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Abstract

Automatic semantic annotation of video streams allows both to extract significant clips for

production logging and to index video streams for posterity logging. Automatic annotation for

production logging is particularly demanding, as it is applied to non-edited video streams and

must rely only on visual information. Moreover, annotation must be computed in quasi real-

time. In this paper, we present a system that performs automatic annotation of the principal

highlights in soccer video, suited for both production and posterity logging. The knowledge

of the soccer domain is encoded into a set of finite state machines, each of which models a spe-

cific highlight. Highlight detection exploits visual cues that are estimated from the video stream,

and particularly, ball motion, the currently framed playfield zone, players� positions and colors

of players� uniforms. The highlight models are checked against the current observations, using a

model checking algorithm. The system has been developed within the EU ASSAVID project.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Video annotation and retrieval by content are motivated by the huge amount of

video daily produced both by broadcasters and individual film shooters. In particu-
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lar, broadcasters are strongly interested in tools that enable to log the most relevant

shots of a video stream with annotations that may support effectively the task of ed-

iting TV programmes. Annotations should include the description of the most rele-

vant highlights and other in-depth information. Making the annotation as much as

possible automatic is one of the best ways to improve the production quality and to
face a competitive market. To this end, broadcasters employ two distinct logging ap-

proaches. In production logging, which is carried out live or shortly after the event,

the assistant producer selects manually the relevant shots to be included into the pro-

gramme of the day. In posterity logging, the video material is catalogued for later re-

use. In this case, librarians typically prepare a detailed textual annotation of each

video tape after a careful inspection of its content. As a result of that, annotations

strongly depend on which of the two logging approaches is followed. In particular,

production logging typically deals with raw video—captions and effects like replays
that are useful for automatic annotation are added later during the editing phase,

and speech and audio are available only occasionally. On the other hand, in posterity

logging, automatic annotation can use speech and audio as well as captions and ed-

iting effects to extract semantic information from the video stream. Besides, while in

production logging the annotation must be performed on-line to meet the nearly re-

al-time requirements of as live 1 programme production, in posterity logging the an-

notation can be performed off-line.

Although there is an extensive literature on the subject of automatic video anno-
tation for video archiving, this distinction and its implications have never been con-

sidered. Proposals have been concerned with solutions of general applicability,

addressing detection of syntactic features like editing effects and keyframes

[1,10,12,16,28] as well as with solutions for the extraction of video semantics, specif-

ically tailored to particular application domains [5,6,9,17,19,25].

In the specific case of sports videos, automatic semantic annotation requires that

the most relevant highlights are identified. Sports highlights represent atomic entities

at the semantic level. They have a limited temporal extension and a relatively simple
structure, that can be modelled as the spatio-temporal concatenation of specific

events. The challenge in sports highlight detection is therefore tied with the choice

of appropriate representation models and the selection of meaningful cues that

can be extracted from the video stream. Typical facts of tennis have been modelled

and detected in [22]. Detection and description of the athletes� running behavior is

discussed in [7]. Rule-based modelling of complex basketball plays is presented in

[27]. In [21], shots of basketball game are classified into one of three categories. De-

veloping on this classification, basket events are detected when the shot sequence dis-
plays certain visual patterns. Bayes networks have been used in [15] to model and

classify American football plays; however, trajectories of players and ball are entered

manually, and are not automatically extracted from the video stream. In [3] auto-

matic video annotation at an intermediate semantic level is presented: based on vi-

sual features, frames are classified respectively as ‘‘crowd,’’ ‘‘player,’’ or ‘‘playfield.’’
1 A programme is said to be broadcast as live if it is broadcast with a very limited delay—i.e., a few

hours—from its recording.
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Annotation of soccer videos has been addressed by a large number of researchers.

