJo	FCN 73.9	89.2	46.7	88.5	63.5	68.4	87.0	81.2	86.3	32.6	80.7	62.4	81.0	81.3	84.3	82.1	56.2	84.6	58.3	76.2	67.2	26-Apr-2015
\triangleright	Adelaide_Context_CNN_CRF_VOC [?]	FCN 72.9	89.7	37.6	77.4	62.1	72.9	88.1	84.8	81.9	34.4	80.0	55.9	79.3	82.3	84.0	82.9	59.7	82.8	54.1	77.5	70.3	25-May-2015
\triangleright	DeepLab-CRF-COCO-LargeFOV [?]	FCN 72.7	89.1	38.3	88.1	63.3	69.7	87.1	83.1	85.0	29.3	76.5	56.5	79.8	77.9	85.8	82.4	57.4	84.3	54.9	80.5	64.1	18-Mar-2015
\triangleright	POSTECH_EDeconvNet_CRF_VOC [?]	FCN 72.5	89.9	39.3	79.7	63.9	68.2	87.4	81.2	86.1	28.5	77.0	62.0	79.0	80.3	83.6	80.2	58.8	83.4	54.3	80.7	65.0	22-Apr-2015
\triangleright	Oxford_TVG_CRF_RNN_VOC [?]	FCN 72.0	87.5	39.0	79.7	64.2	68.3	87.6	80.8	84.4	30.4	78.2	60.4	80.5	77.8	83.1	80.6	59.5	82.8	47.8	78.3	67.1	22-Apr-2015
\triangleright	DeepLab-MSc-CRF-LargeFOV [?]	FCN 71.6	84.4	54.5	81.5	63.6	65.9	85.1	79.1	83.4	30.7	74.1	59.8	79.0	76.1	83.2	80.8	59.7	82.2	50.4	73.1	63.7	02-Apr-2015
\triangleright	MSRA_BoxSup ^[?]	FCN 71.0	86.4	35.5	79.7	65.2	65.2	84.3	78.5	83.7	30.5	76.2	62.6	79.3	76.1	82.1	81.3	57.0	78.2	55.0	72.5	68.1	10-Feb-2015
\triangleright	DeepLab-CRF-COCO-Strong [?]	FCN 70.4	85.3	36.2	84.8	61.2	67.5	84.6	81.4	81.0	30.8	73.8	53.8	77.5	76.5	82.3	81.6	56.3	78.9	52.3	76.6	63.3	11-Feb-2015
\triangleright	DeepLab-CRF-LargeFOV [?]	FCN 70.3	83.5	36.6	82.5	9	6t 5	854	785	134	304	729	21	Ъ.	75 5	82.	∧/ •ľ	8.2	8.0	48.8	28.7	T 63.	28-Mar-2015
\triangleright	TTI_zoomout_v2 [?]	69.6	85.6	37.3	83.2	62.5	00.0	o5 1	80.7	84.9	27.2	73.Z	57.5	78.1	79.2	81.1	77.1	53.6	74.0	49.2	71.7	65.3	30-Mar-2015
\triangleright	DeepLab-CRF-MSc [?]	FCN 67.1	80.4	36.8	77.4	55.2	66.4	81.5	77.5	78.9	27.1	68.2	52.7	74.3	69.6	79.4	79.0	56.9	78.8	45.2	72.7	59.3	30-Dec-2014
\triangleright	DeepLab-CRF [?]	FCN 66.4	78.4	33.1	78.2	55.6	65.3	81.3	75.5	78.6	25.3	69.2	52.7	75.2	69.0	79.1	77.6	54.7	78.3	45.1	73.3	56.2	23-Dec-2014
\triangleright	CRF_RNN ^[?]	FCN 65.2	80.9	34.0	72.9	52.6	62.5	79.8	76.3	79.9	23.6	67.7	51.8	74.8	69.9	76.9	76.9	49.0	74.7	42.7	72.1	59.6	10-Feb-2015
\triangleright	TTI_zoomout_16 [?]	64.4	81.9	35.1	78.2	57.4	56.5	80.5	74.0	79.8	22.4	69.6	53.7	74.0	76.0	76.6	68.8	44.3	70.2	40.2	68.9	55.3	24-Nov-2014
\triangleright	Hypercolumn [?]	62.6	68.7	33.5	69.8	51.3	70.2	81.1	71.9	74.9	23.9	60.6	46.9	72.1	68.3	74.5	72.9	52.6	64.4	45.4	64.9	57.4	09-Apr-2015
	FCN-8s ^[?]	FCN 62.2	76.8	34.2	68.9	49.4	60.3	75.3	74.7	77.6	21.4	62.5	46.8	71.8	63.9	76.5	73.9	45.2	72.4	37.4	70.9	55.1	12-Nov-2014
\triangleright	MSRA_CFM ^[?]	61.8	75.7	26.7	69.5	48.8	65.6	81.0	69.2	73.3	30.0	68.7	51.5	69.1	68.1	71.7	67.5	50.4	66.5	44.4	58.9	53.5	17-Dec-2014
\triangleright	TTI_zoomout ^[?]	58.4	70.3	31.9	68.3	46.4	52.1	75.3	68.4	75.3	19.2	58.4	49.9	69.6	63.0	70.1	67.6	41.5	64.0	34.9	64.2	47.3	17-Nov-2014
\triangleright	SDS [?]	51.6	63.3	25.7	63.0	39.8	59.2	70.9	61.4	54.9	16.8	45.0	48.2	50.5	51.0	57.7	63.3	31.8	58.7	31.2	55.7	48.5	21-Jul-2014
\triangleright	NUS_UDS [?]	50.0		24.5																	53.1		29-Oct-2014
\triangleright	TTIC-divmbest-rerank [?]	48.1																					
\triangleright	BONN_O2PCPMC_FGT_SEGM [?]	47.8			54.1								29.6								48.4		
\triangleright	BONN_02PCPMC_FGT_SEGM [?]	47.5																					
\triangleright	BONNGC_02P_CPMC_CSI [?]	46.8		26.8			47.1			55.1							53.4						23-Sep-2012
\triangleright	BONN_CMBR_O2P_CPMC_LIN [?]	46.7																					23-Sep12612

