M Media Integration and Communication Center - University of Florence, lItaly

A

Laboratorio di
Programmazione

Prof. Marco Bertini
marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

ion and Communication Center - University of Florence, Italy

[

How the compiler

works
Programs and libraries

N—

N Media Integration and Communication Center - University of Florence, Italy EL— pr\

The compiler

“In C++, everytime someone writes ">> 3" instead of
"/ 8", | bet the compiler is like, "OH DAMN! | would
have never thought of that!”

- Jon Shiring (Call of Duty 4 / MW?2)

N Media Integration and Communication Center - University of Florence, Italy f’-— é\

What is a compiler !

® A compiler is a computer program (or set of
programs) that translate source code from a
high-level programming language to a lower
level language (e.g., assembly language or
machine code).

® A compiler typically performs: lexical analysis
(tokenization), preprocessing, parsing,
semantic analysis, code generation, and code
optimization.

http://en.wikipedia.org/wiki/Computer_program

K Media Integration and Communication Center - University of Florence, Italy

A

From source code to a
running program

text editor

-

_

Running
program

~

J

!

> compiler

Object file

“—1 |oader

> linker

v

<«

K Media Integration and Communication Center - University of Florence, Italy

[

object file

——

From source to object file

Lexical analyzer

v

Preprocessor

v

Syntax analyzer

v

Semantic analyzer

SISA[euy

Code generator

1
[]
1
1
[]
wm !
1
ER
HI
v =3
[]
o .
— 1
ml
1
1
[]
1
1

Code optimizer

Lexical analysis: breaks the source code text into small pieces
called tokens. Each token is a single atomic unit of the
language, for instance a keyword, identifier or symbol name.

Preprocessing: in C/C++ macro substitution and conditional
compilation

Syntax analysis: token sequences are parsed to identify the
syntactic structure of the program.

Semantic analysis: semantic checks such as type checking
(checking for type errors), or object binding (associating
variable and function references with their definitions), or
definite assignment (requiring all local variables to be initialized
before use), rejecting incorrect programs or issuing warnings

Code generation: translation into the output language, usually
the native machine language of the system.This involves
resource and storage decisions (e.g. deciding which variables
to fit into registers and memory), and the selection and
scheduling of appropriate machine instructions and their
associated addressing modes. Debug data may also need to be
generated to facilitate debugging.

Code optimization: transformation into functionally equivalent
but faster (or smaller) forms.

http://en.wikipedia.org/wiki/Debugging

K Media Integration and Communication Center - University of Florence, Italy EL- ﬁ/f\
-3

~

How the compilation works

® Consider the following C++ program (e.g.
stored in hello.cpp):

#include <iostream>
#define ANSWER 42

using namespace std;
// this 1s a C++ comment
int main() {
cout << "The Answer to the Ultimate Question of Life,
the Universe, and Everything is " << ANSWER << endl;
return 0;

h

MMedia Integration and Communication Center - University of Florence, lItaly f’ (,/f\
-’-'-— ' !\

How the compilation works

Check the result of the preprocessor
® Consideusing:
stored irg++ -E hello.cpp

#1include <

the 1o0streadm file is included at the

#define AN, . . :
aefine beginning of the output, then there’s the

using namecode without comments and with

// this i ,
int m;?ngsubstltuted define.

cout <<
the Univerac, Uriu CveryvuiiLry > << ANOWLN << c€IiutL,
return 0;

h

K Media Integration and Communication Center - University of Florence, Italy f’-— é\

Paths to headers

® A compiler(pre-processor) searches included
headers in predefined paths (e.g. /usr/include
in *nix / macOS systems)

® You can add additional paths (e.g. when using
libraries) with the -1 /path/to/headers
argument on the command line

K Media Integration and Communication Center - University of Florence, Italy EL— pff\
—

Assembly/object creation

® Check the assembly output of the program
with:
g++ -S hello.cpp

® The object file is created with:

g++ -C hello.cpp

K Media Integration and Communication Center - University of Florence, Italy ﬂ-_ ﬁf\
— ~ - !\._.._.._

Assembly/object creation

® Check the assembly output of the program
with:
g++ -S hello.cpp

® The object file is created with:

g++ -C hello.cpp

Performs all the compilation
steps (also preprocessing)

K Media Integration and Communication Center - University of Florence, Italy ﬂ-_ ﬁf\

Optimize and debug

® Add debug information to the output: it will
help when debugging a program:

when using g++ add the -g flag

® Request g++ optimization with the flags

-0x (x=1...3) for fast execution or -0s for
optimized size

N Media Integration and Communication Center - University of Florence, Italy ﬂ-— é\

Optimize and debug

Always use it when developing
and testing a program !

® Add debug information to the output: it will
help when debugging a program:

when using g++ add the -g flag

® Request g++ optimization with the flags

-0x (x=1...3) for fast execution or -0s for
optimized size

NMedla Integration and Communication Center - University of Florence, lItaly E’ é\

Optimize and debug

Always use it when developing
and testing a program !

® Add debug information to the output: it will
help when debugging a program:

when using g++ add the -g flag

® Request g++ optimization with the flags

-0x (X=1...2Compilation becomes slower
optimized sizand slower...
Typically optimization is set
when releasing a program

N Media Integration and Communication Center - University of Florence, Italy f’-— é\

Linking

® Use a linker like 1d to link the libraries to
the object file; on Ubuntu try:

ld -lstdc++ hello.o -0 hello

® or use g++ linking (will add required
standard libraries):

g++ hello.o -0 hello

N Media Integration and Communication Center - University of Florence, Italy

Linking

® Use a linker like 1d to link the libraries to
the object file; on Ubuntu try:

ld -lstdc++ hello.o -0 hello

® or use g++ linking (will add required
standard libraries):

g++ hello.o -0 hello

add -v to g++ linking to see
what’s going on with 1d

K Media Integration and Communication Center - University of Florence, Italy E’-— é\

Linking

® The linker will merge the object files of
various sources, e.g. if the program was split
in more than one translation unit

® You must tell where object files and libraries
are stored

® the linker will check some default
directories for libraries

K Media Integration and Communication Center - University of Florence, Italy ﬂ-— é\
— ~ - !\._.._....