In [26], Yow et al. used mosaic images for the visualization of complete actions: play-

ers and the ball are superimposed on the background image of the playfield so that the

development of the game is shown. Choi et al. [8] addressed the problem of detection

and tracking of ball and players in the video sequence. The metric position of the
players on the playfield was estimated using an approximation of the perspective pla-

nar transformation from the image points to the playfield model. The EU-ADMIRE

project [24] has addressed modelling of semantic events in sport videos using a hier-

archical rule-based approach; highlights are detected and annotated, based on low-in-

termediate level features extracted manually from the video stream. MPEG motion

vectors were used in [18] to detect highlights. In particular, it was exploited the fact

that fast camera motion is observed in correspondence of typical soccer highlights,

such as shot on goal or free kick. In [13], the playfield was divided into several distinct
zones: the zone is identified using patterns of the playfield lines which appear in the

image. The ball position is also used to perform detection of shot on goal and corner

kick highlights. Tovinkere and Qian proposed a hierarchical E-R framework for

modelling the domain knowledge [23]. This scheme is suited for both team plays

and individual actions, and uses a set of nested rules to check whether a particular

event takes place; the model includes 3D data on the position of players and ball that

are obtained from microwave sensors or multiple video cameras. Recognition of rel-

evant soccer highlights (free kicks, corner kicks, and penalty kicks) was presented in
[2]: Hidden Markov Models encoding players� distribution and camera motion were

used to discriminate between the three highlights. The major weakness of the ap-

proach is in the difficulty to obtain training sets that are representative of the typical

occurrences of some highlight, and, due to this, the possibility of modelling highlights

that may occur with many different patterns. More recently, in [11], Ekin et al. per-

formed highlight detection in soccer video using both shot sequence analysis and shot

visual cues. In particular, they assume that the presence of highlights can be inferred

from the occurrence of one or several slow motion shots and from the presence of
shots where the referee and/or the goal box is framed. The method only works on ed-

ited programmes and is therefore suited only for posterity logging annotation.

In the following we present automatic detection of the principal highlights in soc-

cer, based on the estimation of a few visual cues. We partition the playfield into dif-

ferent zones with slight overlapping and use the motion of the main camera as a cue

for the evolution of the play. Each highlight is modelled with a Finite State Machine

(FSM), where key events, defined in terms of the estimated cues, determine the tran-

sition from one state to the following. The highlight models are checked against the
current observations, using a model checking algorithm. Fig. 1 provides an overview

of the highlight detection engine, and of the data that are fed into the two subsystems

for visual cue extraction and model checking. The system supports the detection of

all the principal soccer highlights and is suited for both production and posterity log-

ging. The work was developed within the EU-ASSAVID (Automatic Segmentation

and Semantic Annotation of sports VIDeo) project, that aimed to provide a fully au-

tomated system for annotation of sports video footage. Domain experts were in-

volved in the definition and modelling of the most relevant soccer highlights.



Fig. 1. Overview of principles of operation of the highlight detection engine.
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The paper is organized as follows: in Section 2, we discuss the solution adopted

for modelling highlights. Then, we provide details on the extraction of intermedi-

ate-level cues from the video stream (Section 3) and on model checking (Section

4). We report on experimental results in Section 5. Conclusions and future work

are discussed in Section 6.
2. Highlight models and visual cues

In our approach, we model highlights using finite state machines: each highlight is

described by a directed graph Gh ¼ hSh; Ehi, where Sh is the set of nodes representing

the states and Eh is the set of edges representing the events. Events indicate transi-

tions from one state to the other: they capture the relevant steps in the progression

of the play. An event is triggered whenever a change occurs in the observed cues. The

spatio-temporal analysis of the play is performed only at frames that have been pre-
viously classified as ‘‘playfield’’ frames [3].

As a concrete example, we consider the case of the shot on goal highlight. Its de-

scription provided by a domain expert is as follows:
The player that has the ball gets closer to the opponent�s goal box. He then kicks the ball

towards the goal post. Eventually, the ball is either blocked by the goalkeeper, or ends into

the net, or goes beyond the field end line. Alternatively, the ball gets far from the goal box.
The knowledge model obtained from this description is shown in Fig. 2. It models

the temporal evolution of a specific set of observable cues that characterizes the shot

on goal highlight. The ball motion—its acceleration after the player�s kick, its decel-
eration and stop when it is blocked by the goalkeeper, its direction—and the zone of

the playfield where the ball is played, are used as visual cues. They are estimated using,

respectively, the camera motion and the playfield zone framed by the camera as dis-
cussed in more detail in the following section. As shown in Fig. 3a, changes in camera

motion occur when the ball is kicked or stopped. The playfield region can be extracted

from the frames of the sequence as shown in Fig. 3c for keyframes of Fig. 3b.