care and feeding of fully convolutional networks

usage

- train full image at a time *without sampling*
- reshape network to take input of any size
- forward time is ~100ms for 500 x 500 x 21 output (on M. Titan X)

image-to-image optimization

	batch	m o m	pixel	mean	mean	f.w.
	size	mom.	acc.	acc.	10	10
FCN-accum	20	0.9	86.0	66.5	51.9	76.5
FCN-online	1	0.9	89.3	76.2	60.7	81.8
FCN-heavy	1	0.99	90.5	76.5	63.6	83.5

momentum and batch size

momentum p and batch size k

$$p^{(1/k)} = p^{\prime(1/k')}$$

$$g_t = -\eta \sum_{i=0}^{k-1}
abla_ heta \ell(x_{kt+i}; heta_{t-1}) + pg_{t-1} \ \infty \ _{k-1}$$

$$g_t = -\eta \sum_{s=0} \sum_{i=0} p^s
abla_ heta \ell(x_{k(t-s)+i}; heta_{t-s}))$$

sampling images?

no need! no improvement from sampling across images

sampling pixels?

no need! no improvement from (partially) decorrelating pixels

uniform

poisson

context?

- do FCNs incorporate contextual cues?
- loses 3-4 % points when the background is masked
- can learn from BG/shape alone if forced to!
 - Standard 85 IU
 - BG alone 38 IU
 - Shape 29 IU

past and future history of fully convolutional networks

history

Shape Displacement Network Matan & LeCun 1992 Convolutional Locator Network Wolf & Platt 1994

pyramids

Scale Pyramid, Burt & Adelson '83

The scale pyramid is a classic multi-resolution representation

Fusing multi-resolution network layers is a learned, nonlinear counterpart

jets

The local jet collects the partial derivatives at a point for a rich local description

The deep jet collects layer compositions for a rich, learned description

extensions

- detection + instances
- structured output
- weak supervision

detection: fully conv. proposals

Fast R-CNN, Girshick ICCV'15

Faster R-CNN, Ren et al. NIPS'15

end-to-end detection by proposal FCN Rol classification

fully conv. nets + structured output

Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. Chen* & Papandreou* et al. ICLR 2015.

fully conv. nets + structured output

Method	Without COCO	With COCO			
Plain FCN-8s	61.3	68.3			
FCN-8s and CRF disconnected	63.7	69.5			
End-to-end training of CRF-RNN	69.6	72.9			

Conditional Random Fields as Recurrent Neural Networks. *Zheng* & Jayasumana* et al.* ICCV 2015.

dilation for structured output

- enlarge effective receptive field for same no. params
- raise resolution
- convolutional context model: similar accuracy to CRF but non-probabilistic

Multi-Scale Context Aggregation by Dilated Convolutions. Yu & Koltun. ICLR 2016

[comparison credit: CRF as RNN, Zheng* & Jayasumana* et al. ICCV 2015]

DeepLab: Chen* & Papandreou* et al. ICLR 2015. CRF-RNN: Zheng* & Jayasumana* et al. ICCV 2015

fully conv. nets + weak supervision

FCNs expose a spatial loss map to guide learning: segment from tags by MIL or pixelwise constraints

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Pathak et al. arXiv 2015.

fully conv. nets + weak supervision

FCNs expose a spatial loss map to guide learning: mine boxes + feedback to refine masks

BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation. Dai et al. 2015.

fully conv. nets + weak supervision

FCNs can learn from sparse annotations == sampling the loss

Original image

Image-level labels

1 point per class

Levels of supervision

What's the Point? Semantic Segmentation with Point Supervision. *Bearman et al.* ECCV 2016.

conclusion

fully convolutional networks are fast, end-to-end models for pixelwise problems

- code in Caffe
- models for PASCAL VOC, NYUDv2, SIFT Flow, PASCAL-Context

caffe.berkeleyvision.org

github.com/BVLC/caffe

fcn.berkeleyvision.org

model example inference example solving example