
Laboratorio di Tecnologie
dell'Informazione

Ing. Marco Bertini
bertini@dsi.unifi.it

http://www.dsi.unifi.it/~bertini/

martedì 14 maggio 13

mailto:bertini@dsi.unifi.it
mailto:bertini@dsi.unifi.it
http://viplab.dsi.unifi.it/~bertini
http://viplab.dsi.unifi.it/~bertini

STL
Standard Template Library

A fundamental principle of software design is that all problems can
be simplified by introducing an extra level of indirection.

Bruce Eckel

martedì 14 maggio 13

STL history

• In the late 70s Alexander Stepanov first observed that some
algorithms do not depend on some particular implementation of a
data structure but only on a few fundamental semantic properties of
the structure

• The Standard Template Library (STL) was developed by Alex
Stepanov, originally implemented for Ada (80's - 90's)

• In 1997, STL was accepted by the ANSI/ISO C++ Standards
Committee as part of the standard C++ library

• Adopting STL also affected strongly various language features of
C++, especially the features offered by templates

martedì 14 maggio 13

What is STL ?

• It’s a general-purpose library of generic algorithms
and data structures; supports basic data types such
as vectors, lists, associative containers (maps, sets),
and algorithms such as sorting, searching...

• Efficient, and compatible with C/C++ computation
model

• Not object-oriented: many operations (algorithms)
are defined as stand-alone functions

• Uses templates for reusability
martedì 14 maggio 13

Basic principles of STL

• STL containers (collections) are type-parameterized templates,
rather than classes with inheritance and dynamic binding

• there is no common base class for all of the containers

• no virtual functions and late binding

• however, containers implement a (somewhat) uniform container
interface with similar operations

• The standard string was define independently but later extended to
cover STL-like interfaces and services

martedì 14 maggio 13

What’s in STL

• STL (Standard Template Library) provides three basic components to
support the ADTs:

1. containers, for holding and owning homogeneous collections of
values; a container itself manages the memory for its elements

2. iterators are syntactically and semantically similar to C-like pointers;
different containers provide different iterators (but with similar
interfaces)

3. algorithms operate on various containers via iterators; algorithms
take different kinds of iterators as (generic) parameters; to execute an
algorithm on a container, the algorithm and the container must
support compatible iterators

martedì 14 maggio 13

What’s in STL - cont.

Vector<T>

List<T>

begin()

begin()

end()

end()

size()

size()
insert()

insert()

erase()

erase()

sort

find

Generic container Generic algorithm

Iterator

(Generic pointer)

martedì 14 maggio 13

STL example

#include <vector> // get std::vector
#include <algorithm> // get std::reverse, std::sort, etc.
//...
int main () {
 std::vector<double> v; // vector (STL container) for input data
 double d;
 while (std::cin >> d) // read elements using IO stream
 v.push_back(d); // method to append data to the vector
 if (!std::cin.eof ()) { // check how input failed
 std::cerr << "format error\n"; // IO stream used for error messages
 return 1; // error return
 }
 std::cout << "read " << v.size() << " elements\n"; // get size of container
 std::reverse(v.begin(), v.end()); // STL algorithm (with two STL iterators)
 std::cout << "elements in reverse order:\n";
 for (int i = 0; i < v.size (); ++i)
 std::cout << v [i] << '\n';
}

martedì 14 maggio 13

Basic concepts of STL

• Containers are parameterized class templates; they try to make minimal assumptions
about the type of elements that they hold -
they need some operations, e.g., for copying elements, adding/removing elements...

• Iterators are abstractions, compatible to pointers, that provide access to elements within
a particular container

• Iterators are used for either reading or modifying the elements of the container - there
are different types of iterators, with different capabilities

• Algorithms are parameterized function templates; they do not know the actual type of
the containers they operate on

• Algorithms are purposely decoupled from the containers, and they always use the
iterators to access elements in the container

martedì 14 maggio 13

Basic concepts of STL - cont.

