

GPU
programming

basics
Prof. Marco Bertini

Data
parallelism:

GPU computing

CUDA:
libraries

Why use libraries ?

• Libraries are one of the most efficient ways to
program GPUs, because they encapsulate the
complexity of writing optimized code for common
algorithms into high-level, standard interfaces.

• There is a wide variety of high-performance
libraries available for NVIDIA GPUs.

Thrust
• Thrust is a library that has been included in CUDA

• Inspired by STL. Just include the header: it’s a
template library.

• Provides many algorithms like reduce, sort, scan,
transformations, search.

• Includes OpenMP backend for multicore
programming

• Allows transparent use of GPU

60

!!"!#$

!  %&'('$')*+,$-./0$,112+$./3$2*4(.(*'+$51(678

9(1:(.--*/:$

!  %&(;+,$*+$/1<$9.(,$15$,&'$=8>?$@>A$

!  =BB$2*4(.(*'+$51($=8>?$9(1:(.--*/:C$*/+9*('3$40$@%D$

!  E./0$*-91(,./,$.2:1(*,&-+F$

!  ('3;G'C$+1(,C$('3;G'H40HI'0C$+G./C$J$

!  >(.-.,*G.220$('3;G'+$1K'(&'.3$15$-./.:*/:$

&','(1:'/'1;+$-'-1(0$+9.G'+$

!  L/G2;3'+$M9'/E7$4.GI'/3$51($-;2,*G1('$9(1:(.--*/:$

Tuesday, October 11, 11

Thrust Hello World
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sort.h>

// generate 200K random numbers on the host
thrust::host_vector<int> h_vec(300000);
thrust::generate(h_vec.begin(), h_vec.end(), rand);

// transfer data to device
thrust::device_vector<int> d_vec = h_vec;

// sort data on device
thrust::sort(d_vec.begin(), d_vec.end());

// transfer data back to host
thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());

Thrust vector

• Thrust provides two vector containers,
host_vector and device_vector.  
As the names suggest, host_vector is stored in
host memory while device_vector lives in GPU
device memory.

• Thrust’s vector containers are just like
std::vector in the C++ STL.

Thrust iterators
• They point to regions of a vector

• Can be used like pointers

• Can be converted to raw pointers to interface
with CUDA 
 
thrust::device_vector<int>::iterator begin =  
 d_vec.begin();  
int * d_ptr = thrust::raw_pointer_cast(begin);  
kernel<<<10, 128>>>(d_ptr);  

From CUDA to Thrust
• Raw pointers can be used in Thrust. Once the raw

pointer has been wrapped by a device_ptr it can be
used like an ordinary Thrust iterator.  
 
int* d_ptr;  
cudaMalloc((void**)&d_ptr, N);  
thrust::device_ptr<int> d_vec =  
 thrust::device_pointer_cast(d_ptr); 
thrust::sort(d_vec, d_vec+N);  
cudaFree(d_ptr);

Thrust: reduction
#include <thrust/host_vector.h>  
#include <thrust/device_vector.h>  
#include <thrust/generate.h>  
#include <thrust/reduce.h>  
#include <thrust/functional.h>  
#include <algorithm>

// generate random data serially  
thrust::host_vector<int> h_vec(100);  
std::generate(h_vec.begin(), h_vec.end(), rand);

// transfer to device and compute sum  
thrust::device_vector<int> d_vec = h_vec;

int x = thrust::reduce(d_vec.begin(), d_vec.end(), 0,  
 thrust::plus<int>());

CuBLAS
• Many scientific computer applications need high-

performance matrix algebra. BLAS is a famous (very
optimized) library for such operations.

• The NVIDIA cuBLAS library is a fast GPU-accelerated
implementation of the standard basic linear algebra
subroutines (BLAS).

• Include <cublas.h>

• Link the CuBLAS library files

• e.g. in CMAKE:
cuda_add_cublas_to_target(target_name)

CuBLAS data layout
• Historically BLAS has been developed in Fortran, and to

maintain compatibility CuBLAS uses column-major
storage, and 1-based indexing.

• For natively written C and C++ code, one would most
likely choose 0-based indexing, in which case the array
index of a matrix element in row “i” and column “j” can be
computed via the following macro: 
 
#define IDX2C(i,j,ld) (((j)*(ld))+(i))  
 
where ld refers to the leading dimension of the matrix,
which in the case of column-major storage is the number
of rows of the allocated matrix

CuBLAS data layout
• Historically BLAS has been developed in Fortran, and to

maintain compatibility CuBLAS uses column-major
storage, and 1-based indexing.

• For natively written C and C++ code, one would most
likely choose 0-based indexing, in which case the array
index of a matrix element in row “i” and column “j” can be
computed via the following macro: 
 
#define IDX2C(i,j,ld) (((j)*(ld))+(i))  
 
where ld refers to the leading dimension of the matrix,
which in the case of column-major storage is the number
of rows of the allocated matrix

Example:

float* a = (float *)malloc (M * N * sizeof (*a));

for (j = 0; j < N; j++) {
 for (i = 0; i < M; i++) {
 a[IDX2C(i,j,M)] = (float)(i * M + j + 1);
 }
}

CuBLAS SAXPY
float* d_x;  
cudaMalloc((void**)&d_x,N*sizeof(float));  
float* d_y;  
cudaMalloc((void**)&d_y,N*sizeof(float));

cublasInit(); // init. CuBLAS context  
// copy vectors to device memory  
cublasSetVector(N, sizeof(x[0]), x, 1, d_x, 1);  
cublasSetVector(N, sizeof(y[0]), y, 1, d_y, 1);

// Perform SAXPY on N elements  
cublasSaxpy(N, 2.0, d_x, 1, d_y, 1);

cublasGetVector(N, sizeof(y[0]), d_y, 1, y, 1);  
cublasShutdown();

Fast math

• Adding -use_fast_math option forces to use
intrinsic math functions for several operations like
divisions, log, exp and sin/cos/tan

• Work only in device code, of course

• These are single precision functions, so they could
be less precise than working on doubles.

C++
• Latest versions of CUDA support (since CUDA 7.0)

more and more C++11 features like:

• auto, lambda expressions, rvalues, nullptr,
default and deleted methods.

• C++11 concurrency is completely missing, though.

• Since CUDA 9.0 also almost all C++14 features are
supported.

Books

• Programming Massively Parallel Processors: A
Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufmann - 2nd edition - Chapt. 16 
 
or 
 
Programming Massively Parallel Processors: A
Hands-on Approach, D. B. Kirk and W-M. W. Hwu,
Morgan Kaufmann - 3rd edition - Appendix B