More generally, state transitions are determined by the following cues, that are

directly estimated from image data: motion of the ball, currently framed playfield

zone, position of the players on the playfield, color of players� uniforms. Table 1



Fig. 3. Sample video sequence of a shot on goal. (a) Camera pan (negative pan indicates that the camera is

moving towards left). (b) Keyframes of the sample sequence. (c) Playfield regions extracted from the key-

frames.

Fig. 2. The domain knowledge model captures the essence of a shot on goal, as described by a domain

expert.
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Table 1

Visual cues used for the models of the highlights recognized by the system

Highlight Visual cues

Ball

motion

Playfield

zone

Players�
position

Players�
colors

Required

highlights

Forward pass Y Y — — —

Shot on goal Y Y — — —

Turnover Y — — — —

Placed kick

Corner Y Y Y — —

Free kick Y Y Y — —

Penalty Y Y Y — —

Kickoff Y Y Y Y —

Counterattack — — — Y Turnover THENTHEN

forward pass

‘‘Penalty’’ covers penalties that occur during the match, not those after extra time.

6 J. Assfalg et al. / Computer Vision and Image Understanding xxx (2003) xxx–xxx

ARTICLE IN PRESS
summarizes the visual cues that have been selected for modelling and classification of

each highlight. It can be observed that highlights can be expressed in terms of other

highlights (e.g., penalty, corner, and free kick are specializations of placed kick). Most

of the highlights are detected using, as relevant cues, only the ball motion and the

playfield zone that are estimated in every frame. Players� position and color are only

used to discriminate between placed kicks and to identify kickoffs. Differently from

the others, the counterattack highlight is modelled as a sequence of basic highlights

(i.e., turnover followed by forward pass).
3. Cue estimation

The solutions adopted for the estimation of the visual cues are discussed in the

following paragraphs.

3.1. Ball motion

Video producers typically use one main camera to follow the play. Due to the fact

that the play always takes place next to the ball, it is fair to assume that the main

camera follows the ball. Accordingly, ball motion is conveniently described in terms

of pan/tilt camera motion, and estimated from the apparent image motion induced

by the camera action. The validity of this assumption has been confirmed in the ex-

periments carried out in the EU-ASSAVID project. Estimation of camera motion is

easier than ball motion tracking. In fact, since the ball has a very limited image size, a
robust detection of the ball is almost impossible to achieve in long field camera shots

or in crowded scenes. The ball is also impossible to detect and track when it is kicked

fast. Besides, even when ball tracking is successful, ball motion trajectories provide a

too detailed description for the purpose of highlight detection, which only needs a

coarse estimation of the direction, acceleration and location of the ball.
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As in soccer videos the camera is typically in a fixed position, a 3-parameter image

motion estimation algorithm capturing horizontal and vertical translations and iso-

tropic scaling is sufficient to get a reasonable estimate of camera pan, tilt and zoom.

The image motion estimation algorithm is an adaptation to the soccer domain of the

algorithm reported in [4], that is based on corner tracking. As it works with a selected
number of salient image locations, the algorithm can cope with large displacements

due to fast camera motion. The algorithm employs deterministic sample consensus to

perform a statistical motion grouping. This is particularly effective to cluster multiple

independent image motions, and is therefore suitable for the specific case of soccer to

separate camera motion from the motion of individual players.

3.2. Playfield zones

Given a ‘‘playfield’’ frame, the region of the image that represents the playfield

can be roughly identified from grass color information, based on color histogram

analysis. The playfield image region is then refined through a processing chain com-

posed of K-fill, flood fill and morphological operators (erosion and dilation). A vec-

tor representation of the playfield region outline is produced.

The playfield image region is processed in order to extract an edge map which is

used to obtain line segments. To this end, we rely on a growing algorithm, which

produces a vector representation of the segments [20]. The playfield lines (the white
lines in the playfield) are then obtained by joining together white segments that are

close and collinear.

