GPU programming basics

Prof. Marco Bertini
CUDA: atomic operations, privatization, algorithms
Atomic operations

• The basics atomic operation in hardware is something like a read-modify-write operation performed by a single hardware instruction on a memory location address

 • Read the old value, calculate a new value, and write the new value to the location

• The hardware ensures that no other threads can perform another read-modify-write operation on the same location until the current atomic operation is complete

 • Any other threads that attempt to perform an atomic operation on the same location will typically be held in a queue

• All threads perform their atomic operations serially on the same location
Atomic Operations in CUDA

- Performed by calling functions that are translated into single instructions (a.k.a. intrinsic functions or intrinsics)

- Operation on one 32-bit or 64-bit word residing in global or shared memory.

- Atomic functions can only be used in device functions

- Atomic add, sub, inc, dec, min, max, exch (exchange), CAS (compare and swap), and, or, xor
Some examples

• Atomic Add

 • `int atomicAdd(int* address, int val);`

 • reads the 32-bit word old from the location pointed to by address in global or shared memory, computes \((\text{old} + \text{val})\), and stores the result back to memory at the same address. The function returns old.

• Unsigned 32-bit integer atomic add

 • `unsigned int atomicAdd(unsigned int* address, unsigned int val);`

• Unsigned 64-bit integer atomic add

 • `unsigned long long int atomicAdd(unsigned long long int* address, unsigned long long int val);`

• Single-precision floating-point atomic add (capability > 2.0)

 • `float atomicAdd(float* address, float val);`

• Double precision floating-point atomic add (capability > 6.0)

 • `double atomicAdd(double* address, double val);`
atomicCAS

- int atomicCAS(int* address, int compare, int val);
- unsigned int atomicCAS(unsigned int* address, unsigned int compare, unsigned int val);
- unsigned long long int atomicCAS(unsigned long long int* address, unsigned long long int compare, unsigned long long int val);

 - reads the 32-bit or 64-bit word old located at the address address in global or shared memory, computes (old == compare ? val : old), and stores the result back to memory at the same address. These three operations are performed in one atomic transaction. The function returns old (Compare And Swap).
atomicCAS

- Note that any atomic operation can be implemented based on `atomicCAS()` (Compare And Swap). For example, `atomicAdd()` for double-precision floating-point numbers is not available on devices with compute capability lower than 6.0 but it can be implemented as follows:

```c
#include <cuda.h>

__device__ double atomicAdd(double* address, double val) {
    unsigned long long int* address_as_ull = (unsigned long long int*) address;
    unsigned long long int old = *address_as_ull;
    unsigned long long int assumed;
    do {
        assumed = old;
        old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val + __longlong_as_double(assumed)));
        // Note: uses integer comparison to avoid hang in case
        //       of NaN (since NaN != NaN)
    } while (assumed != old);
    return __longlong_as_double(old);
}
```

`#if __CUDA_ARCH__ < 600
__device__ double atomicAdd(double* address, double val) {
 unsigned long long int* address_as_ull = (unsigned long long int*) address;
 unsigned long long int old = *address_as_ull;
 unsigned long long int assumed;
 do {
 assumed = old;
 old = atomicCAS(address_as_ull, assumed, __double_as_longlong(val + __longlong_as_double(assumed)));
 // Note: uses integer comparison to avoid hang in case
 // of NaN (since NaN != NaN)
 } while (assumed != old);
 return __longlong_as_double(old);
}
```
atomicCAS

• Note that any atomic operation can be implemented based on atomicCAS() (Compare And Swap). For example, atomicAdd() for double-precision floating-point numbers is not available on devices with compute capability lower than 6.0 but it can be implemented as follows:

