GPU
programming
basics

Prof. Marco Bertini

Data
parallelism:
GPU computing

CUDA:

performance
considerations

% | UNIVERSITA
< W{m % | DEGLI STUDI
\

mﬁ“i FIRENZE

Memory bandwidth

- One of the most important factors of CUDA kernel performance is
accessing data in the global memory (a DRAM memory).

- The process of reading a the status of a bit takes 10s of
nanoseconds in modern DRAM chips. This is in sharp contrast with
the sub-nanosecond clock cycle time of modern computing devices.

- Modern DRAMSs use parallelism to increase their rate of data
access: Each time a DRAM location is accessed, a range of
consecutive locations that include the requested location are
actually accessed (DRAM bursts).

- When all threads in a warp execute a load instruction, the hardware
detects whether they access consecutive global memory locations.
In this case, the hardware combines, or coalesces, all these
accesses into a consolidated access to consecutive DRAM
locations.

mo UNIVERSITA
WD DEGLI STUDI

ﬁ' Vo | FIRENZE

Memory bandwidth

For example, for a given load instruction of a warp, it thread 0 accesses global memory
location N, thread 1 location N+1, thread 2 location N+2, and so on, all these accesses will be
coalesced. Such coalesced access allows the DRAMSs to deliver data as a burst

- The process of reading a the status of a bit takes 10s of
nanoseconds in modern DRAM chips. This is in sharp contrast with
the sub-nanosecond clock cycle time of modern computing devices.

Xl

S}H

- Modern DRAMSs use parallelism to increase their rate of data
access: Each time a DRAM location is accessed, a range of
consecutive locations that include the requested location are
actually accessed (DRAM bursts).

- When all threads in a warp execute a load instruction, the hardware
detects whether they access consecutive global memory locations.
In this case, the hardware combines, or coalesces, all these
accesses into a consolidated access to consecutive DRAM
locations.

&%%KO% UNIVERSITA
Z {é‘% 2 | DEGLI STUDI

%
(wﬁ'w FIRENZE
IREINS

DRAM bursting

Address bits to
decoder .
bits
Core Array accessdelay on interface
> <+—>

time

Non-bursttiming

Burst timing

- Modern DRAM systems are designed to always be accessed in burst mode. Burst bytes are
transferred to the processor but discarded when accesses are not to sequential locations.

“7'&'{%, UNIVERSITA
A2 | DEGLI STUDI

Q
S
*fé\y |

FIRENZE

7
7 S
A

DRAM Burst — A System View

Burst section Burst section Burst section Burst section

SRR - [o o] lafnlu]e

- Each address space is partitioned into burst sections

- Whenever a location is accessed, all other locations in the same section are
also delivered to the processor

- Basic example: a 16-byte address space, 4-byte burst sections

- In practice, we have at least 4GB address space, burst section sizes of 128-
bytes or more

?&K% UNIVERSITA
. DEGLI STUDI

R
PN\
g
<

FIRENZE

7
7 S
A

Coalesced Loads Coalesced Loads
T, T, T, T, To, T, T, T,
0 1 2 3 9 10 11 12 13 14 15
Burst section Burst section Burst section Burst section

- When all threads of a warp execute a load instruction, if all accessed locations fall into
the same burst section, only one DRAM request will be made and the access is fully
coalesced.

Un-coalesced Loads Un-coalesced Loads
To Ty T2 T3 To T1 Ty T3
0 1 2 3 9 10 11 12 13 14 15

Burst section Burst section Burst section Burst section

- When the accessed locations spread across burst section boundaries:
- Coalescing fails
- Multiple DRAM requests are made
- The access is not fully coalesced.

- Some of the bytes accessed and transferred are not used by the threads

How to judge if an access is coalesced?

Accesses in a warp are to consecutive locations if the index in
an array access is in the form of:
A[(expression with terms independent of threadldx.x) + threadIdx.x];

Coalesced Loads Coalesced Loads
To T4 T, T4 To T, T, T4
0 1 2 3 9 10 11 12 13 14 |15

Burst section Burst section Burst section Burst section
- When all threads of a warp execute a load instruction, if all accessed locations fall into
the same burst section, only one DRAM request will be made and the access is fully

coalesced. Un-coalesced Loads Un-coalesced Loads
To Ty T, T3 To T4 T Ts
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Burst section Burst section Burst section Burst section

- When the accessed locations spread across burst section boundaries:
- Coalescing fails
- Multiple DRAM requests are made
- The access is not fully coalesced.

