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Atomic operations
• The basics atomic operation in hardware is something like a  

read-modify-write operation performed by a single hardware 
instruction on a memory location address 

• Read the old value, calculate a new value, and write the new 
value to the location 

• The hardware ensures that no other threads can perform another 
read-modify-write operation on the same location until the 
current atomic operation is complete 

• Any other threads that attempt to perform an atomic operation 
on the same location will typically be held in a queue 

• All threads perform their atomic operations serially on the 
same location



         

      
         

      

Atomic Operations in CUDA
• Performed by calling functions that are translated 

into single instructions (a.k.a. intrinsic functions or 
intrinsics) 

• Operation on one 32-bit or 64-bit word residing in 
global or shared memory. 

• Atomic functions can only be used in device 
functions 

• Atomic add, sub, inc, dec, min, max, exch 
(exchange), CAS (compare and swap), and, or, xor



         

      
         

      

Some examples
• Atomic Add 

• int atomicAdd(int* address, int val);  

• reads the 32-bit word old from the location pointed to by address in global or shared memory, 
computes (old + val), and stores the result back to memory at the same address. The function 
returns old.  

• Unsigned 32-bit integer atomic add 

• unsigned int atomicAdd(unsigned int* address, unsigned int val);  

• Unsigned 64-bit integer atomic add 

• unsigned long long int atomicAdd(unsigned long long int* address, unsigned 
long long int val);  

• Single-precision floating-point atomic add (capability > 2.0) 

• float atomicAdd(float* address, float val);  

• Double precision floating-point atomic add (capability > 6.0) 

• double atomicAdd(double* address, double val);



         

      
         

      

atomicCAS
• int atomicCAS(int* address, int compare, int val);

• unsigned int atomicCAS(unsigned int* address,  
                       unsigned int compare,  
                       unsigned int val);

• unsigned long long int atomicCAS(unsigned long long  
                                       int* address,  
                                 unsigned long long int  
                                       compare,  
                                 unsigned long long int  
                                       val);

• reads the 32-bit or 64-bit word old located at the address address in global or 
shared memory, computes (old == compare ? val : old) , and stores the 
result back to memory at the same address. These three operations are 
performed in one atomic transaction. The function returns old (Compare And 
Swap).



         

      
         

      

atomicCAS
• int atomicCAS(int* address, int compare, int val);

• unsigned int atomicCAS(unsigned int* address,  
                       unsigned int compare,  
                       unsigned int val);

• unsigned long long int atomicCAS(unsigned long long  
                                       int* address,  
                                 unsigned long long int  
                                       compare,  
                                 unsigned long long int  
                                       val);

• reads the 32-bit or 64-bit word old located at the address address in global or 
shared memory, computes (old == compare ? val : old) , and stores the 
result back to memory at the same address. These three operations are 
performed in one atomic transaction. The function returns old (Compare And 
Swap).

More precisely: *address=(*address==compare) ? val : *address;



         

      
         

      

atomicCAS
• Note that any atomic operation can be implemented based on atomicCAS() (Compare And Swap). For 

example, atomicAdd() for double-precision floating-point numbers is not available on devices with 
compute capability lower than 6.0 but it can be implemented as follows: 
 
#if __CUDA_ARCH__ < 600  
__device__ double atomicAdd(double* address, double val)  
{  
    unsigned long long int* address_as_ull =  
                                          (unsigned long long int*) address;  
    unsigned long long int old = *address_as_ull;  
    unsigned long long int assumed;  
    do {  
        assumed = old;  
        old = atomicCAS(address_as_ull, assumed,  
                 __double_as_longlong(val + __longlong_as_double(assumed)));  
    // Note: uses integer comparison to avoid hang in case  
    //       of NaN (since NaN != NaN)  
    } while (assumed != old);  
    return __longlong_as_double(old);  
}  
#endif 



         

      
         

      

atomicCAS
• Note that any atomic operation can be implemented based on atomicCAS() (Compare And Swap). For 

example, atomicAdd() for double-precision floating-point numbers is not available on devices with 
compute capability lower than 6.0 but it can be implemented as follows: 
 
#if __CUDA_ARCH__ < 600  
__device__ double atomicAdd(double* address, double val)  
{  
    unsigned long long int* address_as_ull =  
                                          (unsigned long long int*) address;  
    unsigned long long int old = *address_as_ull;  
    unsigned long long int assumed;  
    do {  
        assumed = old;  
        old = atomicCAS(address_as_ull, assumed,  
                 __double_as_longlong(val + __longlong_as_double(assumed)));  
    // Note: uses integer comparison to avoid hang in case  
    //       of NaN (since NaN != NaN)  
    } while (assumed != old);  
    return __longlong_as_double(old);  
}  
#endif Reinterpret the bits in the 64-bit signed integer 

value as a double-precision floating point value.



         

      
         

      

Critical section
• Using atomic instructions, in particular CAS, it is 

possible to implement a critical section. We need to 
use also atomicExch() that exchanges a value: 
 
__device__ int lock = 0;  
 
__global__ void kernel() {  
  // ...  
  if (threadIdx.x==0) {  
      // set lock  
      do {} while(atomicCAS(&lock, 0, 1); // spin...  
      // critical code section  
      atomicExch(&lock, 0); // release lock  
    }  
  }  
} We use thread 0 of each block for mutual exclusion



         

      
         

      

Memory fence
• atomicCAS can not pick stale values of the lock, since 

global atomics bypass L1 and are resolved in L2 
cache, which is a device-wide resource 

• But no one assures us that a programmer does not 
read the mutex variable (after all it is just a global 
variable…) 

• To avoid reading stale values in other threads we need 
to force to read actual values, ie.. using a memory 
fence. GPUs implement a weak memory ordering… 

• Use __threadfence()



         

      
         

      

__threadfence()
• __threadfence_block();

• wait until all global and shared memory writes are visible to:  

• all threads in block  

• __threadfence();

• wait until all global and shared memory writes are visible to:  

• all threads in block 

• all threads, for global data 



         

      
         

      

Lock structure
struct Lock {  
    int *mutex;  
    Lock( void ) {  
        cudaMalloc( (void**)&mutex, sizeof(int) );  
        cudaMemset( mutex, 0, sizeof(int) );  
    }