```c
#if __CUDA_ARCH__ < 600
__device__ double atomicAdd(double* address, double val)
{
 unsigned long long int* address_as_ull = (unsigned long long int*) address;
 unsigned long long int old = *address_as_ull;
 unsigned long long int assumed;
 do {
 assumed = old;
 old = atomicCAS(address_as_ull, assumed,
 __double_as_longlong(val + __longlong_as_double(assumed)));
 // Note: uses integer comparison to avoid hang in case
 // of NaN (since NaN != NaN)
 } while (assumed != old);
 return __longlong_as_double(old);
}
#endif
```

Reinterpret the bits in the 64-bit signed integer value as a double-precision floating point value.
Atomic operations and caches

- Atomic operations serialize simultaneous updates to a location, thus to improve performance the serialization should be as fast as possible.

- Changing locations in global memory is slow: e.g. with an access latency of 200 cycles and 1 Ghz clock the throughput of atomics is $1/400 \times 1 \text{ G (clocks/sec)} = 2.5 \text{M atomics/sec}$ (vs. the Gflops of modern GPUs).

- Cache memories are the primary tool for reducing memory access latency (e.g. 10s of cycle vs. 100s of cycles).

- Recent GPUs allow atomic operation to be performed in the last level cache, which is shared among all SMs.
Privatization

• The latency for accessing memory can be dramatically reduced by placing data in the shared memory. Shared memory is private to each SM and has very short access latency (a few cycles); this directly translates into increase throughput of atomic operations.

• The problem is that due to the private nature of shared memory, the updates by threads in one thread block is no longer visible to threads in other blocks.
Privatization

- The idea of privatization is to replicate highly contended data structures into private copies so that each thread (or each subset of threads) can access a private copy. The benefit is that the private copies can be accessed with much less contention and often at much lower latency.

- These private copies can dramatically increase the throughput for updating the data structures. The downside is that the private copies need to be merged into the original data structure after the computation completes. One must carefully balance between the level of contention and the merging cost.
__global__ void histogram_kernel(const char *input, unsigned int *bins,
     unsigned int num_elements,
     unsigned int num_bins) {

unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x;
// Privatized bins
extern __shared__ unsigned int bins_s[];
for (unsigned int binIdx = threadIdx.x; binIdx < num_bins;
     binIdx += blockDim.x) {
    bins_s[binIdx] = 0;
}
__syncthreads();

// Histogram
for (unsigned int i = tid; i < num_elements; i += blockDim.x * gridDim.x) {
    atomicAdd(&((unsigned int)input[i]));
}
__syncthreads();

// Commit to global memory
for (unsigned int binIdx = threadIdx.x; binIdx < num_bins;
     binIdx += blockDim.x) {
    atomicAdd(bins[binIdx], bins_s[binIdx]);
}
}
Example: histogram computation

```c
__global__ void histogram_kernel(const char *input, unsigned int *bins,
 unsigned int num_elements,
 unsigned int num_bins) {
 unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x;
 // Privatized bins
 extern __shared__ unsigned int bins_s[];
 for (unsigned int binIdx = threadIdx.x; binIdx < num_bins;
 binIdx += blockDim.x) {
 bins_s[binIdx] = 0;
 }
 __syncthreads();
 // Histogram
 for (unsigned int i = tid; i < num_elements; i += blockDim.x * gridDim.x) {
 atomicAdd(&(bins_s[(unsigned int)input[i]]), 1);
 }
 __syncthreads();
 // Commit to global memory
 for (unsigned int binIdx = threadIdx.x; binIdx < num_bins;
 binIdx += blockDim.x) {
 atomicAdd(&bins[binIdx], bins_s[binIdx]);
 }
}
```

Dynamically allocated shared memory. To allocate it dynamically invoke the kernel with:

```c
dim3 blockDim(256), gridDim(30);
histogram_kernel<<<gridDim, blockDim, num_bins * sizeof(unsigned int)>>>(input, bins, num_elements, num_bins);
```
Improving memory access

• A simple parallel histogram algorithm partitions the input into sections

• Each section is given to a thread, that iterates through it

• This makes sense in CPU code, where we have few threads, each of which can efficiently use the cache lines when accessing memory

• This access is less convenient in GPUs
Sectioned Partitioning (Iteration #1)

programming

massively

parallel processors

Thread 0
Thread 1
Thread 2
Thread 3

0 0 0 3 0 0 0 0

a-d e-h i-l m-p q-t u-x y-z
Sectioned Partitioning (Iteration #2)

```
programming
massively
parallel processors
```

Thread 0
Thread 1
Thread 2
Thread 3