For the purpose of playfield image region classification, the playfield is divided

into 12 zones Zk, k ¼ 1; . . . ; 12, six for each side. Zones are defined so that passing

from one zone to the other corresponds to a new phase in the play—for instance,

a defense play may change into a counterattack, or an attacking action may evolve

towards the goal box. Since the main camera is usually placed in a specific position

w.r.t. the playfield, each playfield zone is associated with a ‘‘typical view’’ taken from
the main camera. Playfield zones and their typical views are shown in Fig. 4. The

classification of the playfield view into one of the 12 zones is based on the attributes

of the playfield image region and the playfield lines:

• playfield region shape (RS). Shapes of the playfield region are distinguished into

six classes, shown in Fig. 5, plus a leak hypothesis representing different (unrele-

vant) shapes;

• playfield region area (RA). A binary value is used to indicate whether the number

of pixels comprising the region is above a threshold;
• playfield region corner position (CP). Four distinct values are used to discriminate

between the three patterns of position of the corner farthest from the camera in

Fig. 6, plus the absence of playfield corners in the image;

• playfield line orientation (LO). Playfield line orientation is quantized in 4 levels,

corresponding to the four orientation intervals: ½0�–10�Þ [ ½170�–180�Þ,
½10�–60�Þ, ½60�–120�Þ, ½120�–170�Þ. Consequently, orientations of lines detected

in the frame are collected into a 4-bin histogram, and the most representative

bin is chosen as the representative orientation;



Fig. 5. Typical playfield region shapes (black areas represent the playfield).

Fig. 4. The six playfield zones of a half playfield (Z7–Z12 are symmetrical).
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• midfield line position (LP). Three distinct values are used to encode three position
patterns, corresponding to the position of the midfield line in the left, central or

right part of the frame. A fourth value accounts for the case where the midfield

line does not appear in the frame.



Fig. 6. Typical positions of the farthest corner in the playfield region (black areas represent the playfield).
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Playfield zones are classified into one of the twelve zones using twelve independent

na€ııve Bayes classifiers. For each frame, given the five observed attributes

hRS;RA;CP ; LO; LP i, each classifier outputs the probability that the framed playfield

image region corresponds to the classifier�s zone. Following a maximum likelihood

approach [15], the output probabilities of the individual classifiers are compared in

order to select the highest one. This approach is justified by the fact that, in our case,
the classifiers have an identical structure. Hence, large differences in the output prob-

abilities are very likely to be significant. To filter out instantaneous misclassifications,

we use a fixed length temporal window and majority voting in order to identify the

playfield zone that best matches the observed variables.

3.3. Detection and metric localization of players

Blobs of individual players or groups of players are segmented out from the play-
field by color differencing. Players are then identified through adaptive template

matching, using an elliptical template that has the height/width ratio equal to the me-

dian of the height/width ratios of the blobs extracted. Templates are positioned at

the identified players� blobs, and described by color distribution and image position,

taken as the lowest point of the template (see Fig. 7, left). The player�s position on
Fig. 7. Left: Players� templates positioned at the players� blobs segmented out in the image. Right: Players�
locations in the playfield model, obtained by image-to-playfield backprojection of the lowest point of each

template, are indicated by crosses. The visible portion of the playfield (in gray) and the players (indicated

as crosses) as remapped onto the playfield model. Only the left half of the playfield model is showed here.
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the playfield is computed from the projective transformation (estimated automati-

cally at each frame) which maps a generic imaged playfield point ½x y�T onto the real

playfield point ½X Y �T (see Fig. 7, right).