    ~Lock( void ) {  
        cudaFree( mutex );  
    }

    __device__ void lock( void ) {  
        while( atomicCAS( mutex, 0, 1 ) != 0 ); // spin lock: cycle until it sees  0  

    __threadfence();  
    }

    __device__ void unlock( void ) {  
         __threadfence();  
         atomicExch( mutex, 0 );  
    }

};



         

      
         

      

Lock and warps
• Threads within a warp negotiating for a lock can be 

quite challenging due to the GPU warp-based 
execution: 
 
__device__ int lock;  
 
__global__ void Deadlock() {  
    while (atomicCAS(&lock, 0, 1) != 0){}  
    // critical section  
    atomicExch(&lock, 0);  
}



         

      
         

      

Lock and warps
• Threads within a warp negotiating for a lock can be 

quite challenging due to the GPU warp-based 
execution: 
 
__device__ int lock;  
 
__global__ void Deadlock() {  
    while (atomicCAS(&lock, 0, 1) != 0){}  
    // critical section  
    atomicExch(&lock, 0);  
}

Threads in a warp execute in lockstep. The threads in a warp 
entering the while loop must all acquire the lock before any can 
proceed beyond that while loop. Unfortunately this is impossible, and 
there is deadlock.



         

      
         

      

Lock and warps
• A way to avoid the previous problem; 
 
__device__ int lock = 0;  
 
__global__ void kernel() {  
  bool blocked = true;  
  while(blocked) {  
    if (0 == atomicCAS(&lock, 0, 1)) {  
        doCriticJob();  
        atomicExch(&lock, 0);  
        blocked = false;  
    }  
  }  
}

Each thread that acquires the lock has a chance to release it.  
All the threads waiting to lock are inside the same while loop, one of them  
will get the lock and then exit the loop. Once all threads have acquired/

released the lock, the code continues after the loop



         

      
         

      

Lock and warps
• A way to avoid the previous problem; 
 
__device__ int lock = 0;  
 
__global__ void kernel() {  
  bool blocked = true;  
  while(blocked) {  
    if (0 == atomicCAS(&lock, 0, 1)) {  
        doCriticJob();  
        atomicExch(&lock, 0);  
        blocked = false;  
    }  
  }  
}

Note: Managing mutexes or critical sections, especially when the negotiation is 
amongst threads in the same warp is notoriously difficult and fragile. The general 
advice is to avoid it.  
If you must use mutexes or critical sections, have a single thread in the threadblock 
negotiate for any thread that needs it, then control behavior within the threadblock 
using intra-threadblock synchronization mechanisms, such as __syncthreads().

Each thread that acquires the lock has a chance to release it.  
All the threads waiting to lock are inside the same while loop, one of them  
will get the lock and then exit the loop. Once all threads have acquired/

released the lock, the code continues after the loop



         

      
         

      

Atomic operations and caches
• Atomic operations serialize simultaneous updates to a 

location, thus to improve performance the serialization 
should be as fast as possible 

• changing locations in global memory is slow: e.g. with an 
access latency of 200cycles and 1 Ghz clock the 
throughput of atomics is 1/400 (atomics/clock) * 1 G 
(clocks/secs) = 2.5M atomics/secs (vs. the Gflops of 
modern GPUs) 

• Cache memories are the primary tool for reducing memory 
access latency (e.g. 10s of cycle vs. 100s of cycles). 

• Recent GPUs allow atomic operation to be performed in the 
last level cache, which is shared among all SMs.



         

      
         

      

Privatization
• The latency for accessing memory can be 

dramatically reduced by placing data in the shared 
memory.  
Shared memory is private to each SM and has very 
short access latency (a few cycles); this directly 
translates into increase throughput of atomic 
operations.  

• The problem is that due to the private nature of 
shared memory, the updates by threads in one 
thread block is no longer visible to threads in other 
blocks.



         

      
         

      

Privatization
• The idea of privatization is to replicate highly 

contended data structures into private copies so that 
each thread (or each subset of threads) can access a 
private copy.  
The benefit is that the private copies can be accessed 
with much less contention and often at much lower 
latency.  

• These private copies can dramatically increase the 
throughput for updating the data structures. The down 
side is that the private copies need to be merged into 
the original data structure after the computation 
completes. One must carefully balance between the 
level of contention and the merging cost.



         

      
         

      

Example: histogram computation
__global__ void histogram_kernel(const char *input, unsigned int *bins,  
                                 unsigned int num_elements,  
                                 unsigned int num_bins) {  
  unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x;  
  // Privatized bins  
  extern __shared__ unsigned int bins_s[];  
  for (unsigned int binIdx = threadIdx.x; binIdx < num_bins;  
       binIdx += blockDim.x) {  
    bins_s[binIdx] = 0;  
  }  
  __syncthreads();

 
  // Histogram  
  for (unsigned int i = tid; i < num_elements; i += blockDim.x * gridDim.x) {  
    atomicAdd(&(bins_s[(unsigned int)input[i]]), 1);  
  }  
  __syncthreads();

  // Commit to global memory  
  for (unsigned int binIdx = threadIdx.x; binIdx < num_bins;  
         binIdx += blockDim.x) {  
    atomicAdd(&(bins[binIdx]), bins_s[binIdx]);  
  }  
}



         

      
         

      

Example: histogram computation
__global__ void histogram_kernel(const char *input, unsigned int *bins,  
                                 unsigned int num_elements,  
                                 unsigned int num_bins) {  
  unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x;  
  // Privatized bins  
  extern __shared__ unsigned int bins_s[];  
  for (unsigned int binIdx = threadIdx.x; binIdx < num_bins;  
       binIdx += blockDim.x) {  
    bins_s[binIdx] = 0;  
  }  
  __syncthreads();

 
  // Histogram  
  for (unsigned int i = tid; i < num_elements; i += blockDim.x * gridDim.x) {  
    atomicAdd(&(bins_s[(unsigned int)input[i]]), 1);  
  }  
  __syncthreads();

  // Commit to global memory  
  for (unsigned int binIdx = threadIdx.x; binIdx < num_bins;  
         binIdx += blockDim.x) {  
    atomicAdd(&(bins[binIdx]), bins_s[binIdx]);  
  }  
}

Dynamically allocated shared memory. To allocate it dynamically invoke the kernel with:  
 
dim3 blockDim(256), gridDim(30);
histogram_kernel<<<gridDim, blockDim,
                       num_bins * sizeof(unsigned int)>>>  
                 (input, bins, num_elements, num_bins);