```
<table>
<thead>
<tr>
<th>2</th>
<th>0</th>
<th>0</th>
<th>4</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-d</td>
<td>e-h</td>
<td>i-l</td>
<td>m-p</td>
<td>q-t</td>
<td>u-x</td>
<td>y-z</td>
</tr>
</tbody>
</table>
```
Input Partitioning Affects Memory Access Efficiency

- Sectioned partitioning results in poor memory access efficiency
  - Adjacent threads do not access adjacent memory locations
  - Accesses are not coalesced
  - DRAM bandwidth is poorly utilized

- Change to interleaved partitioning
  - All threads process a contiguous section of elements
  - They all move to the next section and repeat
  - The memory accesses are coalesced
Interleaved Partitioning of Input

- For coalescing and better memory access performance
Interleaved Partitioning (Iteration 2)
A stride algorithm

__global__ void histo_kernel(unsigned char *buffer,
                               long size, unsigned int *histo)
{
    int i = threadIdx.x + blockIdx.x * blockDim.x;

    // stride is total number of threads
    int stride = blockDim.x * gridDim.x;

    // All threads handle blockDim.x * gridDim.x
    // consecutive elements
    while (i < size) {
        atomicAdd( &(histo[buffer[i]]), 1);
        i += stride;
    }
}

A stride algorithm

Calculates a stride value, which is the total number threads launched during kernel invocation (`blockDim.x*gridDim.x`). In the first iteration of the while loop, each thread index the input buffer using its global thread index: Thread 0 accesses element 0, Thread 1 accesses element 1, etc. Thus, all threads jointly process the first `blockDim.x*gridDim.x` elements of the input buffer.

```c
int i = threadIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads
int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x
// consecutive elements
while (i < size) {
 atomicAdd(&(histo[buffer[i]]), 1);
 i += stride;
}
```
A stride algorithm

Calculates a **stride** value, which is the total number threads launched during kernel invocation (**blockDim.x***gridDim.x**). In the first iteration of the **while** loop, each thread index the input buffer using its global thread index: Thread 0 accesses element 0, Thread 1 accesses element 1, etc. Thus, all threads jointly process the first **blockDim.x***gridDim.x** elements of the input buffer.

```c
int i = threadIdx.x + blockIdx.x * blockDim.x;
// stride is total number of threads
int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x
// consecutive elements
while (i < size) {
 atomicAdd(&(histo[buffer[i]]), 1);
 i += stride;
}
```

The while loop controls the iterations for each thread. When the index of a thread exceeds the valid range of the input buffer (i is greater than or equal to **size**), the thread has completed processing its partition and will exit the loop.
CUDA: parallel patterns - convolution
Convolution (stencil)

• An array operation where each output data element is a weighted sum of a collection of neighboring input elements

• The weights used in the weighted sum calculation are defined by an input mask array, commonly referred to as the convolution kernel

• We will refer to these mask arrays as convolution masks to avoid confusion.

• The value pattern of the mask array elements defines the type of filtering done
Convolution (stencil)

- An array operation where each output data element is a weighted sum of a collection of neighboring input elements.
- The weights used in the weighted sum calculation are defined by an input mask array, commonly referred to as the convolution kernel.
- We will refer to these mask arrays as convolution masks to avoid confusion.
- Often performed as a filter that transforms signal or pixel values into more desirable values.
1D Convolution Example

- Commonly used for audio processing
- Mask size is usually an odd number of elements for symmetry (5 in this example)
- The figure shows calculation of $P[2]$

Example: calculation of $P[3]$
Convolution Boundary Condition

- Calculation of output elements near the boundaries (beginning and end) of the array need to deal with “ghost” elements

- Different policies (0, replicates of boundary values, use of symmetrical values, etc.)
A 1D Convolution Kernel with Boundary Condition Handling

```c
__global__ void convolution_1D_basic_kernel(float *N, float *M, float *P, int Mask_Width, int Width) {
 int i = blockIdx.x*blockDim.x + threadIdx.x;

 float Pvalue = 0;
 int N_start_point = i - (Mask_Width/2);

 for (int j = 0; j < Mask_Width; j++) {
 if (N_start_point + j >= 0 &&
 N_start_point + j < Width) {
 Pvalue += N[N_start_point + j]*M[j];
 }
 }

 P[i] = Pvalue;
}
```

- This kernel forces all elements outside the valid input range to 0.
A 1D Convolution Kernel with Boundary Condition Handling