- Some of the bytes accessed and transferred are not used by the threads

N UNIVERSITA
(U 3 DEGLI STUDI
mﬂ FIRENZE

Two Access Patterns of Basic Matrix

Multiplication
A
Threadl _ §
ThreadZ —_— =
A[Row*n+1i] 1*k+Col]

- i is the loop counter in the inner product loop of the kernel code
- Aismxn,BisnxKk

e Col = blockIdx.x*blockDim.x + threadIdx.x

o, | UNIVERSITA
(37’ DEGLI STUDI
ne ﬂ FIRENZE

Two Access Patterns of Basic Matrix

Multiplication
A
Thread 1 §
Thread 2 §
A[Row*n+1i] 1*k+Col]

B accesses are coalesced
- 11s the loop counter in the innq

Load iteration 0 Load iteration 1
- Aismxn,BisnxKk e L e T
M1
o CO-I_ = b-I_OCkIdX.X*b-I_OCk SO ICIRRIEIPRIEIEN Bio Bi1 Bi2 By3s Byo Byy Byz B3 Bsg B3y B3z Bsjs

Access
directionin
kernel code

/\~O
%\ %
5@?&2
% IQ%

A@W

UNIVERSITA
DEGLI STUDI

FIRENZE

A Accesses are Not Coalesced

Load iteration 1

To T4
Load iteration O
To Ty
AO,O A0,1 AO,Z A0,3 A1,O A1,1 A1,2 A1,3 AZ,O A2,1 A2,2 A2,3 A3,0 A3,1 A3,2 A3,3

Access - “ ’ .
directionin EAEIRAREEFREE

kernel code Az’o A2,1 Az’z A2)3

Aso Az Az Ass

Matrix

HEIGHT

A[Row*n+1]

B[1*k+Col]

B accesses are coalesced

- 11s the loop counter in the innq

Load iteration O

- Aismxn,BisnxKk L, T T T

e Col

b-l_ OC kIdX.X*b-I_OCk CORNEIRRIEIPRERR Bio Bi1 Bi2 Bi3|Byo|By1|Byy(By3 B3 Bsg B3z Bss

Load iteration 1
To T T, T

Access
directionin
kernel code

“7"’3’%, UNIVERSITA

DEGLI STUDI

rv,”' I | FIRENZE

Coalescing

- Basically this mechanism is true for CPUs and
GPUs: to use bandwidth effectively, when threads
load, they should:

- Present a set of unit-strides loads (dense access)

- Keep sets of loads aligned to memory vector
boundaries

0 ... 4 -.. Sparse access: 2 words used, 8
I l loaded: % effective bandwidth
10142184567

. ... Unaligned access: 4 words used,
Cache |ine W|dth 1121314 8 loaded: V2 effective bandwidth

«\//i%“’ﬁfé% UNIVERSITA

DEGLI STUDI

FIRENZE

Padding

- A possible way to reduce alignment problems is to
use padding

— mﬂ

(row major)

[[
| L !
by~ e
I |

& & B |

[—

SHER% [UNIVERSITA
</ fllla> = | DEGLI STUDI

S| {8~
=G | FIRENZE
H2194a Ny

Non coalesced read

- |f an algorithm intrinsically requires a kernel code to
iterate through data along the row direction, one
can use the shared memory to enable memory
coalescing.

- The technique is called corner turning

- Atiled algorithm can be used to enable
coalescing

- Once the data is in shared memory, they can be
accessed either on a row basis or a column basis

Loading an input tile

element.

- Accessing tile O with 2D indexing:

1nt tx = threadldx.x
int ty = threadldx.y
A[Row][tx]

- Have each thread load an A element and a B
element at the same relative position as its C

Col

BLty][Col]

WIDTH

UNIVERSITA
DEGLI STUDI

FIRENZE

orner turning

d M i r_
Original
Access g
Pattern
- WIDTH . l— Copy N
shared
memory
d M i memry
Tiled
Access

—N |
Pattern /
Perform

multiplication
with shared memory
values

il | FIRENZE
ZREIN

S, | UNIVERSITA
g @'ﬁ 2 | DEGLI STUDI
&l

Corner turning

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {
__Shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
__Shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
int bx = blockIdx.x; 1int by = blockIdx.y;
1nt tx = threadldx.x; int ty = threadldx.y;
// ldentify the row and column of the P element to work on
int Row = by * TILE_WIDTH + ty;
int Col = bx * TILE_WIDTH + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {

// Collaborative loading of M and N tiles into shared memory

Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH + tx];

Nds[ty][tx] = NL(ph*TILE_WIDTH + ty)*Width + Col];

__syncthreads();

for (int k = 0; k < TILE_WIDTH; ++k) {

Pvalue += Mds[ty][k] * Nds[k][tx];
ks
__syncthreads();

ks
P[Row*Width + Col] = Pvalue;

