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Goals for this section

• Super quick intro to object detection

• Show one way to tackle obj. det. with ConvNets

• Highlight some more sophisticated uses of Caffe
• Python layers

• Multi-task training with multiple losses

• Batch sizes that change dynamically during Net::Forward()

• Pointers to open source code so you can explore, try, and understand!



Image classification (mostly what you’ve seen)

• 𝐾 classes

• Task: Assign the correct class label to the whole image

Digit classification (MNIST) Object recognition (Caltech-101, ImageNet, etc.)



Classification vs. Detection

 Dog

 Bridge

Dog
Dog

Easyish, these days Still quite a lot harder

Bridge



Problem formulation

Person 0.7

Motorbike 0.9

Input Desired output
*Actual results may vary

The Visual World ≈ 𝐾 object classes
{airplane, bird, motorbike, person, sofa, bg}

YODA:
Yet another

Object
Detection
Algorithm



PASCAL VOC object detection
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Precision: higher is better



Image

A Fast R-CNN network
(VGG_CNN_M_1024)

Object box proposals (N)
e.g., selective search

2. 𝑃 𝑐𝑙𝑠 = 𝑘 𝑏𝑜𝑥 = 𝑛,
𝑖𝑚𝑎𝑔𝑒)

for each NK boxes

1. NK regressed object
boxes

Two outputs:

Fast R-CNN (Region-based Convolutional Networks)

A fast object detector implemented with Caffe
- Caffe fork on GitHub that adds two new layers

(ROIPoolingLayer and SmoothL1LossLayer)
- Python (using pycaffe) / more advanced Caffe usage
- A type of Region-based Convolutional Network (R-CNN)

Let’s see how it works!



Quick background

Region-based Convolution Networks (R-CNNs)

Input
image

Extract region
proposals (~2k / image)
e.g., selective search
[van de Sande, Uijlings et al.]

Compute CNN
features on
regions

Classify and refine
regions

[Girshick et al. CVPR’14]



Fast R-CNN (test-time detection)

Given an image and object proposals,
detection happens with a single call to the Net::Forward()

Net::Forward() takes 60 to 330ms

Image

A Fast R-CNN network
(VGG_CNN_M_1024)

Object box proposals (N)
e.g., selective search

2. 𝑃 𝑐𝑙𝑠 = 𝑘 𝑏𝑜𝑥 = 𝑛,
𝑖𝑚𝑎𝑔𝑒)

for each NK boxes

1. NK regressed object
boxes

Two output types:



Fast R-CNN (test-time detection)

Image

A Fast R-CNN network
(VGG_CNN_M_1024)

Minimal post-processing:
- Non-maximum suppression (NMS)

Object proposals comes from:
- Selective Search (2s / image) [van de Sande/Uijlings et al.]

- EdgeBoxes (0.2s / image) [Zitnick & Dollar]
- MCG (30s / image) [Arbelaez et al.]
- Etc.

Object box proposals (N)
e.g., selective search

2. 𝑃 𝑐𝑙𝑠 = 𝑘 𝑏𝑜𝑥 = 𝑛,
𝑖𝑚𝑎𝑔𝑒)

for each NK boxes

1. NK regressed object
boxes

Two output types:



Zooming into the net

Pool5 blob size = 2000 x 512 x 6 x 6

2000 x (4 * 21)

2000 x 21

2000 image regions come 
in here, blob size = 2000 x 5

image comes in here, blob size = S x 3 x H x W (e.g., S = 1 or 5, H = 600, W = 1000)

conv5 feature map blob size = S x 512 x H/16 x W/16

(a bunch of conv layers
and whatnot)



Zooming into the net

image comes in here, blob size = S x 3 x H x W (e.g., S = 1 or 5, H = 600, W = 1000)

RoI Pooling Layer:
- adaptive max pooling layer
- dynamically expands batch from S to R (e.g., 2000)

conv5 feature map blob size = S x 512 x H/16 x W/16

Pool5 blob size = 2000 x 512 x 6 x 6

2000 x (4 * 21)

2000 x 21

2000 image regions come 
in here, blob size = 2000 x 5



Another view of the same thing

These (top and bottom images) are the same

Deep
ConvNet

conv5

feature map

RoI
projection

RoI
pooling
layer FCs

RoI feature
vector

softmax
bbox

regressor

Outputs:

FC FC

For each RoI



RoI Pooling Layer
• Special case of SPPnet’s SPP layer [He et al. ECCV’14]

• Two inputs (“bottoms”)
• Conv feature map: S x 512 x H x W

• Regions of Interest: R x 5
• 5 comes from [r, x1, y1, x2, y2], where r in [0, R – 1] specifies an image batch index



The train-time net
Single fine-tuning operation all in Caffe

Even more boxes and arrows
Let’s look at them



The train-time net (inputs)

Zoomed area

B full images: B x 3 x H x W  (e.g., B = 2, H = 600, W = 1000)

Class labels: 128 x 21

Bounding-box
regression targets: 128 x 84

Bounding-box
regression loss weights: 128 x 84

RoIs: 128 x 5
(75% background)



The train-time net (exotic data layers)

Custom Python data layer
• Samples 2 images
• From each sampled image, takes 64 RoIs
• Input batch is initially 2 elements
• Gets expanded by the RoI Pooling Layer to 128 elements
• Outputs 5 “tops”

• data [images]
• rois [regions of interest]
• labels [class labels for the rois]
• bbox_targets [box regression targets]
• bbox_loss_weights […details…]



The train-time net (multi-task losses)

Zoomed area

Classification loss
(Cross-entropy)

Bounding-box regression loss
(“Smooth L1”)

+



Code is on
GitHub
(MIT License,
Runs on Linux)



A brief tour of some of the code
Caffe fork

Train, test

Python modules



A brief tour of some of the code (Caffe bits)
Caffe fork

Train, test

Python modules



Region of Interest 
(RoI) Pooling Layer

Expands a small
batch into a big
batch



Smooth L1 Loss
Layer

Robust to outliers
Optimizer friendly

Per-dimension loss
weights

L1L1

L2

Smooth L1 loss



A brief tour of some of the code (Python bits)
Caffe fork

Train, test

Python modules



Python data layer
for Fast R-CNN

Reshapes blobs
on-the-fly



Python training code

Custom solver loop
with custom snapshot
method



A brief tour of some of the code (CLI tools)
Caffe fork

Train, test

Python modules







Teaser: Faster R-CNN
Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Microsoft Research

• The detection network also proposes objects

• Marginal cost of proposals: 10ms

• VGG16 runtime ~200ms including all steps

• Higher mAP, faster

• Open-source Caffe code coming later this summer

Region Proposal
Network shares
conv layers with
Fast R-CNN object
detection network