```c
__global__ void convolution_1D_basic_kernel(float *N, float *M,
 float *P, int Mask_Width, int Width) {
 int i = blockIdx.x*blockDim.x + threadIdx.x;

 float Pvalue = 0; /* Use a register */
 int N_start_point = i - (Mask_Width/2);

 for (int j = 0; j < Mask_Width; j++) {
 if (N_start_point + j >= 0 &&
 N_start_point + j < Width) {
 Pvalue += N[N_start_point + j]*M[j];
 }
 }

 P[i] = Pvalue;
}
```

- This kernel forces all elements outside the valid input range to 0
A 1D Convolution Kernel with Boundary Condition Handling

```c
__global__ void convolution_1D_basic_kernel(float *N, float *M,
 float *P, int Mask_Width, int Width) {
 int i = blockIdx.x*blockDim.x + threadIdx.x;

 float Pvalue = 0; // Use a register
 int N_start_point = i - (Mask_Width/2);

 for (int j = 0; j < Mask_Width; j++) {
 if (N_start_point + j >= 0 &&
 N_start_point + j < Width) {
 Pvalue += N[N_start_point + j]*M[j];
 }
 }

 P[i] = Pvalue;
}
```

- This kernel forces all elements outside the valid input range to 0

Source of bad performance: 1 floating-point operation per global memory access
2D Convolution

Let's consider a 2D convolution operation. The input matrix $N$ is:

$$N = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 5 & 6 & 7 & 8 & 5 & 6 \\
5 & 6 & 7 & 8 & 5 & 6 & 7 \\
6 & 7 & 8 & 9 & 0 & 1 & 2 \\
7 & 8 & 9 & 0 & 1 & 2 & 3
\end{bmatrix}$$

The kernel $M$ is:

$$M = \begin{bmatrix}
1 & 2 & 3 & 2 & 1 \\
2 & 3 & 4 & 3 & 2 \\
3 & 4 & 5 & 4 & 3 \\
2 & 3 & 4 & 3 & 2 \\
1 & 2 & 3 & 2 & 1
\end{bmatrix}$$

When we apply the kernel $M$ to the input matrix $N$, we get the output matrix $P$:

$$P = \begin{bmatrix}
1 & 4 & 9 & 8 & 5 \\
4 & 9 & 16 & 15 & 12 \\
4 & 16 & 25 & 24 & 21 \\
8 & 15 & 24 & 21 & 16 \\
5 & 12 & 21 & 16 & 5
\end{bmatrix}$$
2D Convolution – Ghost Cells
__global__

void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out,
 int maskwidth, int w, int h) {
    int Col = blockIdx.x * blockDim.x + threadIdx.x;
    int Row = blockIdx.y * blockDim.y + threadIdx.y;

    if (Col < w && Row < h) {
        int pixVal = 0;

        N_start_col = Col - (maskwidth/2);
        N_start_row = Row - (maskwidth/2);

        // Get the of the surrounding box
        for(int j = 0; j < maskwidth; ++j) {
            for(int k = 0; k < maskwidth; ++k) {

                int curRow = N_start_row + j;
                int curCol = N_start_col + k;
                // Verify we have a valid image pixel
                if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
                    pixVal += in[curRow * w + curCol] * mask[j*maskwidth+k];
                }
            }
        }

        // Write our new pixel value out
        out[Row * w + Col] = (unsigned char)(pixVal);
    }
}
__global__
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out,
int maskwidth, int w, int h) {
    int Col = blockIdx.x * blockDim.x + threadIdx.x;
    int Row = blockIdx.y * blockDim.y + threadIdx.y;

    if (Col < w && Row < h) {
        int pixVal = 0;

        N_start_col = Col - (maskwidth/2);
        N_start_row = Row - (maskwidth/2);

        // Get the of the surrounding box
        for(int j = 0; j < maskwidth; ++j) {
            for(int k = 0; k < maskwidth; ++k) {

                int curRow = N_start_row + j;
                int curCol = N_start_col + k;
                // Verify we have a valid image pixel
                if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
                    pixVal += in[curRow * w + curCol] * mask[j*maskwidth+k];
                }
            }
        }

        // Write our new pixel value out
        out[Row * w + Col] = (unsigned char)(pixVal);
    }
}
__global__
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out,
    int maskwidth, int w, int h) {
    int Col = blockIdx.x * blockDim.x + threadIdx.x;
    int Row = blockIdx.y * blockDim.y + threadIdx.y;

    if (Col < w && Row < h) {
        int pixVal = 0;

        N_start_col = Col - (maskwidth/2);
        N_start_row = Row - (maskwidth/2);

        // Get the of the surrounding box
        for(int j = 0; j < maskwidth; ++j) {
            for(int k = 0; k < maskwidth; ++k) {

                int curRow = N_Start_row + j;