/\
3/

Wm UNIVERSITA

)ﬁ DEGLI STUDI

<y dl‘ FIRENZE

Corner turning

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {
__shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
__shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
int bx = blockIdx.x; 1int by = blockIdx.y;
int tx = threadldx.x; int ty = threadldx.y;
// Identify the row and column of the P element to work on
int Row = by * TILE_WIDTH + ty;
int Col = bx * TILE_WIDTH + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int ph = @; ph < Width/TILE_WIDTH; ++ph) {

// ollaborative loadinag of M and N S nto_shared memory
\Mds[ty][tx] M[Row*Wldth + ph*TILE_ WIDTH + tx], ‘

—— == = —_—

The linearized index Calculatlon IS equwalent to M[Row] [ph*TILE SIZE+tx].
Note that the column index used by the threads only differ in terms of threadIdx.
The Row Index is determined by blockldx.y and threadldx.y, which means that threads in the

same thread block with identical blockldx.y/threadldx.y and adjacent threadldx.x values will
access adjacent M elements.

That is, each row of the tile is loaded by TILE_WIDTH threads whose threadldx are identical in
the y dimension and consecutive in the x dimension.

The hardware will coalesce these loads.

il | FIRENZE
ZREIN

S, | UNIVERSITA
g @'ﬁ 2 | DEGLI STUDI
&l

Corner turning

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {
__Shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
__Shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
int bx = blockIdx.x; 1int by = blockIdx.y;
1nt tx = threadldx.x; int ty = threadldx.y;
// ldentify the row and column of the P element to work on
int Row = by * TILE_WIDTH + ty;
int Col = bx * TILE_WIDTH + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {

// Collaborative loading of M and N tiles into shared memory

Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH + tx];

Nds[ty][tx] = NL(ph*TILE_WIDTH + ty)*Width + Col];

__syncthreads();

for (int k = 0; k < TILE_WIDTH; ++k) {

Pvalue += Mds[ty][k] * Nds[k][tx];
ks
__syncthreads();

ks
P[Row*Width + Col] = Pvalue;

UNIVERSITA

DEGLI STUDI

FIRENZE

Corner turning

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {
__Shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
__Shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
int bx = blockIdx.x; 1int by = blockIdx.y;
1nt tx = threadldx.x; int ty = threadldx.y;
// Identify the row and column of the P element to work on
int Row = by * TILE_WIDTH + ty;
int Col = bx * TILE_WIDTH + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {
// Collaborative loading of M and N tiles into shared memory
Mds[t M[Row*Width + ph*TI T
\Nds[ty][tx] N[(ph*TILE WIDTH + ty)*Wldth + Col],)

In the case of N, the row index ph*TILE__SIZE+ty has the same value for all threads with the
same threadldx.y value. Note that the column index calculation for each thread, Col
bx*TILE_SIZE+tx . The first term, bx*TILE_SIZE, is the same for all threads in the same

block. The second term, tX, is simply the threadIdx.x value. Therefore, threads with
adjacent threadIdx.x values access adjacent N elements in a row.
The hardware will coalesce these loads.

T

Sila% [UNIVERSITA

% | DEGLI STUDI

S| 4=,
T | FIRENZE

Corner turning and tiling

- Note that in the simple algorithm, threads with adjacent
threadIdx.x values access vertically adjacent elements
that are not physically adjacent in the row major layout.

- The tiled algorithm “transformed” this into a different
access pattern where threads with adjacent

threadIdx. x values access horizontally adjacent

elements.
That is we turned a vertical access pattern into a
horizontal access pattern, which is sometimes referred to

as corner turning.

- |n the tiled algorithm, loads to both the M and N elements
are coalesced.

mo UNIVERSITA
WD DEGLI STUDI

L

Wllﬂ" /= | FIRENZE

Corner turning and tiling

- Note that in the simple algorithm, threads with adjacent
threadIdx.x values access vertically adjacent elements
that are not physically adjacent in the row major layout.

The tiled matrix multiplication algorithm has two advantages over the simple matrix
multiplication:
1. number of memory loads are reduced due to the reuse of data in the shared memory.
2. the remaining memory loads are coalesced so the DRAM bandwidth utilization is further
improved.

elements.
That is we turned a vertical access pattern into a
horizontal access pattern, which is sometimes referred to
as corner turning.

- |n the tiled algorithm, loads to both the M and N elements
are coalesced.