Linking: paths and file names

® The compiler(linker) searches for libraries in

pre-defined paths (e.g. /usr/11b in *nix/
macOS systems)

® You can add paths to additional libraries using

the -L/path/to/l1ibraries argument
on the command line

® Use -lname_of_l1ibrary to provide the

name of the required library (more info
later...)

M Media Integration and Communication Center - University of Florence, Italy

[

How the IDE works

N———

N Media Integration and Communication Center - University of Florence, Italy ﬂ-— é\

Managing bmld

® An IDE like CLion manages projects and how
they are built.

® |t creates the instructions for compiler and
linker, managing the compilation of all required
files and linking of all required libraries

® A common language is that of Makefile

® ClLion creates Makefile programs from CMake
programs

K Media Integration and Communication Center - University of Florence, Italy

CMake

A

® Makefiles are O.S. dependent, so there is need
to adapt them to different systems

® (CMake creates Makefiles that are specific for
each platform and system

® CLion creates CMake files from which
Makefile files are created

K Media Integration and Communication Center - University of Florence, Italy EL— é\

Makefile

® Standard language for defining a compilation
and linking process

® The make program understands if there is
need to compile a source or if the last
compilation is up-to-date w.r.t. the source
code.

® |t can contain different actions, like cleaning,
building, installing

K Media Integration and Communication Center - University of Florence, Italy E’-— é\

CLion

® Each time we build our project with Clion it:

® checks that CMake is up-to-date or if
needed uses CMake to create Makefile

® executes Makefile, that in turns start the real
compilation

® Clion builds targets outside the source code
directory to keep it clean.

M Media Integration and Communication Center - University of Florence, Italy

L

~

Libraries

N Media Integration and Communication Center - University of Florence, Italy

What is a library ?

A

® A software library is a set of software
functions used by an application program.

® |ibraries contain code and data that provide
services to independent programes.

® This encourages the sharing and changing
of code and data in a modular fashion, and

eases the distribution of the code and
data.

K Media Integration and Communication Center - University of Florence, Italy f’-— é\
~ il !\

——

Using libraries in C/C++

® Jo use a library in C/C++ you need to:

|. Include the headers that provide the

prototypes of functions and classes that
you need in your code

2. Tell the linker where are the library files
(and which files - if the library is

composed by more than one) that are
needed by your code

e In C++ some libraries are made only by header files... e.g. template-based
libraries.

M Media Integration and Communication Center - University of Florence, Italy EL_ /’\

——

The C++ Standard Library

® |n C++,the C++ Standard Library is a
collection of classes and functions, which are

written in the core language and part of the
C++ |SO Standard itself.

® The C++ Standard Library provides

® several generic containers, functions to utilise and
manipulate these containers;

® generic strings and streams (including interactive
and file 1/O);

® support for some language features, and math.

N Media Integration and Communication Center - University of Florence, Italy f’-— é\

Types of libraries

® O.JS.es like Linux, OS X and Windows support two

types of libraries, each with its own advantages and
disadvantages:

® The static library contains functionality that is bound
to a program statically at compile time.

® The dynamic/shared library is loaded when an
application is loaded and binding occurs at run time.

® |n C/C++ you also have header files with the

prototypes of the functions/classes that are provided
by the library

M Media Integration and Communication Center - University of Florence, Italy EL— pr\

- | H

Static vs. Dynamic linking

o

o C

s Program X Program Y x TGRS SRR

" =

= Q

O e e £ A

= Static libraries Static libraries ’\ Q | Shared libraries :\

7 (*.a) (*.a) a | (*.s0) ' Dynamic linking
Static linking T mmmsmmmees of shared libraries
at compile-time at run-time

® TJo check if a program is statically or dynamically linked,
and see what dynamic libraries are linked use Ldd

(Linux) or otool (OS X):

[1ian@echidna ~]$ 1dd /sbin/sln /sbin/ldconfig /bin/1n
/sbin/sln:
not a dynamic executable
/sbin/ldconfig:
not a dynamic executable
/bin/1n:
linux-vdso.so.1l => (@x00007fffo44af000)
libc.so.6 => /11b64/11ibc.so.6 (Ox00000037eb800000)
/11b64/1d-11nux-x86-64.s0.2 (0x00000037eb400000)

N Media Integration and Communication Center - University of Florence, Italy EL— pr\

- | H

Static vs. Dynamic linking

(o))
g Program X Program Y % EIEEIES SR
[= -
o — p— £ TIITToooo
T Static libraries Static libraries ’\ T ' Shared libraries :‘\
7 (*.a) (*.a) a | (*.s0) ' Dynamic linking
Static linking '=====--=----< of shared libraries

at compile-time at run-time

® TJo check if a program is statically or dynamically linked,
and see what dynamic libraries are linked use Ldd

(Linux) or otool (OS X):

[ian@echidna ~]$ 1dd /sbin/sln /sbin/ldconfig /bin/1n

/sbin/sln: D
not a dynamic executable :=Sta_t|C Ilnl(lng
/sbin/1ldconfig: <«

not a dynamic executable
/bin/1n:
linux-vdso.so.1l => (@x00007fffo44af000)
libc.so.6 => /11b64/11ibc.so.6 (Ox00000037eb800000)
/11b64/1d-11nux-x86-64.s0.2 (0x00000037eb400000)

M Media Integration and Communication Center - University of Florence, Italy EL- ﬁ/f\

- | :

Static vs. Dynamic linking

(o))
g Program X Program Y % RERETEE SUTHRET
L= S
O e e E
':(‘5 Static libraries Static libraries \ s ' Shared libraries :‘\
0 (*.a) (*.a) a | (*.s0) ' Dynamic linking
Static linking l=====-==-==-< of shared libraries

at compile-time at run-time

® TJo check if a program is statically or dynamically linked,
and see what dynamic libraries are linked use Ldd

(Linux) or otool (OS X):

[ian@echidna ~]$ 1dd /sbin/sln /sbin/ldconfig /bin/1n

/sbin/sln: <«

not a dynamic executable :=Sta_t|C Iinking
/sbin/1ldconfig: <«

not a dynamic executable
/bin/ln: < Dynamlc Imkmg

linux-vdso.so.1 => (0Ox00007fff644af000)
libc.so.6 => /1ib64/1libc.so.6 (0x00000037eb800000)

/11b64/1d-11nux-x86-64.s0.2 (0x00000037eb400000) Dyna’m IC I | b raries

K Media Integration and Communication Center - University of Florence, Italy E’-— é\

Static libraries

® Static libraries are simply a collection of ordinary
object files; this collection is created using an

archiver program (e.g. ar in *NIX systems).

