
Laboratorio di Tecnologie
dell'Informazione

Ing. Marco Bertini
marco.bertini@unifi.it

http://www.micc.unifi.it/bertini/

martedì 14 maggio 13

mailto:marco.bertini@unifi.it?subject=
mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/
http://www.micc.unifi.it/bertini/

Design patterns

martedì 14 maggio 13

What are design patterns ?
• In software engineering, a design pattern is a

general reusable solution to a commonly occurring
problem in software design.

• A design pattern is not a finished design that can
be transformed directly into code.

• It is a description or template for how to solve a
problem that can be used in many different
situations.

• Patterns are the recurring solutions to the
problems of design.

martedì 14 maggio 13

http://en.wikipedia.org/wiki/Code_(computer_programming)
http://en.wikipedia.org/wiki/Code_(computer_programming)

When DPs were developed ?

• The idea originates from a book that organized
implicit knowledge about how people solve
recurring problems in building things:

“Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that
problem, in such a way that you can use this
solution a million times over, without ever doing it
the same way twice” - Prof. Charles Alexander

martedì 14 maggio 13

Why using design patterns ?

• Design patterns can speed up the
development process by providing tested,
proven development paradigms.

• Design patterns provide general solutions,
documented in a format that doesn't require
specifics tied to a particular problem.

• Design patterns allow developers to
communicate using well-known, well
understood names for software interactions.

martedì 14 maggio 13

“Gang of Four” Pattern Structure
• Gang of Four (GoF): Gamma, Johnson, Helm, Vlissides

• Authors of the popular “Design Patterns” book

• A pattern has a name

• e.g., the Command pattern

• A pattern documents a recurring problem

• e.g., issuing requests to objects without knowing in advance what’s to be
requested or of what object

• A pattern describes the core of a solution

• e.g., class roles, relationships, and interactions

• Important: this is different than describing a design

• A pattern considers consequences of its use

• Trade-offs, unresolved forces, other patterns to use

martedì 14 maggio 13

What patterns are not

• Design patterns ...

• ... are not restricted to OOP

• ... are not heuristics or abstract principles

• ... are not new and/or untested solutions

• ... are not a specific solution to a specific
problem

• ... are not a “silver bullet”

martedì 14 maggio 13

The iterator design pattern
• We have already seen an example of behavioural

design pattern: the iterators of STL.

• The basic idea of the iterator is that it permits the
traversal of a container (like a pointer moving
across an array). However, to get to the next
element of a container, you need not know anything
about how the container is constructed.
This is the iterators job. By simply using the
member functions provided by the iterator, you can
move, in the intended order of the container, from
the first element to the last element.

martedì 14 maggio 13

Design patterns classification
• Design patterns were originally grouped into the

categories Creational patterns, Structural patterns,
and Behavioral patterns.

• DPs were described using the concepts of:

• delegation: is the concept of handing a task over to another part of the program.
In object-oriented programming it is used to describe the situation wherein one object
defers a task to another object, known as the delegate.

• aggregation: is a way to combine simple objects or data types into more complex
ones. Composited objects are often referred to as having a "has a" relationship. In
composition, when the owning object is destroyed, so are the contained objects. In
aggregation, this is not necessarily true.

• consultation: is when an object's method implementation consists of a message
send of the same message to another constituent object.

martedì 14 maggio 13

http://en.wikipedia.org/wiki/Design_pattern
http://en.wikipedia.org/wiki/Design_pattern
http://en.wikipedia.org/wiki/Creational_pattern
http://en.wikipedia.org/wiki/Creational_pattern
http://en.wikipedia.org/wiki/Structural_pattern
http://en.wikipedia.org/wiki/Structural_pattern
http://en.wikipedia.org/wiki/Behavioral_pattern
http://en.wikipedia.org/wiki/Behavioral_pattern

Types of design patterns - 1
Creational design patterns

• This design patterns is all about class
instantiation. This pattern can be further
divided into class-creation patterns and
object-creational patterns.

• While class-creation patterns use inheritance
effectively in the instantiation process,
object-creation patterns use delegation
effectively to get the job done.

martedì 14 maggio 13

http://sourcemaking.com/creational_patterns
http://sourcemaking.com/creational_patterns

Types of design patterns - 2

Structural design patterns

• This design patterns is all about Class and
Object composition. Structural class-creation
patterns use inheritance to compose interfaces.