         

      
         

      

Improving memory access
• A simple parallel histogram algorithm partitions the 

input into sections 

• Each section is given to a thread, that iterates 
through it 

• This makes sense in CPU code, where we have 
few threads, each of which can efficiently use the 
cache lines when accessing memory 

• This access is less convenient in GPUs



         

      
         

      

Sectioned Partitioning (Iteration #1) 



         

      
         

      

Sectioned Partitioning (Iteration #2)



         

      
         

      
Input Partitioning Affects Memory Access 

Efficiency
• Sectioned partitioning results in poor memory access efficiency 

• Adjacent threads do not access adjacent memory locations 

• Accesses are not coalesced 

• DRAM bandwidth is poorly utilized 

• Change to interleaved partitioning 

• All threads process a contiguous section of elements  

• They all move to the next section and repeat 

• The memory accesses are coalesced

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4



         

      
         

      

Interleaved Partitioning of Input
• For coalescing and better memory access 

performance



         

      
         

      

Interleaved Partitioning (Iteration 2)



         

      
         

      

A stride algorithm
__global__ void histo_kernel(unsigned char *buffer,  
                             long size, unsigned int *histo)  
{

    int i = threadIdx.x + blockIdx.x * blockDim.x;

    // stride is total number of threads  
    int stride = blockDim.x * gridDim.x;

   // All threads handle blockDim.x * gridDim.x  
   // consecutive elements  
   while (i < size) {  
       atomicAdd( &(histo[buffer[i]]), 1);  
       i += stride;  
   }

}



         

      
         

      

A stride algorithm
__global__ void histo_kernel(unsigned char *buffer,  
                             long size, unsigned int *histo)  
{

    int i = threadIdx.x + blockIdx.x * blockDim.x;

    // stride is total number of threads  
    int stride = blockDim.x * gridDim.x;

   // All threads handle blockDim.x * gridDim.x  
   // consecutive elements  
   while (i < size) {  
       atomicAdd( &(histo[buffer[i]]), 1);  
       i += stride;  
   }

}

Calculates a stride value, which is the total number threads launched during kernel 
invocation (blockDim.x*gridDim.x). In the first iteration of the while loop, each thread 
index the input buffer using its global thread index: Thread 0 accesses element 0, Thread 1 

accesses element 1, etc. Thus, all threads jointly process the first blockDim.x*gridDim.x 
elements of the input buffer.



         

      
         

      

A stride algorithm
__global__ void histo_kernel(unsigned char *buffer,  
                             long size, unsigned int *histo)  
{

    int i = threadIdx.x + blockIdx.x * blockDim.x;

    // stride is total number of threads  
    int stride = blockDim.x * gridDim.x;

   // All threads handle blockDim.x * gridDim.x  
   // consecutive elements  
   while (i < size) {  
       atomicAdd( &(histo[buffer[i]]), 1);  
       i += stride;  
   }

}

Calculates a stride value, which is the total number threads launched during kernel 
invocation (blockDim.x*gridDim.x). In the first iteration of the while loop, each thread 
index the input buffer using its global thread index: Thread 0 accesses element 0, Thread 1 

accesses element 1, etc. Thus, all threads jointly process the first blockDim.x*gridDim.x 
elements of the input buffer.

The while loop controls the iterations for each thread. When the index of a thread exceeds the 
valid range of the input buffer (i is greater than or equal to size), the thread has completed 

processing its partition and will exit the loop.



         

      

         

      

CUDA: parallel 
patterns - 

convolution



         

      
         

      

Convolution (stencil)
• An array operation where each output data element 

is a weighted sum of a collection of neighboring 
input elements 

• The weights used in the weighted sum calculation 
are defined by an input mask array, commonly 
referred to as the convolution kernel 

• We will refer to these mask arrays as convolution 
masks to avoid confusion. 

• The value pattern of the mask array elements 
defines the type of filtering done



         

      
         

      

Convolution (stencil)
• An array operation where each output data element 

is a weighted sum of a collection of neighboring 
input elements 

• The weights used in the weighted sum calculation 
are defined by an input mask array, commonly 
referred to as the convolution kernel 

• We will refer to these mask arrays as convolution 
masks to avoid confusion. 

• The value pattern of the mask array elements 
defines the type of filtering done
Often performed as a filter that transforms signal or

pixel values into more desirable values.



         

      
         

      

1D Convolution Example

• Commonly used for audio processing 

• Mask size is usually an odd number of elements for symmetry (5 in this example) 

• The figure shows calculation of P[2] 

• P[2] = N[0]*M[0] + N[1]*M[1] + N[2]*M[2] + N[3]*M[3] + N[4]*M[4]

3 4 5 4 3 3 8 15 16 15

N[0] P
3 8 57 16 151 2 3 4 5 6 7 3 3

N[3]N[1] N[2] N[5]N[4] N[6]

M[0] M[3]M[1] M[2] M[4]

P[0] P[3]P[1] P[2] P[5]P[4] P[6]N

M



         

      
         

      

Example: calculation of P[3]

3 4 5 4 3 6 12 20 20 18

N[0] P
3 8 57 76 151 2 3 4 5 6 7 3 3

N[3]N[1] N[2] N[5]N[4] N[6]

M[0] M[3]M[1]M[2] M[4]

P[0] P[3]P[1] P[2] P[5]P[4]N

M



         

      
         

      

Convolution Boundary Condition

• Calculation of output elements near the boundaries 
(beginning and end) of the array need to deal with “ghost” 
elements 

• Different policies (0, replicates of boundary values, use of 
symmetrical values, etc.)