S | UNIVERSITA
2 |z | DEGLI STUDI

S| 685 <
~ui)s | FIRENZE

Ny

Strided memory access

- Strided memory access can result in bad
performance (no coalescing or L2 caching)

- Using Array of Structures instead of Structures of
Arrays may cause strides access:

__global__ void copy(float *odata, float *idata) {
int xid = (blockIdx.x*blockDim.x+threadIdx.x) * STRIDE;
odata[x1d] = idata[xid];

¥

UNIVERSITA
DEGLI STUDI

/ o,
e
vdg FIRENZE

UNES

$

L

AoS vs. SOA

- Let us consider a commonly used Array of
Structure, e.g. to store 3D points:

struct point {
float x, y, z;

+s

__device__ struct point d_points[n];

__global__ void doWork() {
float x = d_points[blockIdx.x*blockDim.x+threadIdx.x].x;
float y = d_points[blockIdx.x*blockDim.x+threadIdx.x].y;
float z = d_points[blockIdx.x*blockDim.x+threadIldx.x].z;
func(x, y, 2);

! Stride: 3

< /T\ UNIVERSITA
éé< Wa>7= DEGLI STUDI
I
L\

Al 1‘ FIRENZE

H[\

AoS vs. SOA

- Consider an alternative Structure of Arrays:

struct point {
float x[n], y[n], z[n];
s

__device__ struct point d_points;

__global__ void doWork() {
float x = d_points.x[blockIdx.x*blockDim.x+threadIdx.x];
float y = d_points.y[blockIdx.x*blockDim.x+threadIdx.x];
float z = d_points.z[blockIdx.x*blockDim.x+threadIdx.x];
func(x, y, 2z);

Better memory access: coalesced and L2 cache friendly

Xo X1 X s Xx [Yo Y1 Yo B Y 2o Z, Z; .

T

g\%,,‘%%% UNIVERSITA
g@@iﬁ,g DEGLI STUDI
BN

"f&ﬂd\l

LIy

I | FIRENZE

Memory parallelism

- DRAM bursting is a form of parallel organization: multiple locations
around are accessed in the DRAM core array in parallel. However,
bursting alone is not sufficient to realize the level of DRAM access
bandwidth required by modern processors.

- DRAM systems typically employ two more forms of parallel
organization — banks and channels.

- At the highest level, a processor contains one or more channels.
Each channel is a memory controller with a bus that connects a set of
DRAM banks to the processor.

Processor

+ For each channel, the number of banks connected
to it is determined by the number of banks required
to fully utilize the data transfer bandwidth of the bus.

- The data transfer bandwidth of a bus is defined
by its width and clock frequency. Modern double
data rate (DDR) busses perform two data
transfers per clock cycle, one at the rising edge
and one at the falling edge of each clock cycle.
For example, a 64-bit DDR bus with a clock
frequency of 1 GHz has a bandwidth of 8B * 2 *
1GHz = 16GB/sec.

o | UNIVERSITA
(Lw%ﬁ DEGLI STUDI
.\

a) FIRENZE

‘flll

Banks and DRAM bursting

I
Single-Bank burst timing, dead time on interface

. J ({ J ({1 | (/| |
Multi-Bank burst timing, reduced dead time

- In order to achieve the memory access bandwidth specified for
device, there must be a sufficient number of threads making
simultaneous memory accesses.

- Adistribution scheme referred to as interleaved data
distribution, spreads the elements across the banks and

channels in the system.

Warps and SIMD

- Within a warp execution on the GPU hardware
follows SIMD execution model

» The view outside of a warp is SIMT

- If the code within warp has a different control flow

we have a divergence: not all threads will be
active

- |deally we should avoid conditional code

- Especially conditional code based on threadIdx

SR ;
5/“@7%% UNIVERSITA
5 {2 2 | DEGLI STUDI
Sl | FIRENZE

7
s

Divergence

__global__ void bad_kernel() {
1f (threadlds.x % 2)
something();
else
something_else();

Within a warp half of the threads will diverge

__global__ void better_kernel() {
1f (blockIdx.x % 2) {
something();
else
something_else();

Within a warp threads will execute the same code,
without divergence, e.g. with a block of 32 threads,

blockIdx.x=1 will have a warp executing
something() and blockIdx.x=2 will have a full
warp executing something_else()

SHER% [UNIVERSITA
=/ |2 2 | DEGLI STUDI

S| {8~
=G | FIRENZE
H2194a Ny

Divergence

- Another example: processing a long list of
elements where, depending on run-time values, a
few require very expensive processing

- first process list to build two sub-lists of “simple”
and “expensive” elements

- then process two sub-lists separately

AP | UNIVERSITA
(g 2 | DEGLI STUDI

L AN
NS FIRENZE

- These slides report material from:
- NVIDIA GPU Teaching Kit

- Prof. Paul Richmond (Univ. Sheffield)

St | UNIVERSITA
=/ WA Z | DEGLI STUDI
22l /=
> \V4 &
[l | FIRENZE

- Programming Massively Parallel Processors: A

Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufmann - 2nd edition - Chapt. 4-6

or
Programming Massively Parallel Processors: A

Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufmann - 3rd edition - Chapt. 3-5