                int curCol = N_start_col + k;
                // Verify we have a valid image pixel
                if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
                    pixVal += in[curRow * w + curCol] * mask[j*maskwidth+k];
                }
            }
        }
    }

    // Write our new pixel value out
    out[Row * w + Col] = (unsigned char)(pixVal);
}

__global__
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out,
   int maskwidth, int w, int h) {
    int Col = blockIdx.x * blockDim.x + threadIdx.x;
    int Row = blockIdx.y * blockDim.y + threadIdx.y;

    if (Col < w && Row < h) {
      int pixVal = 0;

      N_start_col = Col - (maskwidth/2);
      N_start_row = Row - (maskwidth/2);

      // Get the of the surrounding box
      for(int j = 0; j < maskwidth; ++j) {
        for(int k = 0; k < maskwidth; ++k) {

          int curRow = N_start_row + j;
          int curCol = N_start_col + k;
          // Verify we have a valid image pixel
          if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
            pixVal += in[curRow * w + curCol] * mask[j*maskwidth+k];
          }
        }
      }

      // Write our new pixel value out
      out[Row * w + Col] = (unsigned char)(pixVal);
    }
}
__global__
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out,
int maskwidth, int w, int h) {
    int Col = blockIdx.x * blockDim.x + threadIdx.x;
    int Row = blockIdx.y * blockDim.y + threadIdx.y;

    if (Col < w && Row < h) {
        int pixVal = 0;

        N_start_col = Col - (maskwidth/2);
        N_start_row = Row - (maskwidth/2);

        // Get the of the surrounding box
        for(int j = 0; j < maskwidth; ++j) {
            for(int k = 0; k < maskwidth; ++k) {

                int curRow = N_Start_row + j;
                int curCol = N_start_col + k;
                // Verify we have a valid image pixel
                if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
                    pixVal += in[curRow * w + curCol] * mask[j*maskwidth+k];
                }

            }
        }

        // Write our new pixel value out
        out[Row * w + Col] = (unsigned char)(pixVal);
    }
}
__global__
void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out,
    int maskwidth, int w, int h) {
    int Col  =   blockIdx.x * blockDim.x + threadIdx.x;
    int Row  = blockIdx.y * blockDim.y + threadIdx.y;

    if (Col < w && Row < h) {
        int pixVal = 0;

        N_start_col  = Col –   (maskwidth/2);
        N_start_row = Row – (maskwidth/2);

        // Get the of the surrounding box
        for(int j = 0; j < maskwidth; ++j) {
            for(int k = 0; k < maskwidth; ++k) {

                int curRow = N_Start_row + j;
                int curCol = N_start_col + k;
                // Verify we have a valid image pixel
                if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
                    pixVal += in[curRow * w + curCol] * mask[j*maskwidth+k];
                }
            }
        }

        // Write our new pixel value out
        out[Row * w + Col] = (unsigned char)(pixVal);
    }
}
Improving convolution kernel

- Use tiling for the N array element
- Use constant memory for the M mask
  - it’s typically small and is not changed
  - can be read by all threads of the grid

#define MAX_MASK_WIDTH 10
__constant__ float M[MAX_MASK_WIDTH];
cudamemcpyToSymbol(M, M_h, Mask_Width*sizeof(float));
Improving convolution kernel

• Use tiling for the N array element

• Use constant memory for the M mask
  • it’s typically small and is not changed
  • can be read by all threads of the grid

```c
#define MAX_MASK_WIDTH 10
__constant__ float M[MAX_MASK_WIDTH];
cudaMemcpyToSymbol(M, M_h, Mask_Width*sizeof(float));
```
Convolution with constant memory

```c
__global__ void convolution_1D_basic_kernel(float *N, float *P,
 int Mask_Width, int Width) {

 int i = blockIdx.x*blockDim.x + threadIdx.x;

 float Pvalue = 0;

 int N_start_point = i - (Mask_Width/2);

 for (int j = 0; j < Mask_Width; j++) {
 if (N_start_point + j >= 0 && N_start_point + j < Width) {
 Pvalue += N[N_start_point + j]*M[j];
 }
 }