• STL algorithms have an associated time complexity, implemented for efficiency (constant,
linear, logarithmic)

• they are function templates, parameterized by iterators to access the containers they operate
on:

 std::vector<int> v;
 .. // initialize v
 std::sort(v.begin(), v.end()); // instantiate
 std::deque<double> d; // double-ended queue
 .. // initialize d
 std::sort(d.begin(), d.end()); // again

• if a general algorithm, such as sorting, is not available for a specific container (iterators are
not compatible), then it is provided as a member operation (e.g., for std::list)

martedì 14 maggio 13

Containers

• a container is a class whose objects hold a homogeneous collection
of values.

• Container<T> c; // initially empty

• when you insert an object into a container, you actually insert a value
copy of this object

• c.push_back(value); // grows dynamically

• the element type T must support a copy constructor (that performs
a correct, sufficiently deep copying of object data)

martedì 14 maggio 13

Containers - cont.

• Heterogeneous collections are represented as containers storing
pointers to a base class

• this requires to handle all pointer/memory management
problems (e.g. when clearing a container, deep copying, etc.)

• STL containers actually use two data-type parameters.

• Data type for the items in the containers.

• Allocator, manage memory allocation for a container.

• Default allocator (an object of class allocator that uses new and
delete) is sufficient for most uses, and will be omitted in the
following.

martedì 14 maggio 13

Containers - cont.

• Sequence containers, each element is placed in a
certain relative position: as first, second, etc.:

• vector<T> vectors, sequences of varying
length

• deque<T> deques, double-ended queue
 (with operations at either end)

• list<T> doubly-linked lists

martedì 14 maggio 13

Containers - cont.

• Associative containers, used to search elements using
a key

• set <KeyType> sets with unique keys

• map <KeyType, ValueType> maps with unique keys

• multiset <KeyType> sets with duplicate keys

• multimap <KeyType, ValueType> maps with
 duplicate keys

martedì 14 maggio 13

Containers - cont.

• Container adaptors, are used to adapt
containers for the use of specific interfaces, for
example; the following are adapters of
sequences:

• Stack LIFO (last in first out)

• Queue FIFO (first in first out)

• priority_queue items with higher priority

martedì 14 maggio 13

Containers - C++11

• The new standard has added some new
containers; the most interesting are the
associative ones:

• unordered_set / unordered_multiset

• unordered_map / unordered_multimap

• They implement search using hash tables

martedì 14 maggio 13

Containers taxonomy

martedì 14 maggio 13

Restrictions on contained
types

• Types in STL containers must have an accessible
(defaults OK where applicable)

• default constructor

• destructor

• assignment operator

• copy constructor

• Some things require inequality/equality
operators

martedì 14 maggio 13

Initializing containers - C++11

• Before C++11, initializing an STL container
required to use explicit calls to methods used
to push in values. With C++11 it’s possible to
use a new initializer list:

std::vector<int> v = { 1, 5, 6, 0, 9 };

martedì 14 maggio 13

Iterators

• Each template (container) defines a public type name called iterator
which can be used for iterations of objects in the container.

• In the STL, an iterator is a generalization of a pointer (generic
pointer).

• Think of an iterator as a “pointer” to any object in the container at a
given time. The * operator (dereference) is defined to return the
actual element currently being “pointed at”.

• Decouples element access from structure

martedì 14 maggio 13

Iterators - cont.

• For unidirectional iterators, ++ is defined to advance to the
next element. For bidirectional iterators, -- is also defined to
back up to the previous element.

• Any container has member functions named begin() and
end() which point at the first element and one past the last
element, respectively.

martedì 14 maggio 13

Iterators - cont.