3 4 5 4 3 0 4 10 12 12
M

N P
3 38 57 16 151 2 3 4 5 6 7 3 30

N[0] N[3]N[1] N[2] N[5]N[4] N[6]

Filled in
M[0] M[3]M[1]M[2] M[4]

P[0] P[3]P[1] P[2] P[5]P[4] P[6]



         

      
         

      
A 1D Convolution Kernel with Boundary 

Condition Handling
__global__ void convolution_1D_basic_kernel(float *N, float *M,  
 float *P, int Mask_Width, int Width) {  
    int i = blockIdx.x*blockDim.x + threadIdx.x;

    float Pvalue = 0;  
    int N_start_point = i – (Mask_Width/2);

    for (int j = 0; j < Mask_Width; j++) {  
        if (N_start_point + j >= 0 &&  
            N_start_point + j < Width) {  
            Pvalue += N[N_start_point + j]*M[j];  
        }  
    }

    P[i] = Pvalue;  
}

• This kernel forces all elements outside the valid input range to 0



         

      
         

      
A 1D Convolution Kernel with Boundary 

Condition Handling
__global__ void convolution_1D_basic_kernel(float *N, float *M,  
 float *P, int Mask_Width, int Width) {  
    int i = blockIdx.x*blockDim.x + threadIdx.x;

    float Pvalue = 0;  
    int N_start_point = i – (Mask_Width/2);

    for (int j = 0; j < Mask_Width; j++) {  
        if (N_start_point + j >= 0 &&  
            N_start_point + j < Width) {  
            Pvalue += N[N_start_point + j]*M[j];  
        }  
    }

    P[i] = Pvalue;  
}

• This kernel forces all elements outside the valid input range to 0

Use a register



         

      
         

      
A 1D Convolution Kernel with Boundary 

Condition Handling
__global__ void convolution_1D_basic_kernel(float *N, float *M,  
 float *P, int Mask_Width, int Width) {  
    int i = blockIdx.x*blockDim.x + threadIdx.x;

    float Pvalue = 0;  
    int N_start_point = i – (Mask_Width/2);

    for (int j = 0; j < Mask_Width; j++) {  
        if (N_start_point + j >= 0 &&  
            N_start_point + j < Width) {  
            Pvalue += N[N_start_point + j]*M[j];  
        }  
    }

    P[i] = Pvalue;  
}

• This kernel forces all elements outside the valid input range to 0

Use a register

Source of bad performance: 1 floating-point operation 
per global memory access



         

      
         

      

2D Convolution



         

      
         

      

2D Convolution – Ghost Cells



 __global__ 
  void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out, 

int maskwidth, int w, int h) {
      int Col  =   blockIdx.x * blockDim.x + threadIdx.x;
      int Row  = blockIdx.y * blockDim.y + threadIdx.y;

      if (Col < w && Row < h) {
          int pixVal = 0;

          N_start_col  = Col –   (maskwidth/2);
          N_start_row = Row – (maskwidth/2);

          // Get the of the surrounding box
          for(int j = 0; j < maskwidth; ++j) {
              for(int k = 0; k < maskwidth; ++k) {

                  int curRow = N_Start_row + j;
                  int curCol = N_start_col + k;
                  // Verify we have a valid image pixel
                  if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
                      pixVal += in[curRow * w + curCol] * mask[j*maskwidth+k];
                  }
              }
          }

          // Write our new pixel value out
          out[Row * w + Col] = (unsigned char)(pixVal);
      }
  }
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          // Get the of the surrounding box
          for(int j = 0; j < maskwidth; ++j) {
              for(int k = 0; k < maskwidth; ++k) {

                  int curRow = N_Start_row + j;
                  int curCol = N_start_col + k;
                  // Verify we have a valid image pixel
                  if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
                      pixVal += in[curRow * w + curCol] * mask[j*maskwidth+k];
                  }
              }
          }

          // Write our new pixel value out
          out[Row * w + Col] = (unsigned char)(pixVal);
      }
  }



 __global__ 
  void convolution_2D_basic_kernel(unsigned char * in, unsigned char * mask, unsigned char * out, 

int maskwidth, int w, int h) {
      int Col  =   blockIdx.x * blockDim.x + threadIdx.x;
      int Row  = blockIdx.y * blockDim.y + threadIdx.y;

      if (Col < w && Row < h) {
          int pixVal = 0;

          N_start_col  = Col –   (maskwidth/2);
          N_start_row = Row – (maskwidth/2);

          // Get the of the surrounding box
          for(int j = 0; j < maskwidth; ++j) {
              for(int k = 0; k < maskwidth; ++k) {

                  int curRow = N_Start_row + j;
                  int curCol = N_start_col + k;
                  // Verify we have a valid image pixel
                  if(curRow > -1 && curRow < h && curCol > -1 && curCol < w) {
                      pixVal += in[curRow * w + curCol] * mask[j*maskwidth+k];
                  }
              }
          }

          // Write our new pixel value out
          out[Row * w + Col] = (unsigned char)(pixVal);
      }
  }

Source of bad performance: 1 floating-point operation 
per global memory access



         

      
         

      

Improving convolution kernel
• Use tiling for the N array element 

• Use constant memory for the M mask 

• it’s typically small and is not changed 

• can be read by all threads of the grid 

#define MAX_MASK_WIDTH 10  
__constant__ float M[MAX_MASK_WIDTH];  
 
cudaMemcpyToSymbol(M, M_h, Mask_Width*sizeof(float));



         

      
         

      

Improving convolution kernel
• Use tiling for the N array element 

• Use constant memory for the M mask 

• it’s typically small and is not changed 

• can be read by all threads of the grid 

#define MAX_MASK_WIDTH 10  
__constant__ float M[MAX_MASK_WIDTH];  
 
cudaMemcpyToSymbol(M, M_h, Mask_Width*sizeof(float));

global variable



         

      
         

      

Convolution with constant memory
__global__ void convolution_1D_basic_kernel(float *N, float *P,  
                                            int Mask_Width, int Width) {

  int i = blockIdx.x*blockDim.x + threadIdx.x;

  float Pvalue = 0;

  int N_start_point = i - (Mask_Width/2);

  for (int j = 0; j < Mask_Width; j++) {

    if (N_start_point + j >= 0 && N_start_point + j < Width) {

      Pvalue += N[N_start_point + j]*M[j];

    }

  }

  P[i] = Pvalue;

}



         

      
         

      

Convolution with constant memory
__global__ void convolution_1D_basic_kernel(float *N, float *P,  
                                            int Mask_Width, int Width) {

  int i = blockIdx.x*blockDim.x + threadIdx.x;

  float Pvalue = 0;

  int N_start_point = i - (Mask_Width/2);

  for (int j = 0; j < Mask_Width; j++) {

    if (N_start_point + j >= 0 && N_start_point + j < Width) {

      Pvalue += N[N_start_point + j]*M[j];

    }

  }

  P[i] = Pvalue;

}

2 floating-point operations per global memory access (N)



         

      

         

      

CUDA: parallel 
patterns - 

convolution & tiling



         

      
         

      