 P[i] = Pvalue;
}
```
Convolution with constant memory

```c
__global__ void convolution_1D_basic_kernel(float *N, float *P,
 int Mask_Width, int Width) {

 int i = blockIdx.x*blockDim.x + threadIdx.x;
 float Pvalue = 0;
 int N_start_point = i - (Mask_Width/2);
 for (int j = 0; j < Mask_Width; j++) {
 if (N_start_point + j >= 0 && N_start_point + j < Width) {
 Pvalue += N[N_start_point + j]*M[j];
 }
 }
 P[i] = Pvalue;
}
```

2 floating-point operations per global memory access (N)
CUDA: parallel patterns - convolution & tiling
Tiling & convolution

- Calculation of adjacent output elements involve shared input elements
  - We can load all the input elements required by all threads in a block into the shared memory to reduce global memory accesses
Input Data Needs

- Assume that we want to have each block to calculate $T$ output elements
  - $T + \text{Mask\_Width} - 1$ input elements are needed to calculate $T$ output elements
  - $T + \text{Mask\_Width} - 1$ is usually not a multiple of $T$, except for small $T$ values
  - $T$ is usually significantly larger than $\text{Mask\_Width}$
Definition – output tile

- Each thread block calculates an output tile
- Each output tile width is O_TILE_WIDTH
- For each thread:
  - O_TILE_WIDTH is 4 in this example
Definition - Input Tiles

- Each input tile has all values needed to calculate the corresponding output tile.
Two Design Options

• Design 1: The size of each thread block matches the size of an output tile
  • All threads participate in calculating output elements
  • blockDim.x would be 4 in our example
  • Some threads need to load more than one input element into the shared memory

• Design 2: The size of each thread block matches the size of an input tile
  • Some threads will not participate in calculating output elements
  • blockDim.x would be 8 in our example
  • Each thread loads one input element into the shared memory
Thread to Input and Output Data Mapping

For each thread:

- Index_i = index_o – n

where n is Mask_Width /2

- n is 2 in this example
Loading input tiles

All threads participate:

```java
float output = 0.0f;
if((index_i >= 0) && (index_i < Width)) {
 Ns[tx] = N[index_i];
} else {
 Ns[tx] = 0.0f;
}
```
Calculating output

- Some threads do not participate: Only Threads $0$ through $0\_TILE\_WIDTH-1$ participate in calculation of output.

- $index\_o = blockIdx.x\_x*0\_TILE\_WIDTH + threadIdx.x$