• An iterator provides access to objects stored in a container (points to an element);
every iterator it has to support:

• *it it-> to access the element pointed to by the iterator

• ++it to move to the next element of the container

• it == it1 to compare two iterators for pointer equality

• it != it1 to compare two iterators for pointer inequality

• Every container type provides one or more iterators in a uniform way as standardized
type names:

• std::vector<std::string>::iterator // typedef

• std::vector<std::string>::const_iterator

• begin() returns an iterator pointing to the first element

• end() returns an iterator pointing past the end;
 this serves as a sentinel, i.e., end marker.

martedì 14 maggio 13

Iterators - cont.

• C::iterator first = c.begin(), last = c.end();

• A container is a discrete set of values, of type value_type

• An iterator may either point to an element of this container, or just beyond
it, using the special past-the-end value c.end()

• It can be dereferenced by using the operator * (e.g., *it),
and the operator -> (e.g., it->op()).

martedì 14 maggio 13

Iterators - cont.

• A sequence of consecutive values in the container is determined by an
iterator range, defined by two iterators, i.e.: [first, last)

• last is assumed reachable from first by using the ++ operator, and all
iterators, including first but excluding last can be dereferenced

• Two iterators can be compared for equality and inequality

• They are considered equal if they point to the same element of the
container (or both just beyond the last value)

• The compiler does not check the validity of ranges, e.g., that iterators
really refer to the same container

martedì 14 maggio 13

Iterators - cont.

• the iterator operations are sufficient to access a Container:
Container c; ...
Container::iterator it;
for (it = c.begin(); it != c.end (); it++) {
 .. it->op (); .. std::cout << *it; ..
}

• for statement can be replaced by for_each algorithm

• non-const iterators support overwrite semantics: modify/overwrite the
elements already stored in the container

• there are iterator adapters that support insertion semantics (i.e., adding new
elements at some point)

martedì 14 maggio 13

Iterators - cont.

• validity of iterators/pointers is not guaranteed (as usual in C/C++)

• especially, modifying the organization of a container often invalidates all the iterators
and references (depends on the kind of container and the kind of modification)

• for array-like structures, iterators are (usually) implemented as native (C-style) pointers to
elements of the array (e.g., vector)

• very efficient: uses pointer arithmetics

• have the same security problems as other native pointers

• some libraries can provide special checked iterators

• Random access iterators (available for vectors and deques) operations: it+=i , it-=i,
it+i, it-i, it[i] (access element at it+i), <, <=, >, >=

martedì 14 maggio 13

Iterators - cont.

• The functionalities of iterators can be
represented by a hierarchy (it’s NOT a class
hierarchy). Moving down the iterators add
the functionalities (bottom iterators are
more powerful)

• Input Iterator: ..=*it ++
Output Iterator: *it=.. ++

• Forward Iterator: multipass

• Bidirectional Iterator: --

• Random Access
Iterator: [] it+i it-i

input output

forward

bidirectional

random access

martedì 14 maggio 13

auto - C++11
• Declarations of STL objects may become quite

convoluted, e.g.:
std::vector<std::map<int,
std::string>>::const_iterator it;

C++11 has introduced a new use of the auto
keyword: it allows skipping type declaration explicitly.
The compiler determines the type based on the type
of expression is initialized

•it’s NOT related to STL - you can use whenever
you want !

martedì 14 maggio 13

auto - 2 - C++11
// c++03

std::vector<std::map<int,
std::string>> container;

for
(std::vector<std::map<int,
std::string>>::const_iterator
it = container.begin();
it != container.end(); ++it)

{

 // do something

}

// c++11

std::vector<std::map<int,
std::string>> container;

for (auto it =
container.begin(); it !=
container.end(); ++it)

{

 // do something

}

martedì 14 maggio 13

range-for - C++11

• Instead of writing explicitly for cycle with
iterators it’s possible to use a new C++11
syntax (possibly combined with auto):

std::vector<std::pair<int, std::string>> container;

// ...

for (const auto& i : container)

 std::cout << i.second << std::endl;

martedì 14 maggio 13

range-for - C++11

• Instead of writing explicitly for cycle with
iterators it’s possible to use a new C++11
syntax (possibly combined with auto):

std::vector<std::pair<int, std::string>> container;