• Structural object-patterns define ways to
compose objects to obtain new functionality.

martedì 14 maggio 13

http://sourcemaking.com/structural_patterns
http://sourcemaking.com/structural_patterns

Types of design patterns - 3

Behavioral design patterns

• This design patterns is all about Class's objects
communication. Behavioral patterns are those
patterns that are most specifically concerned
with communication between objects.

martedì 14 maggio 13

http://sourcemaking.com/behavioral_patterns
http://sourcemaking.com/behavioral_patterns

Some patterns

• Observer - behavioral - A way of notifying change to a number of
classes

• Factory - creational - Creates an instance of several families of
classes

• Singleton - creational - A class of which only a single instance can
exist

• Adapter - structural - Match interfaces of different classes

• Facade - structural - A single class that represents an entire
subsystem

• Decorator - structural - Add responsibilities to objects
dynamically

martedì 14 maggio 13

Programming idioms

• Idioms are reoccurring solutions to common
programming problems.

• Idioms are low-level patterns specific to a
programming language. Design patterns are
high-level and language independent.

• During implementation you look for idioms.
During design you look for patterns.

martedì 14 maggio 13

We have already seen them...

• include guard and RAII are programming
idioms

• Another example: the interface class

• if we are more interested in interface
inheritance than implementation inheritance
we design the interface using a class
composed only by pure virtual public
methods

martedì 14 maggio 13

Idiom: interface class
class Shape // An interface class
{
 public:
 virtual ~Shape();
 virtual void move_x(int x) = 0;
 virtual void move_y(int y) = 0;
 virtual void draw() = 0;
//...
};

class Line : public Shape
{
 public:
 virtual ~Line();
 virtual void move_x(int x); // implements move_x
 virtual void move_y(int y); // implements move_y
 virtual void draw(); // implements draw
 private:
 point end_point_1, end_point_2;
//...
};

martedì 14 maggio 13

Idiom: interface class
class Shape // An interface class
{
 public:
 virtual ~Shape();
 virtual void move_x(int x) = 0;
 virtual void move_y(int y) = 0;
 virtual void draw() = 0;
//...
};

class Line : public Shape
{
 public:
 virtual ~Line();
 virtual void move_x(int x); // implements move_x
 virtual void move_y(int y); // implements move_y
 virtual void draw(); // implements draw
 private:
 point end_point_1, end_point_2;
//...
};

In Java we would use an
Interface

martedì 14 maggio 13

Idiom: interface class
class Shape // An interface class
{
 public:
 virtual ~Shape();
 virtual void move_x(int x) = 0;
 virtual void move_y(int y) = 0;
 virtual void draw() = 0;
//...
};

class Line : public Shape
{
 public:
 virtual ~Line();
 virtual void move_x(int x); // implements move_x
 virtual void move_y(int y); // implements move_y
 virtual void draw(); // implements draw
 private:
 point end_point_1, end_point_2;
//...
};

martedì 14 maggio 13

Idiom: interface class
class Shape // An interface class
{
 public:
 virtual ~Shape();
 virtual void move_x(int x) = 0;
 virtual void move_y(int y) = 0;
 virtual void draw() = 0;
//...
};

class Line : public Shape
{
 public:
 virtual ~Line();
 virtual void move_x(int x); // implements move_x
 virtual void move_y(int y); // implements move_y
 virtual void draw(); // implements draw
 private:
 point end_point_1, end_point_2;
//...
};

Remind the virtual
destructor !

martedì 14 maggio 13

Idiom: interface class
class Shape // An interface class
{
 public:
 virtual ~Shape();
 virtual void move_x(int x) = 0;
 virtual void move_y(int y) = 0;
 virtual void draw() = 0;
//...
};

class Line : public Shape
{
 public:
 virtual ~Line();
 virtual void move_x(int x); // implements move_x
 virtual void move_y(int y); // implements move_y
 virtual void draw(); // implements draw
 private:
 point end_point_1, end_point_2;
//...
};

Remind the virtual
destructor !