® Conventionally, static libraries end with the “.a”
suffix (*NIX system) or “.lib” (Windows).

® Static libraries permit users to link to programs
without having to recompile its code, saving
recompilation time. There’s no need to install
libraries along with programs.

® W/ith a static library, every running program has its
own copy of the library.

K Media Integration and Communication Center - University of Florence, Italy E’-— é\

Static libraries

® Statically linked programs incorporate only
those parts of the library that they use (not
the whole library!).

® Jo create a static library, or to add additional
object files to an existing static library, use a
command like this:

® ar rcs my_library.a filel.o filel.o

® The library file is used by the linker to
create the final program file

K Media Integration and Communication Center - University of Florence, Italy ﬂ-_ ﬁf\

N——

——

Statically linked executables

® Statically linked executables contain all the
library functions that they need to execute:

® all library functions are linked into the
executable.

® They are complete programs that do not
depend on external libraries to run:

® there is no need to install prerequisites.

K Media Integration and Communication Center - University of Florence, Italy f’-— é\
— ~ - !\._........

Dynamic/Shared libraries

® Dynamic/Shared libraries are libraries that
are loaded by programs when they start.

® They can be shared by multiple programs.

® Shared libraries can save memory, not just
disk space.The O.S. can keep a single copy of
a shared library in memory, sharing it among
multiple applications. That has a pretty
noticeable effect on performance.

N Media Integration and Communication Center - University of Florence, Italy f’-— é\

" ~ | W—

Shared library versions

® Shared libraries use version numbers to allow for upgrades to
the libraries used by applications while preserving compatibility
for older applications.

® Shared objects have two different names: the soname and the real
name. The soname consists of the prefix “lib”, followed by the
name of the library,a “.so” followed by another dot,and a
number indicating the major version number (in OS X the dotted
numbers precede the “.dylib” extension).The real name adds to
the soname a period, a minor number, another period, and the
release number.The last period and release number are optional.

® There is also the linker name, which may be used to refer to the
soname without the version number information. Clients using
this library refer to it using the linker name.

N Media Integration and Communication Center - University of Florence, Italy f’-— é\
4 - !\

~

Why using library versions ?

® The major/minor number and release number support
configuration control by letting you know exactly what version(s)
of the library are installed.With a statically linked executable,
there is some guarantee that nothing will change on you.With
dynamic linking, you don't have that guarantee.

® What happens if a new version of the library comes out?
Especially, what happens if the new version changes the calling
sequence for a given function?

® Version numbers to the rescue: when a program is linked against
a library, it has the version number it's designed for stored in it.
The dynamic linker can check for a matching version number. If
the library has changed, the version number won't match, and the
program won't be linked to the newer version of library.

K Media Integration and Communication Center - University of Florence, Italy f’-— é\

Shared libraries paths .

® Since linking is dynamic the library files
should be somewhere they can be found by
the O.S. dynamic linker

® e.g./usr/lib or /usr/local/lib

® |t’s possible to add other directories to

the standard library paths (e.g. using

LD LIBRARY PATH or
DYLD LIBRARY PATH environment

variables)

K Media Integration and Communication Center - University of Florence, Italy ﬂ-— é\
4 - !\

~

Dynamically linked executables

® Dynamically linked executables are smaller programs
than statically linked executables:

® they are incomplete in the sense that they require
functions from external shared libraries in order to
run.

® Dynamic linking permits a package to specify
prerequisite libraries without needing to include the
libraries in the package.

® Dynamically linked executables can share one copy
of a library on disk and in memory (at running
time). Most programs today use dynamic linking.

K Media Integration and Communication Center - University of Florence, Italy EL— pff\

Lrwxr=xr=x
Lrwxr=xr-x
Lrwxr=xr=x
—MWX=XI=X
-MW=r—r—
Lrwxr=xr-=x

Libraries and links

® Some technicalities about *NIX systems and

ol e S S S

libraries:

generally, a linker name is a link to the soname.
And the soname is a link to the real name.

root
root
root
root
root
root

admin
admin
admin
admin
admin
admin

18 28 Set 13:42 libpng.a -> libpngl4.a
14 28 Set 13:42 libpng.dylib —> libpngl4.dylib
11 28 Set 13:42 libpng.la —> libpngl4.la
155284 28 Set 13:42 libpngl4.14.dylib
289512 20 Set 13:42 libpngl4.a
17 20 Set 13:42 libpngl4.dylib -> libpngl4.14.dylib

K Media Integration and Communication Center - University of Florence, Italy EL- ﬁ/f\

Lrwxr=xr=x
Lrwxr=xr-x
Lrwxr=xr=x
—MWX=XI=X
-MW=r—r—
Lrwxr=xr-=x

Libraries and links

® Some technicalities about *NIX systems and

ol e S S S

libraries:

generally, a linker name is a link to the soname.
And the soname is a link to the real name.

root
root
root
root
root
root

Linker names

admin
admin
admin
admin
admin
admin

18 28 m\ubpng.a > libpngl4.a
14 20 Set 13:42h1ibpng.dylib —> Llibpngl4.dylib

11 28 Set 13:42 libpng.la —> libpngl4.la
155284 28 Set 13:42 libpngl4.14.dylib
289512 20 Set 13:42 libpngl4.a
17 20 Set 13:42 libpngl4.dylib -> libpngl4.14.dylib

M Media Integration and Communication Center - University of Florence, Italy

[T

Lrwxr=xr-=x
Lrwxr=xr-x
Lrwxr=xr-=x
—MWX=XI=X
-MW=r—r—
Lrwxr=xr-=x

Libraries and links

® Some technicalities about *NIX systems and

ol e S S S

libraries:

generally, a linker name is a link to the soname.