// ...

for (const auto& i : container)

 std::cout << i.second << std::endl;

Java programmers use the for each syntax,
the concept is the same...

martedì 14 maggio 13

Algorithms

• STL also has some common algorithms (~70 operations) to:
insert, get, search, sort, other math operations (e.g. permutate)

• Generic w.r.t. data types and also w.r.t. containers (in reality they
are generic w.r.t. the iterator types)

• Based on overload (use same name but different parameters)

• Don’t require inheritance relationships

• Types substituted need not have a common base class

• Need only to be models of the algorithm’s concept

martedì 14 maggio 13

Algorithms - cont.

• Implementations in C++:

• Rely on templates, interface-based
polymorphism

• Algorithms are implemented as function
templates

• Use types that model iterator concepts

• Iterators in turn give access to containers

martedì 14 maggio 13

Algorithms - cont.

• The <algorithm> header file contains:

• Non-modifying sequence operations:

• Do some calculation but don’t change sequence itself

• Examples include count, count_if
• Mutating sequence operations:

• Modify the order or values of the sequence elements

• Examples include copy, random_shuffle
• Sorting and related operations

• Modify the order in which elements appear in a sequence

• Examples include sort, next_permutation

• The <numeric> header file contains

• General numeric operations

• Scalar and matrix algebra, especially used with vector<T>

• Examples include accumulate, inner_product

martedì 14 maggio 13

Algorithms example

#include <algorithm>
sort(v.begin(), v.end()); /* sort all of v */
vector<int>::iterator it;
it = find(v.begin(), v.end(), 14);
/* it is an iterator with elements == 14 in v */

Notice that sort & find take iterators

Iterator = (Container + position)

… exactly the info sort/find need

Iterators provide a very generic interface

martedì 14 maggio 13

Function objects

martedì 14 maggio 13

Function objects

• A Function Object, or Functor (the two
terms are synonymous) is simply any object
that can be called as if it is a function.

• An ordinary function is a function object,
and so is a function pointer; more
generally, so is an object of a class that
defines operator().

• Many generic algorithms (and some
containers) may require a functor

martedì 14 maggio 13

Why function objects ?

• Can be developed inline

• May use attributes of the object, to store a
status (instead of using static variables in a
function)

• May use a constructor to set the associated
data (attributes)

martedì 14 maggio 13

Functor example

class IntGreater {
public:
 bool operator()(int x, int y) const {
 return x>y;
 }
};

IntGreater intGreater;
int i,j;
//...
bool result = intGreater(i, j);
//... container and iterators...
sort(itrBegin, itrEnd, intGreater());

martedì 14 maggio 13

Functor example

template<class T>
class Summatory {
public:
 Summatory(T sum=0) : _sum(sum) {}
 void operator()(T arg) { _sum += arg; }
 T getSum() const { return _sum; }
private:
 T _sum;
};

list<int> li;
Summatory<int> s;
for_each(li.begin(), li.end(), s());
cout << s.getSum() << endl;

martedì 14 maggio 13

Lambda expressions - C++11
• The C++11 standard has introduced lambda expressions: like

function objects they maintain a state (it’s the class that maintains
the state in a functor...), but their compact syntax removes the
need for a class definition.

• A lambda expression is a programming technique that is related
to anonymous functions. An anonymous function is a function
that has a body, but does not have a name. A lambda expression
implicitly defines a function object class and constructs a function
object of that class type. You can think of a lambda expression as
an anonymous function that maintains state and that can access
the variables that are available to the enclosing scope.