Tiling & convolution
• Calculation of adjacent output elements involve shared input 

elements 

• E.g., N[2] is used in calculation of P[0], P[1], P[2]. P[3 and P[5] 
assuming a 1D convolution Mask_Width of width 5 

• We can load all the input elements required by all threads in a 
block into the shared memory to reduce global memory accesses

N[0]

1 2 3 4 5 6
N[3]N[1] N[2] N[5]N[4] N[6]

7 P[2]

N[0]

1 2 3 4 5 6
N[3]N[1] N[2] N[5]N[4] N[6]

7 P[1]

N[0]

1 2 3 4 5 6
N[3]N[1] N[2] N[5]N[4] N[6]

7 P[3]

N[0]

1 2 3 4 5 6
N[3]N[1] N[2] N[5]N[4] N[6]

7 P[0]

N[0]

1 2 3 4 5 6
N[3]N[1] N[2] N[5]N[4] N[6]

7 P[4]



         

      
         

      

Input Data Needs
• Assume that we want to have each block to calculate T output elements 

• T + Mask_Width -1 input elements are needed to calculate T output 
elements 

• T + Mask_Width -1 is usually not a multiple of T, except for small T 
values 

• T is usually significantly larger than Mask_Width

N
1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15P



         

      
         

      

Definition – output tile

• Each thread block calculates an output tile 

• Each output tile width is O_TILE_WIDTH 

•  For each thread: 

• O_TILE_WIDTH is 4 in this example

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15P

O_TILE_WIDTH



         

      
         

      

Definition - Input Tiles

• Each input tile has all values needed to calculate 
the corresponding output tile.

N 1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15P

Ns



         

      
         

      

Two Design Options
• Design 1: The size of each thread block matches the size of an output 

tile 

• All threads participate in calculating output elements 

• blockDim.x would be 4 in our example 

• Some threads need to load more than one input element into the 
shared memory 

• Design 2: The size of each thread block matches the size of an input tile 

• Some threads will not participate in calculating output elements 

• blockDim.x would be 8 in our example 

• Each thread loads one input element into the shared memory



         

      
         

      

Thread to Input and Output Data Mapping

• For each thread: 

• index_i = index_o – n 

• where n is Mask_Width /2 

• n is 2 in this example

N
1 2 3 4 5 6 7 8 9 10 11 12 13 140 15

1 2 3 4 5 6 7 8 9 10 11 12 13 140 15P

Thread 0 reads this Thread 0 writes this



         

      
         

      

Loading input tiles
All threads participate: 
 
float output = 0.0f; 

if((index_i >= 0) && (index_i < Width)) {

    Ns[tx] = N[index_i];

} else {

    Ns[tx] = 0.0f;

}



         

      
         

      

Calculating output
• Some threads do not participate: Only Threads 0 through O_TILE_WIDTH-1 

participate in calculation of output. 

index_o = blockIdx.x*O_TILE_WIDTH + threadIdx.x

if (threadIdx.x < O_TILE_WIDTH){

     output = 0.0f;

     for(j = 0; j < Mask_Width; j++) {

         output += M[j] * Ns[j+threadIdx.x];

     }

     P[index_o] = output;

}



         

      
         

      

Setting Block Size
#define O_TILE_WIDTH 1020

#define BLOCK_WIDTH (O_TILE_WIDTH + 4)

dim3 dimBlock(BLOCK_WIDTH,1, 1);

dim3 dimGrid((Width-1)/O_TILE_WIDTH+1, 1, 1)

• The Mask_Width is 5 in this example 

• In general, block width should be  

• output tile width + (mask width-1)



         

      
         

      

Shared Memory Data Reuse



         

      
         

      

Ghost/Halo cells



         

      

         

      

Evaluating 
tiling



         

      
         

      

An 8-element Convolution Tile

• For Mask_Width=5, we load 8+5-1=12 elements 
(12 memory loads)



         

      
         

      

Evaluating reuse
• Each output P element uses 5 N elements: 
 
P[8] uses N[6], N[7], N[8], N[9], N[10] 
P[9] uses N[7], N[8], N[9], N[10], N[11] 
P[10] use N[8], N[9], N[10], N[11], N[12] 
… 
P[14] uses N[12], N[13], N[14], N[15], N[16] 
P[15] uses N[13], N[14], N[15], N[16], N[17]



         

      
         

      

Evaluating reuse
• Each output P element uses 5 N elements: 
 
P[8] uses N[6], N[7], N[8], N[9], N[10] 
P[9] uses N[7], N[8], N[9], N[10], N[11] 
P[10] use N[8], N[9], N[10], N[11], N[12] 
… 
P[14] uses N[12], N[13], N[14], N[15], N[16] 
P[15] uses N[13], N[14], N[15], N[16], N[17]

(8+5-1)=12 elements loaded 
8*5 global memory accesses replaced by shared memory accesses 

This gives a bandwidth reduction of 40/12=3.3



         

      
         

      

General 1D tiled convolution
• O_TILE_WIDTH+MASK_WIDTH -1 elements 

loaded for each input tile 

• O_TILE_WIDTH*MASK_WIDTH global memory 
accesses replaced by shared memory accesses 

• This gives a reduction factor of 
 
(O_TILE_WIDTH*MASK_WIDTH)/
(O_TILE_WIDTH+MASK_WIDTH-1) 

• This ignores ghost elements in edge tiles.



         

      
         

      

Another Way to Look at Reuse

• N[6] is used by P[8] (1X) 
N[7] is used by P[8], P[9] (2X) 
N[8] is used by P[8], P[9], P[10] (3X) 
N[9] is used by P[8], P[9], P[10], P[11] (4X)  
N10 is used by P[8], P[9], P[10], P[11], P[12] (5X)  
… (5X) 
N[14] is used by P[12], P[13], P[14], P[15] (4X) 
N[15] is used by P[13], P[14], P[15] (3X)



         

      
         

      

Another Way to Look at Reuse

• The total number of global memory accesses to the 
(8+5-1)=12 elements of N that is replaced by 
shared memory accesses is: 
 
1+2+3+4+5*(8-5+1)+4+3+2+1 = 10+20+10 = 40 

• So the reduction is 40/12 = 3.3



         

      
         

      