The classes that extend
Shape are not
dependent each other

martedì 14 maggio 13

Adapter pattern

Class and Object Adapter

martedì 14 maggio 13

Class and Object Adapter

• Review the pattern we have already seen in
the slides on inheritance: the class adapter
and see another version of the pattern, the
object adapter

• The Adapter pattern converts the interface
of a class into another interface the clients
expect.
Adapter lets classes work together that
could not otherwise because of
incompatible interfaces.

martedì 14 maggio 13

Adapter pattern

• Problem

• Have an object with an interface that’s close to but not exactly what we
need

• Context

• Want to re-use an existing class

• Can’t change its interface

• Impractical to extend class hierarchy more generally

• Solution

• Wrap a particular class or object with the interface needed (2 forms: class
form and object forms)

• Consequences

• Implementation you’re given gets interface you want

martedì 14 maggio 13

Class Adapter

• A class (Adapter) adapts the interface of
another class (Adaptee) to a client, using the
expected interface described in an abstract
class (Target)

• Uses multiple inheritance, along with abstract
class, virtual methods and private inheritance.

martedì 14 maggio 13

Class Adapter UML class

Client

request()
Target

specRequest()
Adaptee

request()
Adapter

The Client needs to
interact with a
Target object

The Adapter lets the Adaptee to
respond to request of a Target by
extending both Target and Adaptee

The Adaptee could
not respond to
Client because it
does not have the
required method

martedì 14 maggio 13

Class Adapter example

class Adaptee {
public:
 getAlpha() {return alpha;};
 getRadius() {return radius;};
private:
 float alpha;
 float radius;
};

class Target {
public:
 virtual float getX() = 0;
 virtual float getY() = 0;
};

class Adapter : private Adaptee, public Target
{
public:
 virtual float getX();
 virtual float getY();
};
float Adapter::getX() {
 return
Adaptee::getRadius()*cos(Adaptee::getAlpha());
}
float Adapter::getY() {
 return
Adaptee::getRadius()*sin(Adaptee::getAlpha());
}

The Client can’t access Adaptee methods
because Adapter has obtained them using private
inheritance

martedì 14 maggio 13

Object Adapter

• Does not use multiple inheritance but uses
composition to adapt the adaptee class:

• it can adapt also subclasses of the
adaptee (unlike the Class Adapter)

• requires to reimplement the adaptee,
thus require more coding (unlike the
Class Adapter)

• The adapter delegates to the adaptee the
requests of the clients

martedì 14 maggio 13

Object Adapter UML class
diagram

Client

request()

<<interface>>
Target

request()
Adapter

specificRequest()
Adaptee

The client sees
only the Target
interface

The Adapter
implements the
Target interface

The Adapter is
composed with
the Adaptee

The Adapter
delegates all the
requests to the
Adaptee

martedì 14 maggio 13

Object Adapter example

class Duck {
 public: virtual ~Duck() = 0 {	 }
 public: virtual void fly() const = 0;
 public: virtual void quack() const = 0;
};

class MallardDuck : public Duck {
 public: void fly() const {
 cout << "I'm flying" << std::endl;
 }
 public: void quack() const {
 cout << "Quack" << std::endl;
 }
};

class Turkey {
 public: virtual ~Turkey() = 0 {	}
 public: virtual void gobble() const = 0;
 public: virtual void fly() const = 0;
};

class WildTurkey : public Turkey {
 public: void fly() const {
 cout << "I'm flying a short
distance" << endl;
 }
 public: void gobble() const {
 cout << "Gobble gobble" << endl;
 }
};

	 	 	 	 	 	

martedì 14 maggio 13

Object Adapter example

class Duck {
 public: virtual ~Duck() = 0 {	 }
 public: virtual void fly() const = 0;
 public: virtual void quack() const = 0;
};

class MallardDuck : public Duck {
 public: void fly() const {
 cout << "I'm flying" << std::endl;
 }
 public: void quack() const {
 cout << "Quack" << std::endl;
 }
};

class Turkey {
 public: virtual ~Turkey() = 0 {	}
 public: virtual void gobble() const = 0;
 public: virtual void fly() const = 0;
};

class WildTurkey : public Turkey {
 public: void fly() const {
 cout << "I'm flying a short
distance" << endl;
 }
 public: void gobble() const {
 cout << "Gobble gobble" << endl;
 }
};