• Lambda expressions enable you to write code that is less
cumbersome and less prone to errors than an equivalent function
object.

martedì 14 maggio 13

// even_lambda.cpp
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
int main() {
 // Create a vector object that contains 10 elements.
 vector<int> v;
 for (int i = 0; i < 10; ++i) {
 v.push_back(i);
 }
 // Count the number of even numbers in the vector by
 // using the for_each function and a lambda expression.
 int evenCount = 0;
 for_each(v.begin(), v.end(), [&evenCount] (int n) {
 cout << n;
 if (n % 2 == 0) {
 cout << " is even " << endl;
 // Increment the counter.
 evenCount++;
 } else {
 cout << " is odd " << endl;
 }
 });
 cout << "There are " << evenCount
 << " even numbers in the vector." << endl;

}

// even_functor.cpp
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
class Functor {
public:
 // The constructor.
 explicit Functor(int& evenCount) : _evenCount(evenCount)
{ }
 // The function-call operator prints whether the number
is
 // even or odd. If the number is even, this method
updates the counter.
 void operator()(int n) {
 cout << n;
 if (n % 2 == 0) {
 cout << " is even " << endl;
 // Increment the counter.
 _evenCount++;
 } else {
 cout << " is odd " << endl;
 }
 }
private:
 int& _evenCount; // the number of even variables in the
vector
};
int main() {
 // Create a vector object that contains 10 elements.
 vector<int> v;
 for (int i = 0; i < 10; ++i) {
 v.push_back(i);
 }
 // Count the number of even numbers in the vector by
 // using the for_each function and a function object.
 int evenCount = 0;
 for_each(v.begin(), v.end(), Functor(evenCount));
 cout << "There are " << evenCount
 << " even numbers in the vector." << endl;
}

Lambda expression:
an example

martedì 14 maggio 13

Sequences
Vector, List, Deque

martedì 14 maggio 13

Sequences

• STL containers provide several kinds of sequences:

• vectors when

• there are random access operations

• most insertions and removals are at the end of the container

• deques when

• there are frequent insertions and deletions at either end

• there are random access operations

• lists when

• there are frequent insertions and deletions at positions other than at the end

• there are few random access operations (provide only sequential access)

• want to guarantee iterators are valid after structural modifications

martedì 14 maggio 13

Sequences example

std::deque <double> d(10, 1.0); // deque with 10 values
(1.0)
std::vector<Integer> v(10); // vector with 10 Integers;
each with default value
std::list<Integer> s1; // empty list

// store some elements:
s1.push_front(Integer(6));
s1.insert(s1.end(), Integer(13)); ..
// create list s2 that is a copy of s1
std::list<Integer> s2(s1.begin(), s1.end());
// reinitialize all elements to Integer(2)
s2.assign(s2.size() - 2, Integer(2)); // two fewer

martedì 14 maggio 13

Sequences: some methods
Constructor (copy): Sequence(size_type n, const T& v = T())
create n copies of v. If the type T does not have a no-arg constructor, then use explicit call to the constructor
Re-construction: assign(first, last)	

copy the range defined by input iterators first and last, dropping all the elements contained in the vector before the call and
replacing them by those specified by the parameters
assign(size_type n, const T& v = T())	

assign n copies of v

Access: reference front()	

first element. A reference type depends on the container; usually it is T&.
reference back()	

last element

Insertions and deletions: iterator insert(iterator p, T t)	

insert a copy of t before the element pointed to by p and return the iterator pointing to the inserted copy
void insert(iterator p, size_type n, T t)	

insert n copies of t before p
void insert(iterator p, InputIterator i, InputIterator j)
insert copies of elements from the range [i,j) before p
iterator erase(iterator p)	

remove the element pointed to by p, return the iterator pointing to the next element if it exists; end() otherwise
iterator erase(iterator i, iterator j)	
remove the range [i,j), return the iterator pointing to the next element if it
exists; end() otherwise
clear()	

remove all elements

martedì 14 maggio 13

Vectors

• A sequence that supports random access
to elements

• Elements can be inserted and removed at
the beginning, the end and the middle

• Constant time random access

• Commonly used operations:

• begin(), end(), size(), [], push_back(…),
pop_back(), insert(…), empty()

martedì 14 maggio 13

Vectors - cont.