And the soname is a link to the real name.

root
root
root
root
root
root

SOname

Linker names

admin
admin
admin
admin
admin
admin

18 28 ':'Nlibpng.a > libpngl4.a
14 20 Set 13:42h1ibpng.dylib —> Llibpngl4.dylib

11 28 Set 13:42 libpng.la —> libpngl4.la
155284 28 Set 13:42 libpngl4.14.dylib
209512 28 Set 13:42 libpngl4.a
17 28 Set 13:42 libpngl4.dylib —> libpngl4.14.dylib

” Media Integration and Communication Center - University of Florence, Italy EL- pff\

Lrwxr=xr-=x
Lrwxr=xr-=x
Lrwxr=xr-=x
— WX =X =X
-MW==———
Lrwxr=xr-=x

Libraries and links

® Some technicalities about *NIX systems and

ol e S S S

libraries:

generally, a linker name is a link to the soname.
And the soname is a link to the real name.

root
root
root
root
root
root

SOname

Linker names

admin
admin
admin
admin
admin
admin

Real names

18 28 ;:ftss;zgtlibpng.a -> libpngl4.a
14 20 Set 13:4Mlibpng.dylib -> libpng lib
11 28 Set 13:42 libpng.la —> libpngl¥

155204 20 Set 13:42 libpngl4.14.dylib
289512 20 Set 13:42 libpngl4.a

17 28 Set 13:42, 1ibpngl4.dylib -> libpngl4.14.dylib

M Media Integration and Communication Center - University of Florence, Italy _[L_f;\

N——

How CLion manages a
build

N Media Integration and Communication Center - University of Florence, | ﬂ-— é\

CLion and CMake

® A Clion project must handle the compilation of
many files, written by the programmer, and use
external libraries.

® CLion uses CMake, a build system that describes
the whole compilation and linking process using
a specific CMake language.

® CMake then produces platform-specific scripts,
that guide the compiler and linker, e.g. using
Makefile language

® CMake is a meta-language

M Media Integration and Communication Center - University of Florence, Italy

CMake

® The script used to generate the platform specific
script that guides the build process is defined in
CMakelists.txt file.

[

® Clion updates the file as we add more .h and .cpp files
to the project...

® ...but we need to add manually instructions to

perform more complex operations such as using and

producing libraries
Project

] creating_static_library ~/Documents/pre:

A CMakelLists.txt

e Greeter.cpp

i3 Greeter.h

Il External Libraries

CMake script

M Media Integration and Communication Center - University of Florence, Italy [L- ﬁf\

CMake

® 0 Preferences
Q Build, Execution, Deployment » CMake = For current project
Appearance & Behavior Automatically reload CMake project on editing

Project is reloaded regardless of this option on external changes, e.g. on VCS up
Appearance ’ .
. I h e S C Menus and Toolbars e aen Iﬁ C

System Settings .
CMake options:

[) [)
SCript t Fiecoos r in
You can pass additional variables (-D VAR_NAME=value) or

Scopes E

e v Pass system environment
M a I(e Notifications
Name

Quick Lists
Keymap

. Editor
® ClLion s) .cpp files
Version Control + -0
to the Build, Executio oyment Pass system environment variables

Toolchains

CMake
Debuaaer Build options: Default value is "-j 8"

When we modlfy CMakelLists.txt we need to reload it in
CLion, or we can set auto-reload.

Project

Build

1creating_static_library ~/Documents/pre:

A CMakelLists.txt
et Greeter.cpp
3 Greeter.h
lili External Libraries

CMake script

K Media Integration and Communication Center - University of Florence, Italy EL— pff\

CMake

® When you run CMake for the first time, what it will do is
assemble the so-called CMake cache, collecting the variables
and settings found in the system and storing them so it doesn’t
have to regenerate them later on.

® In most cases, you should not worry about this cache, but if
you want to fine-tune it, you can. CLion gives you an editor
window where you can view and edit the values:

CMake: | Problems | <1i 8- L
? Variable Value
CMAKE_AR C:/Program Files (x86)/mingw-w64/i1686-5.1
L oo coommmcne
= CMAKE_CXX_COMPILER C:/Program Files (x86)/mingw-w64/i686-5.1
¢ | CMAKE_CXX_FLAGS
CMAKE_CXX_FLAGS_DEBUG -g
g ? CMAKE_CXX_FLAGS_MINSIZEREL -Os -DNDEBUG
E CMAKE_CXX_FLAGS_RELEASE -03 -DNDEBUG
il CMAKE_CXX_FLAGS_RELWITHDEBINFO -02 -g -DNDEBUG
- CMAKE_CXX_STANDARD_LIBRARIES -Ikernel32 -luser32 -Iqdi32 -lwinspool -Ishell
™ 6: TODO = A CMake Terminal Event Log

141 LF: UTF-8¢ Context: MainProgram[D] *+ & &

K Media Integration and Communication Center - University of Florence, Italy E’-— é\

Compilation results

If there is need to locate the generated CMake files:

On the main menu, choose Tools | CMake | Show
Generated CMake Files 1in Explorer/Finder
CLion will open the Explorer/Finder with the folder of
generated files hlghllghted

) Build, Execution, Deployment > CMake = For cu oject Reset
Appearance & Behavior £4 Automatically reload CMake project on editing
Appearance Project is reloaded regardless of this option on external changes, e.g. on VCS update
Menus and Toolbars
System Settings Genera tion
File Colors E . oo
CMake options: #
Scopes
Notifications You can pass additional variables (-D VAR_NAME=value) or other options.
Quick Lists » Pass system environment
Keymap
Editor Build

Plugins

Version Controt Build options: -4 L4
Build, Execution, Deployment Build output path: | C:\My Projects\Tuterial Project
Toolchains You can specify either an absolute path or relative to the project root
Debugger

n | Cancel | | Apply | Help

N Media Integration and Communication Center - University of Florence, Italy f’-— é\
~ il !\

——

Use libraries in CLion

® The build process in CLion is based on CMake:

® we need to work on the CMakelists.txt file

that contains the instructions used to manage
the project

® set tre verbosity of build to TRUE to better
observe what happens

® CMake (most of the times) will find the desired
libraries for us, adding path to include, library
files and names of libraries to be linked

