

GPU
programming

basics
Prof. Marco Bertini

Data
parallelism:

GPU computing

2D
convolution:  

2-batch loading

Upload data in shared memory for convolution

kernel
• #define
Mask_width 5

• #define
Mask_radius
Mask_width/2

• #define
TILE_WIDTH 16

• #define w
(TILE_WIDTH +
Mask_width - 1)

Upload data in shared memory for convolution

kernel

• The image is divided into tiles.

• These tiles after applying the convolution mask are
the final output tiles whose size is
TILE_WIDTH*TILE_WIDTH.

• For the pixels that belong to the border of the
output tile the mask must borrow some pixels from
the neighbor tile, when this tile belong to the
borders of the image. Otherwise, these borrowed
values are assigned to zero.

2-batch loading
• Let us assume that a block is made of TILE_WIDTH

* TILE_WIDTH threads

• Since the shared memory area (TILE_WIDTH +
Mask_width - 1)*(TILE_WIDTH + Mask_width - 1) is
larger than the block size
TILE_WIDTH*TILE_WIDTH and assuming it is
smaller than 2*TILE_WIDTH*TILE_WIDTH, then
each thread should move at most two elements
from global memory to shared memory.

• It is convenient to split this loads in a two-stages
process.

First step
• Load TILE_WIDT*TILE_WIDTH elements: 
 
dest = threadIdx.y * TILE_WIDTH +  
 threadIdx.x;

• flattens the 2D coordinates of the generic thread while

destX = dest % w;

destY = dest / w;

• makes the inverse operation, calculating the 2D
coordinates of the generic thread with respect to the
shared memory area.

First step
srcY = blockIdx.y * TILE_WIDTH + destY -  
 Mask_radius;

srcX = blockIdx.x * TILE_WIDTH + destX -  
 Mask_radius;

• (blockIdx.x * TILE_WIDTH, blockIdx.y * TILE_WIDTH)
would be the coordinates of the global memory location if
the block size and the shared memory size were the same.

• Since you are "borrowing" memory values also from
neighbor tiles, then you have to shift the above
coordinates by (destX - Mask_radius, destY -
Mask_radius).

First step
// First batch loading  
int dest = threadIdx.y * TILE_WIDTH + threadIdx.x;  
int destY = dest / w;  
int destX = dest % w;  
int srcY = blockIdx.y * TILE_WIDTH + destY -  
 Mask_radius;  
int srcX = blockIdx.x * TILE_WIDTH + destX -  
 Mask_radius;  
int src = (srcY * width + srcX) * channels + k;  
if (srcY >= 0 && srcY < height &&  
 srcX >= 0 && srcX < width) {  

N_ds[destY][destX] = I[src];  
} else {  

N_ds[destY][destX] = 0;  
}

First step
// First batch loading  
int dest = threadIdx.y * TILE_WIDTH + threadIdx.x;  
int destY = dest / w;  
int destX = dest % w;  
int srcY = blockIdx.y * TILE_WIDTH + destY -  
 Mask_radius;  
int srcX = blockIdx.x * TILE_WIDTH + destX -  
 Mask_radius;  
int src = (srcY * width + srcX) * channels + k;  
if (srcY >= 0 && srcY < height &&  
 srcX >= 0 && srcX < width) {  

N_ds[destY][destX] = I[src];  
} else {  

N_ds[destY][destX] = 0;  
} Running inside a  

for (k = 0; k < channels; k++) {... }

Second step
• Load the data outside the

TILE_WIDTH*TILE_WIDTH

• Similar to first batch but now offset with
TILE_WIDTH*TILE_WIDTH

dest = threadIdx.y * TILE_WIDTH +  
 threadIdx.x +  
 TILE_WIDTH * TILE_WIDTH;

• destY, destX, srcY and srcX use the same
formulas

Second step
• The picture illustrates the correspondence

between the flattened thread index dest and the
shared memory locations.

• In the picture, the blue boxes represent the
elements of the generic tile while the red boxes
the elements of the neighbor tiles. The union of
the blue and red boxes correspond to the overall
shared memory locations. With
TILE_WIDTH=16, all the 256 threads of a thread
block are involved in filling the upper part of the
shared memory above the green line, while 145
are involved in filling the lower part of the shared
memory below the green line. So these threads
participate to the second batch loading (with
TILE_WIDTH x TILE_WIDTH offset).

• Notice that we have at most 2 memory loads per
thread due to the particular choice of parameters.
For example, using TILE_WIDTH = 8, results in
number of threads per block of 64, while the
shared memory size is 12×12=144, which means
that each thread is in charge to perform at least 2
shared memory writes since 144/64=2.25.

