
Convolution	

Objective	

The	lab's	objective	is	to	implement	a	tiled	image	convolution	using	both	shared	and	constant	
memory.	We	will	have	a	constant	5x5	convolution	mask,	but	will	have	arbitrarily	sized	image	
(assume	the	image	dimensions	are	greater	than	5x5	for	this	Lab).	

To	use	the	constant	memory	for	the	convolution	mask,	you	can	first	transfer	the	mask	data	to	the	
device.	Consider	the	case	where	the	pointer	to	the	device	array	for	the	mask	is	named	M.	You	can	
use	const float * __restrict__ M	as	one	of	the	parameters	during	your	kernel	launch.	This	
informs	the	compiler	that	the	contents	of	the	mask	array	are	constants	and	will	only	be	accessed	
through	pointer	variable	M.	This	will	enable	the	compiler	to	place	the	data	into	constant	memory	
and	allow	the	SM	hardware	to	aggressively	cache	the	mask	data	at	runtime.	

Convolution	is	used	in	many	fields,	such	as	image	processing	for	image	filtering.	A	standard	image	
convolution	formula	for	a	5x5	convolution	filter	M	with	an	Image	I	is:	

𝑃",$,% = 𝐼"(),$(*,%

+

*,-+

+

),-+

∗ 𝑀),*	

where	𝑃",$,% 	is	the	output	pixel	at	position	i,j	in	channel	c,	𝐼",$,% 	is	the	input	pixel	at	i,j	in	channel	
c	(the	number	of	channels	will	always	be	3	for	this	MP	corresponding	to	the	RGB	values),	and	𝑀),*	
is	the	mask	at	position	x,y.	

Input	Data	

The	input	is	an	interleaved	image	of	height x width x channels.	By	interleaved,	we	mean	that	
the	element	I[y][x]	contains	three	values	representing	the	RGB	channels.	This	means	that	to	
index	a	particular	element's	value,	you	will	have	to	do	something	like:	

 index = (yIndex*width + xIndex)*channels + channelIndex;

For	this	assignment,	the	channel	index	is	0	for	R,	1	for	G,	and	2	for	B.	So,	to	access	the	G	value	of	
I[y][x],	you	should	use	the	linearized	expression	I[(yIndex*width+xIndex)*channels + 1].	

For	simplicity,	you	can	assume	that	channels	is	always	set	to	3.	

Instructions	

Edit	the	code	in	the	code	tab	to	perform	the	following:	

• allocate	device	memory	
• copy	host	memory	to	device	
• initialize	thread	block	and	kernel	grid	dimensions	
• invoke	CUDA	kernel	

• copy	results	from	device	to	host	
• deallocate	device	memory	
• implement	the	tiled	2D	convolution	kernel	with	adjustments	for	channels	
• use	shared	memory	to	reduce	the	number	of	global	accesses,	handle	the	boundary	conditions	

in	when	loading	input	list	elements	into	the	shared	memory	
	

Pseudo	Code	

A	sequential	pseudo	code	would	look	something	like	this:	

maskWidth := 5
maskRadius := maskWidth/2 # this is integer division, so the result is 2
for i from 0 to height do
 for j from 0 to width do
 for k from 0 to channels
 accum := 0
 for y from -maskRadius to maskRadius do
 for x from -maskRadius to maskRadius do
 xOffset := j + x
 yOffset := i + y
 if xOffset >= 0 && xOffset < width &&
 yOffset >= 0 && yOffset < height then
 imagePixel := I[(yOffset * width + xOffset) * channels + k]
 maskValue := K[(y+maskRadius)*maskWidth+x+maskRadius]
 accum += imagePixel * maskValue
 end
 end
 end
 # pixels are in the range of 0 to 1
 P[(i * width + j)*channels + k] = clamp(accum, 0, 1)
 end
 end
end

where	clamp	is	defined	as	

def clamp(x, lower, upper)
 return min(max(x, lower), upper)
end

	