K Media Integration and Communication Center - University of Florence, Italy

) 2: Favorites

]

[

Use libraries in CLion

CMake: ' Problems

Variable

CMAKE_STATIC_LINKER_FLAGS 1. set t(|) TRUE

= ER FLAGS_DEBUG
& |CM _STATIC_LINKER_FLAGS_ L.Z:LSave
"""" CMAKE_STATIC_LINKER_FLAGS_RELEASE
95 CMAKE_STATIC_LINKER_FLAGS_RELWITHDEBINFO
7 CMAKE_STRIP /Applications/Xcode.app/Contents /Developer/Toolchains /Xct
FALSE
CURSES_CURSES_LIBRARY /opt/local/lib/libcurses.dylib
CURSES_FORM_LIBRARY /opt/local/lib/libform.dylib
CURSES_INCLUDE_PATH /opt/local/include
CURSES_NCURSES_LIBRARY /opt/local/lib/libncurses.dylib
using_libraries_BINARY_DIR /Users/bertini/Library/Caches/CLion2016.1/cmake/generatec
using_libraries_SOURCE_DIR /Users/bertini/Documents/presentazioni/lezioni/Laboratorio

» 6:TODO = A CMake Terminal

N Media Integration and Communication Center - University of Florence, Italy EL— pr\

Use libraries in ClLion

use_static_library) ' cmake-build-debug) |z CMakeCache.txt) 3 Beuildal~ | P & Q

B Project €@ = | %~ 1© A CMakelists.txt X [CMakeCache.txt X | ¢, main.cpp X

use_static_library ~/Documents/presentazioni/lezioni/Labor.
cmake-build-debug
A CMakelists.txt Q- CMAKE_VE

C' ¢+« Main.cpp

|l External Libraries

1: Project

This docume ains very long lines. Soft wraps were forcibly enabled to improve editor performance. Hide notification Don't show again

AKEFILE O+ ¥ Qi % Match Case | | Regex | | Words 3 matches x

CMAKE_STRIP: FILEPATH=/Applications/Xcode v
.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/strip

« 7: Structure

//If this value is on, makefiles will be generated without the

// SILENT directive, and all commands will be echoed to the console

// during the make. This is useful for debugging only. With Visual

/7 Studio IDE projects all commands are done without /nologo. 1

CMAKE_VERBOSE_MAKEFILE:BOOL=TRUH \

//Path to a program. 2. Edit

Q- ProcessorCount_cmd_sysctl:FILEPATH=/usr/sbin/sysctl
P 1. Open cache //Value Computed by CMake /XCi
° use_static_Llibrary_BINARY_DIR:STATIC=/Users/bertini/Documents/presentazioni/lezioni
/Laboratorio di Programmazione 2016-2017/workspace/use_static_library/cmake-build
—debug
//Value Computed by CMake
use_static_library_SOURCE_DIR:STATIC=/Users/bertini/Documents/presentazioni/lezioni
g /Laboratorio di Programmazione 2016-2017/workspace/use_static_Llibrary
= _
O A Debug - 2
SE A /Applications/CLion.app/Contents/bin/cmake/bin/cmake -DCMAKE_BUILD_TYPE=Debug -G "CodeBlocks - Unix Makefiles"
.. 3 ""/Users/bertini/Documents/presentazioni/lezioni/Laboratorio di Programmazione 2016-2017/workspace/use_static_library"
oI % = —— Configuring done atec
w > ® —- Generating done .
% —— Build files have been written to: /Users/bertini/Documents/presentazioni/lezioni/Laboratorio di Programmazione
G % 2016-2017/workspace/use_static_library/cmake-build-debug

¥ 2: Favorites

In newer CLion you must edit the CMake cache file

©» 6: TODO A CMake Terminal = 0: Messages (_) Event Log
[Build finished in 1s 456ms (8 minutes ago) 187:33 LF4 UTF-8% : : v 8

M Media Integration and Communication Center - University of Florence, Italy _[L-f;\

Use libraries in CLion

' A CMakeLists.txt X § & main.cpp X

2
3
4
5
6
7/
38
9
10
11
12

__Ccmg e_minimum_required (VERSION 3.5) 1. We want to use either Curses
project(using_libraries)

or NCurses
E_CXX_FL ;) We need the, library, if not
available abort

_ main.cpp) 3. Add the path of the include
add_e e(using_libraries $450¥Filesf(I)ES})

4. Add path to libraries (-L) and
set (CURSES_NEED_NCURSES, TRUE)

find_package(Curses REQUIRED) library names (*l)
include_directories(${CURSES_INCLUDE_DIRS})

target_link_libraries(using_libraries ${CURSES_LIBRARIES})

set (CMAKE_CXX_FLAGS "$

These options are equivalent to manually adding to

command line -|, -L and -l

M Media Integration and Communication Center - University of Florence, Italy

[

Use libraries in CLion

Messages Build

/Applications/CLion.app/Contents/bin/cmake/bin/cmake —-E cmake_progress_start /Users/bertini/Library/Caches/CLion2016.]
1/cmake/generated/us'r1 IC mp“iﬁ" dbb825/Debug/CMakeFiles/progress.marks
/Applications/Xcode. p/Lontcnls/ue LUpEl 25r/ ke —f CMakeFiles/Makefile2 all
/Appllcatlons/Xcod ~er/usr/bin/ma CMakeFlles/u51ng_11brar1es dir/build.make CMakeFiles/using_
' SL _libraries—aldbb825/aldbb825/Debug && /Applications/
mazione 2015-2016/workspace/using_libraries" ",

~

16.1/cmake/generated/using_Llib —aldbb825/aldbb825/Debug /Users/bertini/Lil

/Users/b Lion2f16.1/cmake/generated/using_libraries— /aldbb825/Debug/CMakeFiles/using_1
Scanning dencies of targefusingl¥libraries

/Applica : /Devgiloper/usr/bin/make —-f CMakeFiles/using_libraries. i ld.make CMakeFiles/using_

[50%] Building CXX object i lgl/using_libraries.dir/main.cpp.o

/Applications/Xcode.app/Cont loper/?oolchains/XcodeDefau1t xctoolchain/usr/bin/c++ —I/opt/localllnclude
'on1/1e21on1/Laborator10 di Programmazione 2015-2016/workspae ma:
[100%] Linking CXX executable us brarles

/Appllcatlons/CLlon app/Contents

/Appllcatlons ' ion. app/Contents/b1n/cmake/b1n/cmake —-E cmake_progress_start /Users/bertini/Library/Caches/CLion2016.]