General 1D tiling
• The total number of global memory accesses to the input tile can be 

calculated as 

• 1 + 2+…+ MASK_WIDTH-1 + MASK_WIDTH*(O_TILE_WIDTH-
MASK_WIDTH+1) + MASK_WIDTH-1 + …+ 2 + 1

•    = MASK_WIDTH * (MASK_WIDTH-1) + MASK_WIDTH * 

•                (O_TILE_WIDTH-MASK_WIDTH+1)

•     =  MASK_WIDTH * O_TILE_WIDTH

• For a total of O_TILE_WIDTH + MASK_WIDTH -1 input tile elements



         

      
         

      

Examples of Bandwidth Reduction for 1D

• The reduction ratio is: 

•  MASK_WIDTH * O_TILE_WIDTH /
(O_TILE_WIDTH+MASK_WIDTH-1)

O_TILE_WIDTH 16 32 64 128 256

MASK_WIDTH= 5 4.0 4.4 4.7 4.9 4.9

MASK_WIDTH = 9 6.0 7.2 8.0 8.5 8.7



         

      
         

      

2D convolution tiles
• (O_TILE_WIDTH+MASK_WIDTH-1)2 input elements 

need to be loaded into shared memory 

• The calculation of each output element needs to 
access MASK_WIDTH2  input elements 

• O_TILE_WIDTH2 * MASK_WIDTH2 global memory 
accesses are converted into shared memory accesses 

• The reduction ratio is 

• O_TILE_WIDTH2 * MASK_WIDTH2 / 
(O_TILE_WIDTH+MASK_WIDTH-1)2



         

      
         

      

Bandwidth Reduction for 2D
• The reduction ratio is: 
 
O_TILE_WIDTH2 * MASK_WIDTH2 / 
(O_TILE_WIDTH+MASK_WIDTH-1)2 

• Tile size has significant effect on of the memory bandwidth 
reduction ratio. 

• This often argues for larger shared memory size

O_TILE_WIDTH 8 16 32 64

MASK_WIDTH = 5 11.1 16 19.7 22.1

MASK_WIDTH = 9 20.3 36 51.8 64



         

      

         

      

CUDA: parallel 
patterns - map/
gather/scatter



         

      
         

      

Map
• Takes an input list i 

• Applies a function f 

• Writes the results in a list o, by applying f to all the 
members of i 

• A CUDA kernel where i and o are memory locations 
determined by threadIdx… implements this 
pattern



         

      
         

      

Gather
• Multiple inputs and single coalesced output 

• Might have sequential loading or random access 

• Affect memory performance, e.g. if thread 1 gets 
input 0 and 1, thread 2 gets input 2 and 3, and so 
on… we have coalesced memory access. With 
random access no. 

• Differs from map due to multiple inputs



         

      
         

      

Scatter

• Reads from a single input and writes to one or 
many 

• Can be implemented in CUDA using atomics 

• Write pattern will determine performance 

• e.g. do we have write collisions ? Random 
access write ?



         

      

         

      

CUDA: parallel 
patterns - 
reduction



         

      
         

      

Reduction
• A reduction is where all elements of a set have a 

common binary associative operator (⊕) applied to 
them to “reduce” the set to a single value 

• Binary associative = order in which operations is 
performed on set does not matter 

• Most obvious example is addition (Summation) 

• Other examples, Maximum, Minimum, product



         

      
         

      

Tree based
• At each step data is reduced by a factor of 2 

• In CUDA there is no global synchronisation so we 
need to split the execution into multiple stages



         

      
         

      

Tree based
• At each step data is reduced by a factor of 2 

• In CUDA there is no global synchronisation so we 
need to split the execution into multiple stages

N-1 operations in log2(N) steps 
Avg. parallelism: (N-1)/log2(N) 

For N=1000000 avg. parallelism is 50000, but peak resource req. is 500000



         

      
         

      

Parallel sum reduction
• Parallel implementation 

• Each thread adds two values in each step 

• Recursively halve # of threads 

• Takes log(n) steps for n elements, requires n/2 threads 

• Assume an in-place reduction using shared memory 

• The original vector is in device global memory 

• The shared memory is used to hold a partial sum vector 

• Initially, the partial sum vector is simply the original vector 

• Each step brings the partial sum vector closer to the sum 

• The final sum will be in element 0 of the partial sum vector 

• Reduces global memory traffic due to reading and writing partial sum values 

• Thread block size limits n to be less than or equal to 2,048 



         

      
         

      

A Parallel Sum Reduction Example 

• Naïve thread-to-data mapping 

• Each thread is responsible for an even-index location of the partial sum vector (location of responsibility) 

• After each step, half of the threads are no longer needed 

• One of the inputs is always from the location of responsibility 

• In each step, one of the inputs comes from an increasing distance away

• Step 1 - Stride 1

• Step 2 - Stride 2

• Step 3 - Stride 4



         

      
         

      

A Simple Thread Block Design 

• Each thread block takes 2*BlockDim.x input 
elements 

• Each thread loads 2 elements into shared memory 

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;  
unsigned int start = 2*blockIdx.x*blockDim.x;  
partialSum[t] = input[start + t];  
partialSum[blockDim+t] = input[start + blockDim.x +t]; 



         

      
         

      

Reduction steps

for (unsigned int stride = 1; stride <= blockDim.x;  
              stride *= 2) {  
  __syncthreads();  
  if (t % stride == 0)  
    partialSum[2*t] += partialSum[2*t+stride];  
} 

• __syncthreads() is needed to ensure that all 
elements of each version of partial sums have been 
generated before we proceed to the next step 



         

      
         

      

Reduction steps

for (unsigned int stride = 1; stride <= blockDim.x;  
              stride *= 2) {  
  __syncthreads();  
  if (t % stride == 0)  
    partialSum[2*t] += partialSum[2*t+stride];  
} 

• __syncthreads() is needed to ensure that all 
elements of each version of partial sums have been 
generated before we proceed to the next step 

• At the end of the kernel, Thread 0 in each block writes the sum of the thread block in 
partialSum[0] into a vector indexed by the blockIdx.x 

• There can be a large number of such sums if the original vector is very large 
• The host code may iterate and launch another kernel 

• If there are only a small number of sums, the host can simply transfer the data back 
and add them together 

• Alternatively, Thread 0 of each block could use atomic operations to accumulate into 
a global sum variable. 