Assuming the pinhole camera projection model, the image-to-playfield transfor-

mation has the form
Fig. 8

the str
½X1 X2 X3�T ¼ H ½x y 1�T; ð1Þ

where ½X Y �T ¼ ½X1=X3 X2=X3�T and H is a 3� 3 homogeneous matrix, referred to as

planar homography, whose eight independent entries depend on both camera position

and calibration parameters [14]. To compute the position of the players on the

playfield, we must compute H. Since, according to Eq. (1), each pair of corre-

sponding points h½x y�T; ½X Y �Ti gives rise to two independent equations in the entries

of H, the planar homography can in principle be estimated given a set of four or

more image-to-playfield point correspondences. However, since we are provided

with a set of line segments as the result of image segmentation, the homography is
estimated instead using four line correspondences. Indeed, if ½a b c�T such that

axþ by þ c ¼ 0 is the image of a playfield line ½A B C �T, it holds
½a b c�T ¼ K ½A B C�T; ð2Þ

with K ¼ HT. Therefore, the point transformation H is obtained from the line

transformation K.
The right correspondences between image and playfield line pairs are obtained by

the following deterministic consensus algorithm:

1. Image line selection. From all the image line segments, select a four-element subset

and consider the associated line subset SI
i ¼ f½al bl cl�T; l ¼ 1; . . . ; 4g;

2. Hypothesis generation. From all the straight lines of the playfield model (see

Fig. 8), select a four-element subset SP
j ¼ f½Al Bl Cl�T; l ¼ 1; . . . ; 4g. From the
. Left: The complete metric model of the soccer playfield. Right: For homography estimation, only

aight lines of a half playfield are taken into account (see text).
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corresponding lines in the sets SI
i and SP

j , estimate the transformation Kij satisfy-

ing Eq. (2);

3. Hypothesis validation. For all i and j, use Hij ¼ KT
ij in Eq. (1) to remap the end-

points fh½xka yka �
T
; ½xkx ykx�

Ti; k ¼ 1; . . . ; Lg of each image line segment onto the

playfield model. Then evaluate the model matching error as eij ¼
P

k dijk, where
dijk measures the distance (evaluated by accumulation of line-point distances) of

each remapped line segment to the line of the playfield model closest to it. Finally,

select as a raw solution bHH the homography Hij corresponding to the minimum

model matching error;

4. Solution refinement. Use all the line correspondences with low segment-to-model

distance under remapping with bHH to obtain a refined estimate eHH via least squares.

The refinement process corresponds to a more uniform redistribution of the over-

all remapping error over the entire set of image line segments.
The actual implementation of the algorithm above benefits from careful consider-

ations about model and data characteristics, aimed at reducing dramatically the

computational complexity. First of all, raw viewpoint information extracted from

playfield segmentation is used to know which half of the playfield (either the left

or the right one) is in view: this allows us to use a simplified model including only

half of the playfield lines, namely six horizontal fhm; m ¼ 1; . . . ; 6g and 4 vertical

fvn; n ¼ 1; . . . ; 4g lines (see Fig. 8, right).

Using viewpoint information and looking for dominant directions in the image line
direction histogram, we are also able to classify image lines into three groups: (a) ‘‘hor-

izontal’’ lines fmh; h ¼ 1; . . . ;Nhg, i.e., image lines with a high probability to be projec-

tions of the hm�s; (b) ‘‘vertical’’ lines fnv; v ¼ 1; . . . ;Nvg, with a high probability to be

projections of the vn�s; (c) all the remaining lines. This preliminary line grouping has a

strong impact on the computational effort during hypothesis generation, as horizontal

model lines are matched only against ‘‘horizontal’’ lines, and vertical model lines only

against ‘‘vertical’’ ones. Explicitly, given a subset SI
i composed of two ‘‘horizontal’’

and two ‘‘vertical’’ image lines, the number of homography hypotheses to be generated
(step 2) and verified (step 3) is Cð6; 2Þ � Cð4; 2Þ ¼ 90, where CðN ; 2Þ ¼ N ðN � 1Þ=2 is

the number of combinations without repetitions of element pairs taken from a set of