® Now we can use the library our program:
|. Include the required headers

2. The libraries are managed by Makefile

M Media Integration and Communication Center - University of Florence, Italy

T

-

Use libraries in CLion

#1nclude <ncurses.h>
#include <unistd.h>

int main() {

initscr();
noecho();
curs_set(FALSE);

mvprintw(10, 10, "Hello, world!");
refresh();

sleep(1l);

getch();
endwin();

K Media Integration and Communication Center - University of Florence, Italy E’-— é\

— ~ | W—

Use libraries in CLion

® Do not Run the program with the “Run” icon/command
® Open the terminal, Cd to temp directory of the project

(see in “Messages™)
® execute the program

initscr();
noecho();
curs_set(FALSE);

mvprintw(10, 10, "Hello, world!");
refresh();

sleep(1l);

getch();
endwin();

K Media Integration and Communication Center - University of Florence, Italy

LA

N———

~

Use libraries in CLion

® Do not Run the program with the “Run” icon/command
® Open the terminal, Cd to temp directory of the project

(see in “Messages™)

® execute the program

Messages Build

/Applications/CLion.app/Contents/bin/cmake/bin/cmake —build
/Applications/CLion.app/Contents/bin/cmake/bin/cmake -H"/Use ertini ioni ioni A
.1/cmake/generated/using_libraries—aldbb825/aldbb825/Debug ——check—bu11d system CMakeFlles/Makeflle cmake 0

/Applications/CLion.app/Contents/bin/cmake/bin/cmake —E cmake_progress_start /Users/bertini/Library/Caches/CLion2016.1/cmake/generated/using_libraries—aldbb825/a
.1/cmake/generated/using_libraries—aldbb825/aldbb825/Debug/CMakeFiles/progress.marks

/Applications/Xcode.app/Contents/Developer/usr/bin/make —-f CMakeFiles/Makefile2 all
/Applications/Xcode.app/Contents/Developer/usr/bin/make —f CMakeFiles/using_libraries.dir/build.make CMakeFiles/using_libraries.dir/depend
cd /Users/bertini/Library/Caches/CLion201§.1/cmake/generated/using_libraries—a1dbb825/a1dbb825/Debug && /Applications/CLion.app/Contents/bin/cmake/bin/cmake7—EVc

mvprintw(10, 10, "Hello, world!");
refresh();

sleep(1l);

getch();
endwin();

M Media Integration and Communication Center - University of Florence, Italy

Use libraries in CLion

® Do not Run the program with the “Run” icon/command
® Open the terminal, Cd to temp directory of the project

(see in “Messages™)
® execute the program

Messages Build

Y /Applications/CLion.app/Contents/bin/cmake/bin/cmake ——build
/Applications/CLion.app/Contents/bin/cmake/bin/cmake -H"/Use -
¥ .1/cmake/generated/using_libraries—aldbb825/aldbb825/Debug ——check-build-system CMakeFlles/Makeflle cmake 0
—, /Applications/CLion.app/Contents/bin/cmake/bin/cmake —-E cmake_progress_start /Users/bertini/Library/Caches/CLion2016.1/cmake/generated/using_libraries—aldbb825/a
L .1/cmake/generated/using_libraries—aldbb825/aldbb825/Debug/CMakeFiles/progress.marks
¥ /Applications/Xcode.app/Contents/Developer/usr/bin/make —-f CMakeFiles/Makefile2 all
/Applications/Xcode.app/Contents/Developer/usr/bin/make -f CMakeFiles/using_libraries.dir/build.make CMakeFiles/using_libraries.dir/depend
B cd /Users/bert1n1/L1brary/Caches/CL10n2016 1/cmake/generated/us1ng_11brar1es aldbb825/a1dbb825/Debug && /Appllcatlons/CLlon app/Contents/bln/cmake/bln/cmake -E c

1w [1 T MW L = S I |

nirvana:using_libraries bertin# cd /Users/bertini/Library/Caches/CLion2016.1/cmake/generated/using_libraries—aldbb825/aldbb825/Debug
nirvana:Debug bertini$ ls -la
total 104

LA

N———

~

/Users/bertlnl/lerary/Caches/CLlon2016 1/cmake/generated/u51ng_11brarles a1dbb825/a1dbb825/Debug

drwxr-xr-x 8 bertini staff 272 Apr 22 13:14 .
drwxr-xr-x 8 bertini staff 272 Apr 22 12:58 ..
-rw-r——r—— 1 bertini staff 14179 Apr 22 13:05 (CMakeCache.txt
drwxr-xr-x 15 bertini staff 51@ Apr 22 13:14 (MakeFiles 1. cd to directory
-rw-r—r—— 1 bertini staff 5426 Apr 22 13:05 Makefile
-rw-r—r—— 1 bertini staff 1386 Apr 22 12:58 cmake_install.cmake 2 execute program
—-rwxr-xr-x 1 bertini staff 13300 Apr 22 13:14 using_librari
1 s.cbp

bertini staff 6437 Apr 22 13:05

M Media Integration and Communication Center - University of Florence, Italy

[

Creating and using a
library

N—

K Media Integration and Communication Center - University of Florence, | EL— é\

VWVriting a I|brary

® There are basically two files that have to be
written for a usable library:

® The first is a header file, which declares all the
functions/classes/types exported by the library.

® |t will be included by the client in the code.

® The second is the definition of the functions/
classes to be compiled and placed as the shared
object.

® the object file created through compilation
will be used by the linker, to create the library.