```c
if (threadIdx.x < 0_TILE_WIDTH){
 output = 0.0f;
 for(j = 0; j < Mask_Width; j++) {
 output += M[j] * Ns[j+threadIdx.x];
 }
 P[index_o] = output;
}
```
Setting Block Size

#define O_TILE_WIDTH 1020

#define BLOCK_WIDTH (O_TILE_WIDTH + 4)

dim3 dimBlock(BLOCK_WIDTH,1,1);

dim3 dimGrid((Width-1)/O_TILE_WIDTH+1, 1, 1)

• The Mask_Width is 5 in this example

• In general, block width should be
  • output tile width + (mask width-1)
Shared Memory Data Reuse

N_ds

Mask_Width is 5

Element 2 is used by thread 4 (1X)
Element 3 is used by threads 4, 5 (2X)
Element 4 is used by threads 4, 5, 6 (3X)
Element 5 is used by threads 4, 5, 6, 7 (4X)
Element 6 is used by threads 4, 5, 6, 7 (4X)
Element 7 is used by threads 5, 6, 7 (3X)
Element 8 is used by threads 6, 7 (2X)
Element 9 is used by thread 7 (1X)
Ghost/Halo cells
Evaluating tiling
An 8-element Convolution Tile

For Mask_Width=5, we load 8+5-1=12 elements (12 memory loads)
Evaluating reuse

- Each output P element uses 5 N elements:

  P[8] uses N[6], N[7], N[8], N[9], N[10]
  P[10] uses N[8], N[9], N[10], N[11], N[12]
  ...
  P[14] uses N[12], N[13], N[14], N[15], N[16]
Evaluating reuse

- Each output $P$ element uses 5 $N$ elements:


$(8+5-1)=12$ elements loaded
8*5 global memory accesses replaced by shared memory accesses
This gives a bandwidth reduction of $40/12=3.3$
General 1D tiled convolution

- O_TILE_WIDTH+MASK_WIDTH -1 elements loaded for each input tile
- O_TILE_WIDTH*MASK_WIDTH global memory accesses replaced by shared memory accesses
- This gives a reduction factor of

\[
\frac{(O\_TILE\_WIDTH*MASK\_WIDTH)}{(O\_TILE\_WIDTH+MASK\_WIDTH-1)}
\]

- This ignores ghost elements in edge tiles.
Another Way to Look at Reuse

- N[6] is used by P[8] (1X)
- N[7] is used by P[8], P[9] (2X)
- N[8] is used by P[8], P[9], P[10] (3X)
- N[9] is used by P[8], P[9], P[10], P[11] (4X)
- N[10] is used by P[8], P[9], P[10], P[11], P[12] (5X)
- … (5X)
- N[14] is used by P[12], P[13], P[14], P[15] (4X)
- N[15] is used by P[13], P[14], P[15] (3X)
Another Way to Look at Reuse

- The total number of global memory accesses to the \((8+5-1)=12\) elements of \(N\) that is replaced by shared memory accesses is:

\[
1+2+3+4+5*(8-5+1)+4+3+2+1 = 10+20+10 = 40
\]

- So the reduction is \(40/12 = 3.3\)
General 1D tiling

• The total number of global memory accesses to the input tile can be calculated as

\[ 1 + 2 + \ldots + \text{MASK_WIDTH}-1 + \text{MASK_WIDTH} \times (\text{O_TILE_WIDTH}-\text{MASK_WIDTH}+1) + \text{MASK_WIDTH}-1 + \ldots + 2 + 1 \]

\[ = \text{MASK_WIDTH} \times (\text{MASK_WIDTH}-1) + \text{MASK_WIDTH} \times (\text{O_TILE_WIDTH}-\text{MASK_WIDTH}+1) \]

\[ = \text{MASK_WIDTH} \times \text{O_TILE_WIDTH} \]

• For a total of O_TILE_WIDTH + MASK_WIDTH -1 input tile elements
Examples of Bandwidth Reduction for 1D

• The reduction ratio is:

  \[
  \frac{\text{MASK WIDTH} \times \text{O TILE WIDTH}}{\text{O TILE WIDTH} + \text{MASK WIDTH} - 1}
  \]

<table>
<thead>
<tr>
<th>O TILE WIDTH</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASK_WIDTH= 5</td>
<td>4.0</td>
<td>4.4</td>
<td>4.7</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>MASK_WIDTH = 9</td>
<td>6.0</td>
<td>7.2</td>
<td>8.0</td>
<td>8.5</td>
<td>8.7</td>
</tr>
</tbody>
</table>
2D convolution tiles

- \((O_{\text{TILE\_WIDTH}}+\text{MASK\_WIDTH}-1)^2\) input elements need to be loaded into shared memory

- The calculation of each output element needs to access \(\text{MASK\_WIDTH}^2\) input elements

- \(O_{\text{TILE\_WIDTH}}^2 \times \text{MASK\_WIDTH}^2\) global memory accesses are converted into shared memory accesses

- The reduction ratio is

  \[
  \frac{O_{\text{TILE\_WIDTH}}^2 \times \text{MASK\_WIDTH}^2}{(O_{\text{TILE\_WIDTH}}+\text{MASK\_WIDTH}-1)^2}
  \]
Bandwidth Reduction for 2D

- The reduction ratio is:

\[
\frac{O_{\text{TILE WIDTH}}^2 \times \text{MASK WIDTH}^2}{(O_{\text{TILE WIDTH}} + \text{MASK WIDTH} - 1)^2}
\]

- Tile size has significant effect on the memory bandwidth reduction ratio.

- This often argues for larger shared memory size.
Credits

- These slides report material from:
  - NVIDIA GPU Teaching Kit
Books

• Programming Massively Parallel Processors: A Hands-on Approach, D. B. Kirk and W-M. W. Hwu, Morgan Kaufman - Chapt. 8