	 	 	 	 	 	

class TurkeyAdapter : public Duck {
 private: const Turkey* _turkey;
 public: TurkeyAdapter(const Turkey* turkey) : _turkey(turkey) { }
 public: void fly() const {
 for(int i = 0; i < 5; i++) {
 _turkey->fly();
 }
 }
 public: void quack() const {
 _turkey->gobble();
 }
};

martedì 14 maggio 13

Object Adapter example

class Duck {
 public: virtual ~Duck() = 0 {	 }
 public: virtual void fly() const = 0;
 public: virtual void quack() const = 0;
};

class MallardDuck : public Duck {
 public: void fly() const {
 cout << "I'm flying" << std::endl;
 }
 public: void quack() const {
 cout << "Quack" << std::endl;
 }
};

class Turkey {
 public: virtual ~Turkey() = 0 {	}
 public: virtual void gobble() const = 0;
 public: virtual void fly() const = 0;
};

class WildTurkey : public Turkey {
 public: void fly() const {
 cout << "I'm flying a short
distance" << endl;
 }
 public: void gobble() const {
 cout << "Gobble gobble" << endl;
 }
};

	 	 	 	 	 	

class TurkeyAdapter : public Duck {
 private: const Turkey* _turkey;
 public: TurkeyAdapter(const Turkey* turkey) : _turkey(turkey) { }
 public: void fly() const {
 for(int i = 0; i < 5; i++) {
 _turkey->fly();
 }
 }
 public: void quack() const {
 _turkey->gobble();
 }
};

Here’s the
composition !
Any class extending
Turkey may be
adapted because of
the IS_A relationship

martedì 14 maggio 13

Object Adapter example

class Duck {
 public: virtual ~Duck() = 0 {	 }
 public: virtual void fly() const = 0;
 public: virtual void quack() const = 0;
};

class MallardDuck : public Duck {
 public: void fly() const {
 cout << "I'm flying" << std::endl;
 }
 public: void quack() const {
 cout << "Quack" << std::endl;
 }
};

class Turkey {
 public: virtual ~Turkey() = 0 {	}
 public: virtual void gobble() const = 0;
 public: virtual void fly() const = 0;
};

class WildTurkey : public Turkey {
 public: void fly() const {
 cout << "I'm flying a short
distance" << endl;
 }
 public: void gobble() const {
 cout << "Gobble gobble" << endl;
 }
};

	 	 	 	 	 	

class TurkeyAdapter : public Duck {
 private: const Turkey* _turkey;
 public: TurkeyAdapter(const Turkey* turkey) : _turkey(turkey) { }
 public: void fly() const {
 for(int i = 0; i < 5; i++) {
 _turkey->fly();
 }
 }
 public: void quack() const {
 _turkey->gobble();
 }
};

Here’s the
composition !
Any class extending
Turkey may be
adapted because of
the IS_A relationship

Here’s the delegation

martedì 14 maggio 13

Object Adapter example

class Duck {
 public: virtual ~Duck() = 0 {	 }
 public: virtual void fly() const = 0;
 public: virtual void quack() const = 0;
};

class MallardDuck : public Duck {
 public: void fly() const {
 cout << "I'm flying" << std::endl;
 }
 public: void quack() const {
 cout << "Quack" << std::endl;
 }
};

class Turkey {
 public: virtual ~Turkey() = 0 {	}
 public: virtual void gobble() const = 0;
 public: virtual void fly() const = 0;
};

class WildTurkey : public Turkey {
 public: void fly() const {
 cout << "I'm flying a short
distance" << endl;
 }
 public: void gobble() const {
 cout << "Gobble gobble" << endl;
 }
};

	 	 	 	 	 	

class TurkeyAdapter : public Duck {
 private: const Turkey* _turkey;
 public: TurkeyAdapter(const Turkey* turkey) : _turkey(turkey) { }
 public: void fly() const {
 for(int i = 0; i < 5; i++) {
 _turkey->fly();
 }
 }
 public: void quack() const {
 _turkey->gobble();
 }
};

void testDuck(const Duck* duck) {
	 duck->quack();
	 duck->fly();
}
...
MallardDuck* duck = new MallardDuck();
WildTurkey* turkey = new WildTurkey();
Duck* turkeyAdapter = new TurkeyAdapter(turkey);
testDuck(duck);
testDuck(turkeyAdapter);
...

Here’s the
composition !
Any class extending
Turkey may be
adapted because of
the IS_A relationship

Here’s the delegation

martedì 14 maggio 13

Credits

• These slides are (heavily) based on the material of:

• Aditya P. Mathur, Purdue University

• Dr. Aaron Bloomfield, University of Virginia

• Fred Kuhns, Washington University

• Glenn Puchtel

martedì 14 maggio 13

http://www.wustl.edu/
http://www.wustl.edu/