         

      
         

      

Reduction steps

for (unsigned int stride = 1; stride <= blockDim.x;  
              stride *= 2) {  
  __syncthreads();  
  if (t % stride == 0)  
    partialSum[2*t] += partialSum[2*t+stride];  
} 

• __syncthreads() is needed to ensure that all 
elements of each version of partial sums have been 
generated before we proceed to the next step 

• At the end of the kernel, Thread 0 in each block writes the sum of the thread block in 
partialSum[0] into a vector indexed by the blockIdx.x 

• There can be a large number of such sums if the original vector is very large 
• The host code may iterate and launch another kernel 

• If there are only a small number of sums, the host can simply transfer the data back 
and add them together 

• Alternatively, Thread 0 of each block could use atomic operations to accumulate into 
a global sum variable. 

if (t==0) output[blockIdx.x]=partialSum[0];



         

      
         

      

Reduction steps

for (unsigned int stride = 1; stride <= blockDim.x;  
              stride *= 2) {  
  __syncthreads();  
  if (t % stride == 0)  
    partialSum[2*t] += partialSum[2*t+stride];  
} 

• __syncthreads() is needed to ensure that all 
elements of each version of partial sums have been 
generated before we proceed to the next step 

• At the end of the kernel, Thread 0 in each block writes the sum of the thread block in 
partialSum[0] into a vector indexed by the blockIdx.x 

• There can be a large number of such sums if the original vector is very large 
• The host code may iterate and launch another kernel 

• If there are only a small number of sums, the host can simply transfer the data back 
and add them together 

• Alternatively, Thread 0 of each block could use atomic operations to accumulate into 
a global sum variable. 

if (t==0) output[blockIdx.x]=partialSum[0];

Problem: highly divergent branching: 
very poor performance



         

      
         

      

Problems
• In each iteration, two control flow paths will be sequentially traversed for 

each warp 

• Threads that perform addition and threads that do not 

• Threads that do not perform addition still consume execution 
resources 

• Half or fewer of threads will be executing after the first step 

• All odd-index threads are disabled after first step 

• After the 5th step, entire warps in each block will fail the if test, poor 
resource utilization but no divergence 

• This can go on for a while, up to 6 more steps (stride = 32, 64, 
128, 256, 512, 1024), where each active warp only has one 
productive thread until all warps in a block retire 



         

      
         

      

Problems
• In each iteration, two control flow paths will be sequentially traversed for 

each warp 

• Threads that perform addition and threads that do not 

• Threads that do not perform addition still consume execution 
resources 

• Half or fewer of threads will be executing after the first step 

• All odd-index threads are disabled after first step 

• After the 5th step, entire warps in each block will fail the if test, poor 
resource utilization but no divergence 

• This can go on for a while, up to 6 more steps (stride = 32, 64, 
128, 256, 512, 1024), where each active warp only has one 
productive thread until all warps in a block retire 

Solutions: 

• Change index usage to improve divergence behavior 
• Compact partial sums into front locations of partialSum[] array 
• Keep the active threads consecutive



         

      
         

      

Problems
• In each iteration, two control flow paths will be sequentially traversed for 

each warp 

• Threads that perform addition and threads that do not 

• Threads that do not perform addition still consume execution 
resources 

• Half or fewer of threads will be executing after the first step 

• All odd-index threads are disabled after first step 

• After the 5th step, entire warps in each block will fail the if test, poor 
resource utilization but no divergence 

• This can go on for a while, up to 6 more steps (stride = 32, 64, 
128, 256, 512, 1024), where each active warp only has one 
productive thread until all warps in a block retire 

Solutions: 

• Change index usage to improve divergence behavior 
• Compact partial sums into front locations of partialSum[] array 
• Keep the active threads consecutive

Thread 0

3 1 7 0 614 3

7 2 13 3

20 5

25

Thread 1 Thread 2 Thread 3

Step 1 - Stride 4

Step 2 - Stride 2

Step 3 - Stride 1



         

      
         

      

Better reduction kernel
for (unsigned int stride = blockDim.x; stride > 0; stride /= 2)  
{  
  __syncthreads();  
  if (t < stride)  
    partialSum[t] += partialSum[t+stride];  
} 

• For a 1024 thread block 

• No divergence in the first 5 steps 

• 1024, 512, 256, 128, 64, 32 consecutive threads are active in 
each step 

• All threads in each warp  either all active or all inactive 

• The final 5 steps will still have divergence 



         

      
         

      

Better reduction kernel
for (unsigned int stride = blockDim.x; stride > 0; stride /= 2)  
{  
  __syncthreads();  
  if (t < stride)  
    partialSum[t] += partialSum[t+stride];  
} 

• For a 1024 thread block 

• No divergence in the first 5 steps 

• 1024, 512, 256, 128, 64, 32 consecutive threads are active in 
each step 

• All threads in each warp  either all active or all inactive 

• The final 5 steps will still have divergence 

Further improvements: 

• Loop unrolling 
• Increasing parallelism 
• Perform an initial add during data load



         

      

         

      

CUDA: parallel 
patterns - scan



         

      
         

      

Scan (prefix sum)
• Scan: computes all partial reduction of a collection 

• For every output in a collection, a reduction of the 
input up to that point is computed 

• If the function being used is associative, the scan 
can be parallelized 

• Parallelizing a scan is not obvious at first, because of 
dependencies to previous iterations in the serial loop 

• A parallel scan will require more operations than a 
serial version 



         

      
         

      

Scan (prefix sum)
• Scan: computes all partial reduction of a collection 

• For every output in a collection, a reduction of the 
input up to that point is computed 

• If the function being used is associative, the scan 
can be parallelized 

• Parallelizing a scan is not obvious at first, because of 
dependencies to previous iterations in the serial loop 

• A parallel scan will require more operations than a 
serial version 

More formally: 
 

The scan operation takes a binary associative operator ⊕, and an array of n elements 
[x0, x1, …, xn-1], 

and returns the array 

  [x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-1)]. 



         

      
         

      

Scan

Serial scan                  Parallel scan



         

      
         

      

Scan

Serial scan                  Parallel scan

• Frequently used for parallel work assignment and resource allocation 
• A key primitive in many parallel algorithms to convert serial computation 

into parallel computation 
• A foundational parallel computation pattern, useful for many algorithms like: 

• Radix sort 
• Quicksort 
• String comparison 
• Lexical analysis 
• Stream compaction 
• Polynomial evaluation 
• Solving recurrences 
• Tree operations 
• Histograms, ….