N elements. Since the number of all distinct image line subsets is CðNh; 2Þ � CðNv; 2Þ,
with Nh 6 6 and Nv 6 4, the overall number of homography hypotheses is bounded

by 902. ValuesNh andNv are kept low by excluding from thematching process all short

image line segments or image line segments that are neither ‘‘horizontal’’ nor ‘‘verti-

cal.’’ These segments are likely to be due to segmentation errors (e.g., due to the pres-

ence of non-detected players) or to be part of curvilinear portions of themodel (such as
the penalty arc). Each of the playfield line subsetsSP

j ; j 2 f1; . . . ; 90g is an ordered rect-
angle, i.e., a 4-tuple fhm, hm0 , vn, vn0 g, withm < m0 and n < n0. Similarly, each image line

subset SI
i is an ordered quadrilateral fmh, mh0 , nv, nv0 g, h < h0 and v < v0, the right or-

dering ofmatching candidates being explicitly inferred from the relative position of the

corresponding line segments in the image. The ordering concept is crucial to eliminate

the twofold specular ambiguity arising frommatching unordered element pairs. In our

case, the ambiguity would manifest in left/right and up/down uncertainty in the clas-

sification of ‘‘vertical’’ and ‘‘horizontal’’ image lines, respectively. The deterministic
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consensus algorithm is based on a basic assumption, i.e., that the best possible homog-

raphy corresponds to a minimum of model matching error. This assumption is not ob-

vious, since there are two distinct sources of mismatch between a remapped image

segment and amodel line: (i) a wrong homography is being tested, i.e., the image quad-

rilateral is not the projection of the playfield rectangle at hand; (ii) the image segment
does not correspond to any image line (e.g., it is part of the center circle). Thus, the

matching strategy implicitly assumes that thematching errors of the first type are dom-

inant, on the average, over the matching errors of the second type: this fact has been

verified experimentally with an extensive test set.

Metric localization of players is used to detect the placed kicks (corner, penalty,

free kick) nearby the goal box. Since different types of placed kicks exhibit different

players� deployments, the distribution of the players� positions in specific regions of

the goal box and its surroundings provides useful information in order to recognize
the type of placed kick. Fig. 9 shows the region of the goal box and its surroundings
Fig. 9. (a) The goal box region and its surroundings. (b) Typical normalized distributions of players

(along the x axis) for penalty (top), free kick (middle) and corner (bottom).



Fig. 10. Example of kickoff detection: bounding boxes of the players� clusters and midfield line.
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(a), and typical players� position distributions for penalty, free kick and corner (b).
Dark areas are the most relevant for the discrimination between the three types of

placed kicks. Models for placed kicks exploit a cue describing players� deployment.

The cue is obtained through Bayesian classifiers, whose inputs are occupation mea-

sures for each area.

Players� position is useful also for the detection of kickoffs. In fact, kickoffs are

characterized by two groups of still players, each of a different team, separated by

the midfield line. In this case, homography estimation and backprojection onto

the playfield model can be avoided, since the separation between sets of points by
a straight line in the plane is invariant to perspective projection. It is therefore suf-

ficient to cluster players� blobs based on their colors, and check whether the clusters�
bounding boxes are almost completely separated by the midfield line, directly in the

image (Fig. 10).
4. Model checking

For the implementation of the highlight models in the classification engine,

knowledge models are turned into operational models. Fig. 11 shows the operational

models for all the soccer highlights addressed. Cues are combined through logic and

relational operators to describe events on the edges of the graphs. Symbols used in

the state transition expressions are explained in the legend.

The operational models are used to perform model checking. The estimated mea-

sures of the required visual cues are checked against each model in parallel. To re-

duce the computational costs associated with the extraction of the image features
of each cue, only the cues that are needed to perform state transitions at each state



Fig. 11. Shot on goal, placed kicks, and forward pass models are referred to occurrence of highlights in the

left midfield (w.r.t. the camera view). Turnover and counterattack models are referred to the situation in

which the team defending the left midfield gain the possess of the ball.
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are estimated. Algorithm 1 presents the model checking algorithm in detail. In the

main loop, the image features (e.g., line segments, players� blobs, and grass color)
relevant for cue estimation are extracted from the incoming frame. For each high-

light, the algorithm analyzes if the observed cue verifies the constraint associated

with transitions outgoing from the current state. If a transition constraint is verified,

the model state is updated. Whenever a model is checked successfully, the stream

segment is annotated with the highlight and its initial and final time instants.
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To reduce the computational requirements, at each frame, only the features that

are required to check the transitions of the current states of the active highlight mod-

els are extracted. A reference counter ref counter½f � tracks the number of models for

which the current state requires the extraction of feature f , and is updated at each

state transition ehi;j. Variables Fdec and Finc contain, respectively, features that are
no longer needed and features that are required by the model when entering the

new state shj .