M Media Integration and Communication Center - University of Florence, Italy _[L-f;\
| ——

Creating a static library with CLion

-

@ l:Project

«J 7:Structure

#ifndef CREATING_STATIC_LIBRARY_GREETER_H
#define CREATING_STATIC_LIBRARY_GREETER_H

#include <string>

class Greeter {

public:
explicit Greeter(std::string n="");
void greet() const;

private:
std::string name;

creating_static_library) E Greeter.h)
Project € = | #&- 1< A CMakeLists.txt X & Greeter.cpp X [m Greeter.h x
[creating_static_library ~/Documents/presentazioni/lezion 1
A CMakelLists.txt
& Greeter.cpp 2
v Greeter.h 3
i1 External Libraries
4
5
6
7/
8 5
n o [[. C. &
No "main” file with any main()
10
11
12
13

};

[

M Media Integration and Communication Center - University of Florence, Italy

Creating a static library with CLion

["] creating_static_library) A CMakeLists.txt)

*8' Project € = #H- 1= A CMakeLists.txt X € Greeter.cpp X | Greeter.h X
% DT?&E{;E;T;}Q?QW ~/Documents/presentazioni/lezion 1 Cmake_minimum_required (VERSION 3] 5)
s & Greeter.cpp 2 project(creating_static_library)
|n Greeter.h 3
S » whiExternal Librari " "
g 4 set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
2 5
NI
V Set target to static library creation 6 set (SOURCE_FILES Greeter.cpp Greeter.h)
—--’ add_library(greeter STATIC ${SOURCE_FILES})

Terminal
4+ —rw-r——r—- 1 bertini staff 6877 Apr 22 16:18 creating_static_library.cbp

-rw-r—r—— 1 bertini staff 87576 Apr 22 16:18 libcreating_static_library.a
X _rw-r—r— 1 bertini staff 87576 Apr 22 16:19 libgreeter.a

nirvana:Debug bertini$
nirvana:Debug bertini$
nirvana:Debug bertini$

total 248

drwxr—=xr-x
drwxr-xr-x
—rw—r——r——
drwxr=xr-x
-rw—r——r——
—rw—r——r——
—rw—r——r——
—rw—r——r——

1

S~ 0

[

bertini
bertini
bertini
bertini
bertini
bertini
bertini
bertini

nirvana:Debug bertini$

rm libcreating_static_library.a
cd /Users/bertini/Library/Caches/CLion2016.1/cmake/generated/creating_static_library-cd6aeb7/cd6aeb7/Debug

1s -la

staff
staff
staff
staff
staff
staff
staff
staff

272
272
13625
544
5351
1400
6877
87576

Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr

22
22
22
22
22
22
22
22

16:
13:
16:
16:
16:
13:
16:
16:

26
18
19
18
26
18
19

19 .

CMakeCache. txt

CMakeFiles

Makefile

cmake_install. cmake .
creating_static .d fll(E
libgreeter.a

M Media Integration and Communication Center - University of Florence, Italy _[L_f;\
| ——

Creating a dynamic library

["] creating_static_library) A CMakeLists.txt)

g Project € = %~ I- A CMakeLists.txt x €+ Greeter.cpp X |h Greeter.h X
% e e e 1 cmake_minimum_required (VERSION 3.5)
a %Greeter.cpp 2 project(creating_static_library)
. h Greeter'.h ' 3
g| > W Eeemel et 4 set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
¢ 5
v 6 set (SOURCE_FILES Greeter.cop Greeter.h)
Add SHARED to the target 7 add_library(greeter(SHARED)${SOURCE_FILES})

Terminal

4 —rw-r——r—- 1 bertini staff 6877 Apr 22 16:18 creating_static_library.cbp
-rw-r—r— 1 bertini staff 87576 Apr 22 16:19 libgreeter.a
X nirvana:Debug bertini$ 1s

CMakeCache. txt CMakeFiles Makefile
nirvana:Debug bertini$ ls -la

total 296

drwxr-xr-x 9 bertini staff 306 Apr 22 16:22 .

drwxr-xr-x 8 bertini staff 272 Apr 22 13:26 .. Dynamic |ibrary file
-rw-r——r— 1 bertini staff 13625 Apr 22 16:22 CMaketache.txt

drwxr-xr-x 16 bertini staff 544 Apr 22 16:22 CMakeFiles

-rw-r—r—— 1 bertini staff 5351 Apr 22 16:22 Makefile

-rw-r—r—— 1 bertini staff 1400 Apr 22 13:26 cmake_install.cma
-rw—-r—r—— 1 bertini staff 6885 Apr 22 16:22 creating_static rary.cbp
-rw-r—r—— 1 bertini staff 87576 Apr 22 16:19 libgreeter.a

—-rwxr=xr-x 1 bertini staff 23108 Apr 22 16:22 libgreeter.dyli

nirvana:Debug bertini$ I

N Media Integration and Communication Center - University of Florence, Italy

Deploy the library

A

® Deploying the library means to copy the
header and library files to a position where
they can be used to build other programs.

® (CMake has specific instructions for this

® First let’s reorganize our code to tell which

header files are going to be deployed (and
needed by other programs):

set(HEADER_FILES Greeter.h)
set(SOURCE_FILES Greeter.cpp ${HEADER_FILES})

K Media Integration and Communication Center - University of Florence, Italy

Deploy the library files

[

——

® Then add the CMake instructions to tell
where to copy the results of our compilation:

1nstall(TARGETS greeter
ARCHIVE DESTINATION /tmp/greeter/lib
LIBRARY DESTINATION /tmp/greeter/11ib)
install(FILES ${HEADER_FILES} DESTINATION /tmp/greeter/include)

® ARCHIVE indicates static library and

L IBRARY indicates dynamic library
destinations.