• The vector template class represents a resizable (flexible) array

• capacity is the maximum number of elements it may get without a reallocation and copying
elements (allocated by reserve ())

• size is the current number of elements actually stored in the vector (always less than or
equal to the capacity)

• when inserting a new element, and there is no more room, i.e., size already equals capacity,
then the vector is reallocated

• insertions at the end of a vector are amortized constant time (while an individual insertion
might be linear in the current size)

• on reallocation, any iterators or references are invalidated

• note that overwriting operations do not reallocate vectors, so the programmer must
prevent any overflow/memory corruption

used part

size

capacity

martedì 14 maggio 13

Vectors: some methods

Capacity
capacity()	

current capacity
reserve(n)	

allocate space for n elements
resize(n, t = T())	

If n>size then add new n-size elements; otherwise decrease the size

Accessors
reference operator[]
reference at() throw(out_of_range)
checked access

Modifiers
push_back()	

Insert a new element at the end; expand vector if needed
pop_back()	

remove the last element; undefined if vector is empty

martedì 14 maggio 13

Vector example
// Instantiate a vector
vector<int> V;
V.reserve(100); // allocate space for 100 int
// Insert elements
V.push_back(2);	 	 // v[0] == 2, constant
time!
// after insert: V[0] == 3, V[1] == 2
V.insert(V.begin(), 3); // linear time!	
// Random access
V[0] = 5;		 	 // V[0] == 5
cout << V[1] << endl;
// Test the size
int size = V.size();	 // size == 2
vector<int> Vcopy(V); // use copy constructor

martedì 14 maggio 13

Vector and iterator example

// the iterator type is inside vector<int> !

vector<int>::iterator it = myVect.begin();
while (it != myVect.end()) {
 int x = *it;
 cout << “Current thing is “ << x << endl;
 it++;
}

martedì 14 maggio 13

Deques

• deques are similar to vectors

• deque iterators are random access

• additionally two operations to insert/
remove elements in front:

• push_front() add new first element

• pop_front() remove the first element

• deques do not have operations capacity()
and reserve()

martedì 14 maggio 13

Lists
• The STL class list is typically implemented as a

circular doubly linked list.

• With a dummy head node.

• The begin() returns an iterator to the first
item in the list.

• The end() returns an iterator to the dummy
head node in the list.

The concept of circular doubly linked list with a dummy head

martedì 14 maggio 13

Lists: some methods
Modifiers
push_front(t)	
insert at back
pop_front()	

delete from front

Auxiliary (specialized for lists)
sort()
to sort the list
sort(cmp)	

to sort the list using the comparison object function cmp
reverse()	
to reverse a list
remove(const T& value)
uses == to remove all elements equal to v
remove_if(pred)	

uses the predicate pred
unique()
remove consecutive duplicates using ==
unique(binpred)	
remove consecutive duplicates using the binary predicate binpred
head.splice(i_head, head1)
move the contents of head1 before iterator i_head, which must point to a position in head, and empty the list head1
head.merge(list& head1)	

merge two sorted lists into head, empty the list head1.

martedì 14 maggio 13

List example

list <char> s; // empty list
s.insert (s.end(), 'a');
s.insert (s.end(), 'b'); // s has (a, b)
list <char> s1; // empty list
// copy s to s1:
s1.insert (s1.end(), s.begin(), s.end());
s.clear ();
assert(s1.front() == 'a');
s1.erase (s1.begin()); // remove first
element
assert(s1.front () == 'b');

martedì 14 maggio 13

Associative containers
Set, Multiset, Map, Multimap

martedì 14 maggio 13

Overview

• Associative containers are a generalization of sequences. Sequences are indexed by
integers; associative containers can be indexed by any type.

• The most common type to use as a key is a string; you can have a set of strings, or a map
from strings to employees, and so forth.

• It is often useful to have other types as keys; for example, if I want to keep track of the
names of all the Widgets in an application, I could use a map from Widgets to Strings.

• Sets allow to add and delete elements, query for membership, and iterate through the set.