Algorithm 1. Model checking algorithm.

main()

for each feature f do

ref counter½f � ¼ 0; = � ref counter½f � counts models requiring evaluation

of f */
for each highlight h do

init_model(h);
while ( ! end_of( video stream ) )

for each feature f do

if( ref counter½f � > 0 )

compute(f );
for each highlight h do

if ( check_model(h) )
annotate( m:highlight type, m:in, m:out );

current frame++;
init_model(int h)

model½h�:status ¼ INIT;

foreach feature f do

for each k such that ððeh0;k 2 EhÞ ^ ðeh0;k requiresf ÞÞ do
ref counter½f � þ þ;

boolean check_model(int h)
boolean rv ¼ FALSE;

if ( occurred_event( ehi;j ) )
if ( shi ¼ ¼ INIT )

model½h�:in ¼ current frame;
if ( shj ¼ ¼ FAIL )

j ¼ 0;

else if ( shj ¼ ¼ SUCCESS )

model½h�:out ¼ current frame;
rv ¼ TRUE;

j ¼ 0;

Fi ¼
S

kjehi;k2E
h ff jdetection of ehi;k requires f g;

Fj ¼
S

kjehj;k2E
h ff jdetection of ehj;k requires f g;

Fdec ¼ Fi � Fj; /* set of features whose evaluation is no longer required */

Finc ¼ Fj � Fi; /* set of required features that were not evaluated so far */

for each feature f 2 Fdec do
ref counter½f � � �;
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for each feature f 2 Finc do
ref counter½f � þ þ;

model½h�.status ¼ shj ;
return rv;
5. Experimental results

Solutions and algorithms presented in the previous sections effectively support

production logging, in that they allow highlight classification in quasi real-time. In

the following, we present experimental results of highlight detection and discuss

computational costs of the proposed solutions.

5.1. Highlights detection

Experiments have been carried out with videos of soccer games provided by BBC

Sports Library and recorded off-air from other broadcasters. Videos were acquired

from Digital Video (DV) tapes, recorded at full PAL resolution and 25 fps. The over-

all test set includes over 100 sequences with typical soccer highlights, of duration

from 15 s to 1.5min. The relative frequency of the different types of highlights reflects

that of a typical soccer game. Table 2 shows correct, missed, and false detection for
the principal soccer highlights. It can be noticed that, for most of the highlights, cor-

rect detection is over 90%.

Fig. 12 shows a case of missed detection, where the model fails to capture the cur-

rent highlight of shot on goal: the attacking player (A) carries the ball towards the

goal box (keyframes 1–3) and passes the ball to player B (keyframe 4), who is very

close to the goalkeeper and the goal post. Player B shoots the ball slowly into the

goal post (keyframes 5–6). This results in little camera motion, which does not allow

the system to detect the highlight according to the model of shot on goal defined (see
Fig. 11).

Turnovers display high false detection rates. Turnover models were in fact

designed so as to allow low missed detection at the expense of a high number of

false detections. In fact, turnovers are mainly used as a cue to detect counterat-
tacks—counterattacks are defined as a turnover followed by a forward pass—that

are much more significant. In this perspective, false turnover detections do not
Table 2

Highlight detection rate for the principal highlights

Highlight Detected Correct Missed False

Forward pass 39 35 2 4

Shot on goal 19 15 2 4

Placed kick 15 14 1 0

Turnover 20 10 1 10

Counterattack 6 5 1 1

Kickoff 4 4 0 0



Fig. 12. Case of missed detection of a shot on goal (keyframes).
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represent a serious problem, as they can be discarded later when checking for the for-
ward pass.