” Media Integration and Communication Center - University of Florence, Italy

——

Deploying from CLion

[

® At present it’s not possible to install from
CLion

® Open a terminal in the same directory where
CLion has built the library and issue:

make 1nstall

M Media Integration and Communication Center - University of Florence, Italy ‘[L_f;\

Deploying from CLion

nirvana:Debug bertini$
nirvana:Debug bertini$

total 328

drwxr-xr-x 11
drwxr-xr-x 8
-rw-r——r—@ 1
-rw-r——r— 1
drwxr-xr-x 16
-rw-r—r— 1
-rw-r——r— 1
-rw-r—r— 1
-rw-r—r— 1
-rw-r——r— 1
—-rwxr-xr-x 1

nirvana:Debug bertini$ make install

bertini
bertini
bertini
bertini
bertini
bertini
bertini
bertini
bertini
bertini
bertini

staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff

[100%] Built target greeter
Install the project...
—— Install configuration: '"Debug"

—— Up-to-date: /tmp/greeter/lib/libgreeter.dylib
—— Up-to-date: /tmp/greeter/include/Greeter.h
nirvana:Debug bertini$

CMake Terminal

272 Apr 22 13:26 ..
6148 Apr 22 17:15 .DS_Store
13625 Apr 22 17:41 (CMakeCache.txt
544 Apr 22 17:42 (MakeFiles
7159 Apr 22 17:41 Makefile

3186 Apr 22 17:41 cmake_install.cmake 1
11145 Apr 22 17:41 creating_static_library.cbp 1' (:(j t() ()l‘tr)ljt C’lrfa(:t()r}/

64 Apr 22 17:42 install_manifest.txt :2 |11Eii((3 if\ﬁ;tiﬂll
87576 Apr 22 17:30 libgreeter.a

23108 Aprg2 17:41 libgreet '

=|0:Messages “® 6: TODO

K Media Integration and Communication Center - University of Florence, Italy EL- ﬁ/f\

Deploying from ClLion

® Alternatively add a new target like this:

add_custom_target(install_${PROJECT_NAME}
make 1install
DEPENDS greeter
COMMENT "Installing ${PROJECT_NAME}")

® and build this new configuration.

Messages Build

+ /Applications/CLion.app/Contents/bin/cmake/bin/cmake —build /Users/bertini/Library/Caches/CL
" [66%] Built target greeter
: [100%] Installing creating_static_library

[100%] Built target greeter

%3 Install the project...
= 1 Install configuration: "Debug"

—— Installing: /tmp/greeter/lib/libgreeter.dylib
5! — Installing: /tmp/greeter/include/Greeter.h

Built target install_creating_static_library

K Media Integration and Communication Center - University of Florence, Italy ﬂ-_ ﬁf\
~ il !\

——

Using a static library with
CLion

® Ve need to tell the compiler where are the
header files of the library

® VWe need to include the files in our client code

® Ve need to tell the linker where is the library
file (.a”) and the name of the library (remind
the convention used !)

® CLion will use this information to create the
required Makefile from CMake

K Media Integration and Communication Center - University of Florence, Italy EL- ﬁ/f\

-~ N——

Using a static library with
CLion

® [n CMakelLists.txt tell where to look for library files and
includes:

include_directories(/tmp/greeter/include)
link_directories(/tmp/greeter/11ib)

add_executable(use_static_library ${SOURCE_FILES})

® Add the library name (no trailing lib):

target_link_libraries(use_static_library greeter)

M Media Integration and Communication Center - University of Florence, Italy _[L-f;\
| ——

Using a static library with
CLion

[Juse_static_library ~/Documents/presentazioni/lezioni/Lal

A CMakeLists. txt 1 #include <iostream>
& main.cpp 2 #include <string>
il External Libraries 3

4 // include library header(s)
5 #include "Greeter.h"
6
7 int main() {
8 std::string name = "Marco";
9 Greeter g(name); // use library objects
10 g.greet();
11 return 0;
12 H

K Media Integration and Communication Center - University of Florence, Italy ﬂ-_ ﬁf\
~ il !\

Using a dynamic library with
CLion

® Ve need to tell the compiler where are the
header files of the library

® VWe need to include the files in our client code

® Ve need to tell the linker where is the library
file (".so” /“.dylib”) and the name of the
library (remind the convention used !)

® CLion will use this information to create the
required Makefile from CMake

Using a dynamic library with
CLion

” Media Integration and Communication Center - University of Florence, Italy EL- pff\

® Use exactly the same CMake commands seen
before

® |f both static and dynamic libraries are in the
same directory then CMake selects the static
one as default.

® Use full name with extension to specify
which one to use (e.g. add .a/.dylib/.so).

” Media Integration and Communication Center - University of Florence, Italy EL- pff\
—

Executing a dynamically
linked program

® Remind that dynamically linked programs
need to access the library (actually it is the
dynamic linker that needs this)

® Either copy the library to a path used by
the dynamic linker (check info of your
O.S.) or copy it in the same directory of
the executable-

M Media Integration and Communication Center - University of Florence, Italy [L- ﬁf\

References and sources

These slides are based on the following articles

K Media Integration and Communication Center - University of Florence, Italy EL- pff\
—

Suggested reading: dynamic/
shared libraries

® | earn Linux, |01: Manage shared libraries:

http://www.ibm.com/developerworks/linux/
library/I-lpicl-v3-102-3/

® Anatomy of Linux dynamic libraries:
http://www.ibm.com/developerworks/linux/
library/l-dynamic-libraries/

® Dissecting shared libraries:

http://www.ibm.com/developerworks/linux/
library/I-shlibs/

http://www.ibm.com/developerworks/linux/library/l-lpic1-v3-102-3/
http://www.ibm.com/developerworks/linux/library/l-lpic1-v3-102-3/
http://www.ibm.com/developerworks/linux/library/l-dynamic-libraries/
http://www.ibm.com/developerworks/linux/library/l-dynamic-libraries/
http://www.ibm.com/developerworks/linux/library/l-shlibs/
http://www.ibm.com/developerworks/linux/library/l-shlibs/

” Media Integration and Communication Center - University of Florence, Italy } _EL-‘-@{\‘___
Suggested reading: writing
dynamic/shared libraries

® Program Library HOWTO
http://www.linuxdoc.org/HOWTO/Program-
Library-HOWTO/

® Shared objects for the object disoriented!
http://www.ibm.com/developerworks/library/I-

shobj/

® Writing DLLs for Linux apps
http://www.ibm.com/developerworks/linux/library/

http://www.linuxdoc.org/HOWTO/Program-Library-HOWTO/
http://www.linuxdoc.org/HOWTO/Program-Library-HOWTO/
http://www.ibm.com/developerworks/library/l-shobj/
http://www.ibm.com/developerworks/library/l-shobj/
http://www.ibm.com/developerworks/linux/library/l-dll/