• Multisets are just like sets, except that it’s possible to have several copies of the same
element (these are often called bags).

• Maps represent a mapping from one type (the key type) to another type (the value type).
It’s possible to associate a value with a key, or find the value associated with a key, very
efficiently; can iterate through all the keys.

• Multimaps are just like maps except that a key can be associated with several values.

martedì 14 maggio 13

Sets

• The elements contained in the set are ordered
based on a object function Compare (default <
operator)

• No random access, only forward and reverse

• The class provides insertion/deletion/search/
count methods

• Use STL algorithms for union/intersection/
difference...

martedì 14 maggio 13

Sets example

set<int> s;
int a[]={0,1,2,3,4,5,6,7,8,9};
s.insert(a, a+10);
cout << s.count(5); // number of elements ==
5
// search the first element >= 5
cout << s.lower_bound(5);

martedì 14 maggio 13

Maps

• The primary concept here is that a map
allows the management of a key-value pair.

• Its declaration, therefore, allows you to
specify types for the “key” and the “value”

• Unique keys are mapped values

• A value is retrieve using its unique key

• Can specify a comparison function for the
keys (the elements are order using the
function)

martedì 14 maggio 13

Keys and Comparators

• The Key class should provide an operator< or
alternatively you should create a functor with
operator():

• multimap<Date, TodoItem> agenda;

• multimap<Date, TodoItem, DateComparer>
agenda;

martedì 14 maggio 13

Keys and Comparators

• The Key class should provide an operator< or
alternatively you should create a functor with
operator():

• multimap<Date, TodoItem> agenda;

• multimap<Date, TodoItem, DateComparer>
agenda;

1) Date provides
operator<

martedì 14 maggio 13

Keys and Comparators

• The Key class should provide an operator< or
alternatively you should create a functor with
operator():

• multimap<Date, TodoItem> agenda;

• multimap<Date, TodoItem, DateComparer>
agenda;

1) Date provides
operator<

2) Date has no operator<, then provide a functor

martedì 14 maggio 13

Maps example

#include <map>

map<string, int> mp;
mp[“Jan”] = 1;
mp[“Feb”] = 2;
mp[“Mar”] = 3;
//….
cout << “Mar is month “ << mp[“Mar”] <<
endl;

martedì 14 maggio 13

Maps example 2

map<string, int> 	 m;
m.insert(make_pair(“Wallace”, 9999));
m.insert(make_pair(“Gromit”, 3343));
map<string, int>::iterator p;
p = m.find(“Wallace”);
if(p != m.end())
	 cout << “Wallace’s extension is: ” p->second <<
endl;
else
	 cout << “Key not found.” << endl;
m[“Wallace”] = 1679;
cout << “New value is: “ << m[“Wallace”] << endl;

martedì 14 maggio 13

Cleaning up containers
of pointers

From “Thinking in C++” - Bruce Eckel

martedì 14 maggio 13

Motivation

• Be careful to clean a container of pointers:
must call the appropriate destructors to
release memory and avoid leaks

• Use the template functions suggested by Bruce
Eckel to purge containers

• be careful if an object pointer is sorted in
two containers to avoid double deletion

martedì 14 maggio 13

/*
 * Thinking in C++ 2nd Ed.
 * Bruce Eckel, chap. 15
 *
 */
#ifndef __PURGE_H__
#define __PURGE_H__
#include <algorithm>
using namespace std;
template<class Seq> void purge(Seq& c) {
 typename Seq::iterator i; // typename keyword says that Seq::iterator is a type
 for (i = c.begin(); i != c.end(); i++)	 {
	 	 delete *i;
	 	 *i = 0; // a double purge will do no harm: delete 0 is OK
 }
}

template<class InpIt> void purge(InpIt begin, InpIt end) {
 while (begin != end)	 {
 delete *begin;
 *begin = 0; // a double purge will do no harm: delete 0 is OK
 begin++;
 }
}
#endif

martedì 14 maggio 13

• Use the keyword typename if you have a qualified name that refers to a type and depends
on a template parameter. Only use the keyword typename in template declarations and
definitions, as in the previous example. The following example further illustrates the use of
the keyword typename:

• template<class T> class A {
 typedef char C;
 A::C d; // WRONG: use typename A::C d;
}

• The statement A::C d; is ill-formed. The class A also refers to A<T> and thus depends on a
template parameter. You must add the keyword typename to the beginning of this
declaration: typename A::C d;

• Use the keyword typename to tell the compiler that the next identifier is a type and NOT
a class member.

The typename keyword

martedì 14 maggio 13

Algorithms
A few examples

martedì 14 maggio 13

Non modifying
algorithm

• count algorithm

• Moves through
iterator range

• Checks each
position for
equality

• Increases count if
equal

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

int main (int, char * [])
{
 vector<int> v;
 v.push_back(1); v.push_back(2);
 v.push_back(3); v.push_back(2);

 int i = 7;
 cout << i << " appears “
 << count(v.begin(), v.end(), i)
 << " times in v" << endl;

 i = 2;
 cout << i << " appears “
 << count(v.begin(), v.end(), i)
 << " times in v" << endl;

 return 0;
}

martedì 14 maggio 13

Using function object

• count_if algorithm

• Generalizes the
count algorithm

• Instead of comparing
for equality to a
value

• Applies a given
predicate function
object (functor)

• If functor’s result is
true, increases count

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

template <typename T>
struct odd {
 bool operator() (T t) const
 {
 return (t % 2) != 0;
 }
};

int main (int, char * []) {

 vector<int> v;
 v.push_back(1);
 v.push_back(2);
 v.push_back(3);
 v.push_back(2);

 cout << "there are "
 << count_if(v.begin(), v.end(),
odd<int>())
 << " odd numbers in v" << endl;

 return 0;
}

martedì 14 maggio 13

Using sorting algorithm

• sort algorithm

• Reorders a given range

• Can also plug in a functor to
change the ordering function

• next_permutation algorithm

• Generates a specific kind of
reordering, called a
“permutation”

• Can use to generate all
possible orders of a given
sequence

#include <iostream>
#include <string>
#include <algorithm>

using namespace std;

int main (int, char * []) {

 string s = "asdf";
 cout << "original: " << s << endl;

 sort (s.begin(), s.end());
 cout << "sorted: " << s << endl;

 string t(s);
 cout << "permutations:" << endl;

 do {
 next_permutation (s.begin(), s.end());
 cout << s << " ";
 } while (s != t);

 cout << endl;

 return 0;
}

martedì 14 maggio 13

Using numeric
algorithms

• accumulate algorithm

• Sums up elements in a
range (based on a
starting sum value)

• inner_product algorithm

• Computes the inner
(also known as “dot”)
product of two vectors:
sum of the products of
their respective elements

#include <iostream>
#include <vector>
#include <numeric>

using namespace std;

int main (int, char * []) {

 vector<int> v;
 v.push_back(1);
 v.push_back(2);
 v.push_back(3);
 v.push_back(2);

 cout << "v contains ";
 for (size_t s = 0; s < v.size(); ++s) {
 cout << v[s] << " ";
 }
 cout << endl;
 cout << "the sum of the elements in v is "
 << accumulate (v.begin(), v.end(), 0)
 << endl;
 cout << "the inner product of v and itself is "
 << inner_product (v.begin(), v.end(),
 v.begin(), 0)
 << endl;

 return 0;
}

martedì 14 maggio 13

Credits

• These slides are (heavily) based on the material of:

• Dr. Juha Vihavainen, Univ of Helsinki

• Dr. Chien Chin Chen, National Taiwan University

• Dr. Andrew Hilton, University of Pennsylvania

• Fred Kuhns, Washington University

martedì 14 maggio 13

http://www.wustl.edu/
http://www.wustl.edu/