         

      
         

      

Naïve solutions
• A serial version:  
y[0] = x[0];  
for (i = 1; i < Max_i; i++)  
  y[i] = y [i-1] + x[i]; 

• is computationally efficient: N additions needed for N elements - 
O(N)!  

• A parallel version may assign a thread to each element: 
y0 = x0  
y1 = x0 + x1  
y2 = x0 + x1 + x2  
y3 = x0 + x1 + x2 + x3 

• is not efficient !



         

      
         

      

A Better Parallel Scan Algorithm 
1. Read input from device global memory to shared memory 

2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration  

3. Write output from shared memory to device memory 

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 1

STRIDE = 1

STRIDE 1

• Active threads stride to n-1 (n-stride threads) 
• Thread j adds elements j and j-stride from shared memory and writes result into 

element j in shared memory 
• Requires barrier synchronization, once before read and once before write



         

      
         

      

A Better Parallel Scan Algorithm 
1. Read input from device global memory to shared memory 

2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration  

3. Write output from shared memory to device memory 

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 2

STRIDE = 2

STRIDE 1

XY 3 4 11 11 12 12 11 14

STRIDE 2



         

      
         

      

A Better Parallel Scan Algorithm 
1. Read input from device global memory to shared memory 

2. Iterate log(n) times; stride from 1 to n-1: double stride each iteration  

3. Write output from shared memory to device memory 

XY 3 4 8 7 4 5 7 9

XY 3 1 7 0 4 1 6 3

ITERATION = 3

STRIDE = 4

STRIDE 1

XY 3 4 11 11 12 12 11 14

STRIDE 2

XY 3 4 11 11 15 16 22 25

STRIDE 4



         

      
         

      

Handling Dependencies 
• During every iteration, each thread can overwrite the 

input of another thread 

• Barrier synchronization to ensure all inputs have 
been properly generated (i.e. __syncthreads()) 

• All threads secure input operand that can be 
overwritten by another thread 

• Barrier synchronization is required to ensure that 
all threads have secured their inputs 

• All threads perform addition and write output 



         

      
         

      

__global__ void work_inefficient_scan_kernel(float *X, float *Y, int 
InputSize) {  
    __shared__ float XY[SECTION_SIZE];

    int i = blockIdx.x * blockDim.x + threadIdx.x;  
    if (i < InputSize) {  
        XY[threadIdx.x] = X[i];  
    }

    // the code below performs iterative scan on XY  
    for (unsigned int stride = 1; stride < blockDim.x; stride *= 2) {  
        __syncthreads();  
        if(threadIdx.x >= stride)  
            XY[threadIdx.x] += XY[threadIdx.x - stride];  
    }

    __syncthreads();  
    if (i < InputSize) {  
        Y[i] = XY[threadIdx.x];  
    }

} 

• This Scan executes log2(n) parallel iterations with 
n=SECTION_SIZE 

• The iterations do (n-1), (n-2), (n-4),..(n- n/2) adds each 
• Total adds: n * log2(n) - (n-1) → O(n*log2(n)) work 

• This scan algorithm is not work efficient 
• Sequential scan algorithm does n adds 
• A factor of log2(n) can hurt: 10× for 1024 elements! 

A parallel algorithm can be slower than a sequential one when 
execution resources are saturated from low work efficiency 

SECTION_SIZE = block size



         

      
         

      

Improving efficiency
• Balanced Trees 

• Form a balanced binary tree on the input data and sweep it to 
and from the root 

• Tree is not an actual data structure, but a concept to determine 
what each thread does at each step 

• For scan: 

• Traverse down from leaves to the root building partial sums at 
internal nodes in the tree 

• The root holds the sum of all leaves 

• Traverse back up the tree building the output from the partial 
sums 



         

      
         

      

Parallel Scan - Reduction Phase 
// XY[2*BLOCK_SIZE] is in shared memory

for (unsigned int stride = 1; stride <= BLOCK_SIZE;  
       stride *= 2) {  
    __syncthreads();  
    int index = (threadIdx.x+1)*stride*2 - 1;  
    if(index < 2*BLOCK_SIZE)  
        XY[index] += XY[index-stride];  
} 

• threadIdx.x+1 = 1,2,3,4… 

• stride = 1,  

• index = 1,3,5,7, … 

+

+

+ + +

+

+

x0 x3 x4 x5 x6 x7x1 x2

∑x0..x1 ∑x2..x3 ∑x4..x5 ∑x6..x7

∑x0..x3
∑x4..x7

∑x0..x7

Time

In-place calculation 

Value after reduce



         

      
         

      

Parallel Scan - Post Reduction Reverse Phase 

+

x0 x4 x6x2∑x0..x1 ∑x4..x5∑x0..x3 ∑x0..x7

∑x0..x5

Move (add) a critical value  to a central 
location where it is needed



         

      
         

      

Parallel Scan - Post Reduction Reverse Phase 

+

x0 x4 x6x2∑x0..x1 ∑x4..x5∑x0..x3 ∑x0..x7

∑x0..x5

+ +

∑x0..x2 ∑x0..x4

+

∑x0..x6



         

      
         

      

Parallel Scan - Post Reduction Reverse Phase 

Putting together



         

      
         

      

Post Reduction Reverse Phase Kernel Code 
for (unsigned int stride = BLOCK_SIZE/2; stride > 0; stride /= 2) {  
     __syncthreads();  
     int index = (threadIdx.x+1) * stride * 2 - 1;  
     if(index+stride < 2*BLOCK_SIZE) {  
        XY[index + stride] += XY[index];  
     }

}

__syncthreads();  
if (i < InputSize)  
    Y[i] = XY[threadIdx.x]; 

• First iteration for 16-element section 

• threadIdx.x = 0 

• stride = BLOCK_SIZE/2 = 8/2 = 4 

• index = 8-1 = 7 



         

      
         

      

Credits

• These slides report material from: 

• NVIDIA GPU Teaching Kit 

• Prof. Paul Richmond (Univ. Sheffield)



         

      
         

      

Books
• Programming Massively Parallel Processors: A 

Hands-on Approach, D. B. Kirk and W-M. W. Hwu, 
Morgan Kaufmann - 2nd edition - Chapt. 5, 8 and 9 
 
or 
 
Programming Massively Parallel Processors: A 
Hands-on Approach, D. B. Kirk and W-M. W. Hwu, 
Morgan Kaufmann - 3rd edition - Chapt. 4, 7, 8 and 
9


