GPU
programming
basics

Prof. Marco Bertini

Data
parallelism:
GPU computing

UNIVERSITA
DEGLI STUDI

FIRENZE

CUDA:
libraries

Why use libraries ?

- Libraries are one of the most efficient ways to

program GPUs, because they encapsulate the
complexity of writing optimized code for common
algorithms into high-level, standard interfaces.

- There is a wide variety of high-performance
libraries available for NVIDIA GPUs.

- Thrust is a library that has been included in CUDA

* Inspired by STL. Just include the header: it's a
template library.

- Provides many algorithms like reduce, sort, scan,
transformations, search.

* Includes OpenMP backend for multicore
programming

- Allows transparent use of GPU

T

mo UNIVERSITA
sﬁ DEGLI STUDI
1 FIRENZE

Thrust Hello World

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>

Vﬂlﬁ\

// generate 200K random numbers on the host
thrust::host vector<int> h_vec(300000);
thrust::generate(h_vec.begin(), h_vec.end(), rand);

// transfer data to device
thrust::device vector<int> d_vec = h_vec;

// sort data on device
thrust::sort(d_vec.begin(), d_vec.end());

// transfer data back to host
thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());

T

Thrust vector

- Thrust provides two vector containers,
host_vector and device_vector.

As the names suggest, host_vector is stored in

host memory while device_vector lives in GPU
device memory.

- Thrust’s vector containers are just like
std: :vector in the C++ STL.

SHER% [UNIVERSITA
<[[(Vg2 'z | DEGLI STUDI

S| {8~
=& | FIRENZE
H2194a Ny

Thrust iterators

- They point to regions of a vector
- Can be used like pointers

- Can be converted to raw pointers to interface
with CUDA

thrust: :device_vector<int>::iterator begin =
d_vec.begin();
int * d_ptr = thrust::raw_pointer_cast(begin);

kernel<<<10, 128>>>(d_ptr);

T

&;%w;]ioo, UNIVERSITA

5';\m 2

2 | DEGLI STUDI

il | FIRENZE

LIggAN

From CUDA to Thrust

Raw pointers can be used in Thrust. Once the raw
pointer has been wrapped by a device pftr it can be
used like an ordinary Thrust iterator.

int* d_ptr;
cudaMalloc((void**)&d_ptr, N);
thrust: :device_ptr<int> d_vec =
thrust: :device_pointer_cast(d_ptr);
thrust: :sort(d_vec, d_vec+N);
cudaFree(d_ptr);

. | UNIVERSITA
(LW'B DEGLI STUDI
mal FIRENZE

Thrust: reduction

#include <thrust/host_vector.h>
#1include <thrust/device_vector.h>
#1include <thrust/generate.h>
#1nclude <thrust/reduce.h>
#1nclude <thrust/functional.h>
#1nclude <algorithm>

// generate random data serially
thrust: :host_vector<int> h_vec(100);
std: :generateCh_vec.begin(), h_vec.end(), rand);

// transfer to device and compute sum
thrust: :device_vector<int> d_vec = h_vec;

int x = thrust::reduce(d_vec.begin(), d_vec.end(), 0O,
thrust::plus<int>());

&b
\

7 Wi%{%/
</ NI, S
=/ [l 2

N

N
3
) Q
%75}'113 A

- Many scientific computer applications need high-
performance matrix algebra. BLAS is a famous (very
optimized) library for such operations.

- The NVIDIA cuBLAS library is a fast GPU-accelerated
implementation of the standard basic linear algebra
subroutines (BLAS).

+ Include <cublas.h>
- Link the CuBLAS library files

- e.g. in CMAKE:
cuda_add cublas to target(target name)

W
y

%';;
A
\

Ti%f’ UNIVERSITA
2 |z | DEGLI STUDI

S ;
§< @
o A=
ENGH e

CuBLAS data layout

- Historically BLAS has been developed in Fortran, and to
maintain compatibility CuBLAS uses column-major
storage, and 1-based indexing.

- For natively written C and C++ code, one would most
likely choose 0-based indexing, in which case the array

index of a matrix element in row “i" and column “j” can be

computed via the following macro:
#define IDX2C(1,3,1ld) CC(O*(1Ld))+(1))

where Ld refers to the leading dimension of the matrix,

which in the case of column-major storage is the number
of rows of the allocated matrix

Béhﬂé-.
float* a = (float *)malloc (M * N * sizeof (*a));

for (J =0; J <N; J++) {
for (1 =0; i <M; i++) {
a[IDX2C(1,],M)] = (float)(1 * M + 7 + 1);
}

- For natively written C and C++ code, one would most
likely choose 0-based indexing, in which case the array

index of a matrix element in row “i" and column “j” can be
computed via the following macro:

#define IDX2C(1,73,ld) CCCa)*(Ld))+(1))

where ld refers to the leading dimension of the matrix,
which in the case of column-major storage is the number
of rows of the allocated matrix

T

S, | UNIVERSITA
<[l 2 | DEGLI STUDI

(@) = =
B\l
J /
iy

FIRENZE

CuBLAS SAXPY

float* d_x;
cudaMalloc((vo1d**)&d_x,N*s1zeof(float));
float* d_y;
cudaMalloc((void**)&d_y,N*s1izeof(float));

cublasInit(); // init. CuBLAS context

// copy vectors to device memory
cublasSetVector(N, sizeof(x[@]), x, 1, d_x, 1);
cublasSetVector(N, sizeof(y[0]), vy, 1, d_y, 1);

// Perform SAXPY on N elements
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasGetVector(N, sizeof(y[0]), d_y, 1, vy, 1);
cublasShutdown();

SHER% [UNIVERSITA
=/ |2 2 | DEGLI STUDI

S| 48
=gtV | FIRENZE
o)/
TS

Fast math

- Adding -use_fast_math option forces to use
intrinsic math functions for several operations like
divisions, log, exp and sin/cos/tan

- Work only in device code, of course

- These are single precision functions, so they could
be less precise than working on doubles.

SHER% [UNIVERSITA
=/ [lg2 'z | DEGLI STUDI

o = Av
) | FIRENZE
J) |
TS

C++

- Latest versions of CUDA support (since CUDA 7.0)
more and more C++11 features like:

- auto, lambda expressions, rvalues, nullptr,
default and deleted methods.

- C++11 concurrency is completely missing, though.

+ Since CUDA 9.0 also almost all C++14 features are
supported.

St | UNIVERSITA
=/ WA Z | DEGLI STUDI
N4 Ve
> \V4 0
[l | FIRENZE

- Programming Massively Parallel Processors: A

Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufmann - 2nd edition - Chapt. 16

or
Programming Massively Parallel Processors: A

Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufmann - 3rd edition - Appendix B