Second step
// Second batch loading  
dest = threadIdx.y * TILE_WIDTH + threadIdx.x +  
 TILE_WIDTH * TILE_WIDTH;  
destY = dest / w;  
destX = dest % w;  
srcY = blockIdx.y * TILE_WIDTH + destY - Mask_radius;  
srcX = blockIdx.x * TILE_WIDTH + destX - Mask_radius;  
src = (srcY * width + srcX) * channels + k;  
if (destY < w) {  

if (srcY >= 0 && srcY < height &&  
 srcX >= 0 && srcX < width) {  

N_ds[destY][destX] = I[src];  
} else {  

N_ds[destY][destX] = 0;  
}  

}

Second step
// Second batch loading  
dest = threadIdx.y * TILE_WIDTH + threadIdx.x +  
 TILE_WIDTH * TILE_WIDTH;  
destY = dest / w;  
destX = dest % w;  
srcY = blockIdx.y * TILE_WIDTH + destY - Mask_radius;  
srcX = blockIdx.x * TILE_WIDTH + destX - Mask_radius;  
src = (srcY * width + srcX) * channels + k;  
if (destY < w) {  

if (srcY >= 0 && srcY < height &&  
 srcX >= 0 && srcX < width) {  

N_ds[destY][destX] = I[src];  
} else {  

N_ds[destY][destX] = 0;  
}  

}
Running inside a  

for (k = 0; k < channels; k++) {... }

2D
convolution:

tile boundaries

2D Image Matrix with Automated Padding
• It is sometimes desirable to pad each row of a 2D matrix to multiples

of DRAM bursts

• So each row starts at the DRAM burst boundary

• Effectively adding columns

• This is usually done automatically by matrix allocation function

• Pitch can be different for different hardware

• Example: a 3X3 matrix padded into a 3X4 matrix 
 
Height is 3  
Width is 3  
Channels is 1 (e.g. gray level image) 
Pitch is 4

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2
height

width

pitch

Padded	
elements

Row-Major Layout with Pitch

M0,2

M1,1

M0,1M0,0

M1,0 M1,2

M0,2M0,1M0,0 M1,1M1,0 M1,2 M2,1M2,0 M2,2

M2,1M2,0 M2,2

M

Row*Pitch+Col	=	2*4+1	=	9	
M2M1M0 M3 M5M4 M6 M7 M9M8 M10 M11

M

Padded	
elements

Sample image struct
// Image Matrix Structure declaration

//

typedef struct {

 int width;

 int height;

 int pitch;

 int channels;

 float* data;

} Image_t;

Setting Block Size
#define O_TILE_WIDTH 12

#define BLOCK_WIDTH (O_TILE_WIDTH + 4)

dim3 dimBlock(BLOCK_WIDTH,BLOCK_WIDTH);

dim3 dimGrid((Image_Width-1)/O_TILE_WIDTH+1,
(Image_Height-1)/O_TILE_WIDTH+1, 1)

• In general, BLOCK_WIDTH should be

• O_TILE_WIDTH + (MASK_WIDTH-1)

Using constant memory and caching for Mask
• Mask is used by all threads but not modified in the convolution kernel

• All threads in a warp access the same locations at each point in time

• CUDA devices provide constant memory whose contents are aggressively
cached

• Cached values are broadcast to all threads in a warp

• Effectively magnifies memory bandwidth without consuming shared
memory

• Use of const __restrict__ qualifiers for the mask parameter informs
the compiler that it is eligible for constant caching, for example: 
 
__global__ void convolution_2D_kernel(float *P, float
*N, int height, int width, int channels,  
const float __restrict__ *M);

Shifting from output coordinates to input

coordinate
int tx = threadIdx.x;

int ty = threadIdx.y;

int row_o = blockIdx.y*O_TILE_WIDTH + ty;

int col_o = blockIdx.x*O_TILE_WIDTH + tx;

int row_i = row_o - mask_radius;

int col_i = col_o - mask_radius;

row_o for	
Thread	(0,0)

row_i for	
Thread	(0,0)

Taking Care of Boundaries (1 channel example)

if((row_i >= 0) && (row_i < height) &&

 (col_i >= 0) && (col_i < width)) {

 Ns[ty][tx] = data[row_i * width + col_i];

} else{

 Ns[ty][tx] = 0.0f;

}

• Use of width here is OK if pitch is set to width (no padding)

Calculating output
Some threads do not participate in calculating output 
 
float output = 0.0f;

if(ty < O_TILE_WIDTH && tx < O_TILE_WIDTH){

 for(i = 0; i < MASK_WIDTH; i++) {

 for(j = 0; j < MASK_WIDTH; j++) {

 output += M[i][j] * Ns[i+ty][j+tx];

 }

}

Writing output

• Some threads do not write output (1 channel
example) 
 
if(row_o < height && col_o < width)

 data[row_o*width + col_o] =  
 output;

Credits

• These slides report material from:

• NVIDIA GPU Teaching Kit

Books

• Programming Massively Parallel Processors: A
Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufman - 2nd edition - Chapt. 8 
 
or 
 
Programming Massively Parallel Processors: A
Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufman - 3rd edition - Chapt. 7