Table 3 reports results for a second experiment focussing on identification of dif-

ferent types of placed kicks. The test set included video sequences with 60 placed

kicks, 20 for each one of the three classes (penalty, corner, free kick). It can be no-

ticed that correct detection is in all cases over 95%. This high detection rate is mainly

due to the good precision attained in the evaluation of the players� position using the

planar homography.
Fig. 13 shows a video sequence and the on-line detection of its principal highlights

(shot on goal, placed kick, forward pass, and turnover). A dot inside a circular button

indicates that a highlight is hypothesized; if the hypothesis is confirmed, i.e., the

highlight is detected, a
p

mark is displayed inside the button. Conversely, if the hy-

pothesis is rejected, an � mark is displayed.

5.2. Computational costs: case study

According to the model-driven strategy described in Section 4 for model checking,

at each frame, for a given highlight, only the cues that are required to trigger any

transition from the current state are actually estimated. Therefore, for a given high-

light h, the corresponding computational cost per frame is
Table 3

Highlight detection rate for placed kicks

Detected Correct Missed False

Penalty 18 17 0 1

Corner 19 18 1 1

Free kick 18 17 1 1



Fig. 13. A video sequence and the output of the highlight detection engine. Highlights are first hypothe-

sized (d), and hypotheses are then either confirmed (
p
) or rejected (�).
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Table 4

Required cues, computational costs and estimated state probabilities for each state of the placed kickmod-

el

State Required cues CðsÞ P ðsÞ

0 Playfield zone, ball motion 2c 0.783

1 Playfield zone, ball motion 2c 0.150

2 Playfield zone, ball motion, players� positions 3c 0.065

3 — 0 0.002

J. Assfalg et al. / Computer Vision and Image Understanding xxx (2003) xxx–xxx 19

ARTICLE IN PRESS
Ch ¼
XSh
s¼1

CðsÞ � PðsÞ; ð3Þ
where Sh is the total number of states for the highlight model, CðsÞ is the compu-
tational cost for the estimation of all cues required at state s, and P ðsÞ is the prob-

ability of state s. It follows that the computational cost for a sequence of N frames is

N � Ch. Model-driven cue evaluation has a significant computational advantage over

a brute-force approach where all cues are estimated at each frame regardless of their

actual relevance for the current state. In fact, the computational cost of brute-force

model checking is in any case equal to maxs CðsÞ.
Table 4 shows the cues required, the computational costs and the probabilities for

each state of a placed kick highlight. It is assumed that all cues have the same com-
putational cost c. As shown in Fig. 11, the model of a placed kick requires the esti-

mation of two cues at states 0 (INIT) and 1, three cues at state 2, and 0 cues at state 3

(END). State probabilities have been inferred experimentally from the test set by

evaluating the relative frequencies of model states during the model checking phase.

According to Eq. (3), the overall cost per frame for the placed kick using the model-

driven strategy is therefore equal to 2c� 0:783þ 2c� 0:150þ 3c� 0:065 ¼ 2:061c.
The corresponding cost for the brute-force strategy is 3c, with a performance degra-

dation of about 30%. The computational gain obtained with the proposed model-dri-
ven strategy proves useful for both production and posterity logging, in that it yields

a smaller annotation delay and therefore allows video footage to be available for re-

use within short time. Our prototype runs on a single processor PC (P4 2Ghz,

512Mb ram, SCSI disks). Evaluation of the computational cost c in terms of process-

ing time per frame, yields an average of about 0.06 s/frame. For a video sequence of a

placed kick of 5 s, the required processing time is therefore about 15.5 s. This reflects

the average performance of the system, for which the processing rate is about 1/3 the

real time frame rate (i.e., 3 s of processing for each second of video). The system
meets the ‘‘as live’’ requirement for annotation mentioned in Section 1.
6. Conclusions

In this paper, we have presented a novel approach for automatic semantic anno-

tation of soccer video. The annotation engine detects the principal highlights of soc-

cer by checking a limited number of observed visual cues against highlight models,
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that are defined as finite state machines. The solution proposed is suitable for both

production logging and posterity logging. In both cases, objective annotations pro-

vided by the system can be complemented by subjective remarks (e.g., a ‘‘nice goal’’)

provided by humans.

Results that have been presented show that all the principal highlights of soccer
are detected with great accuracy. With respect to previous work on soccer highlights

detection, the improvements provided by this solution are both in the number of sig-

nificant highlights detected by the system, and in the higher accuracy achieved.

Moreover, the use of FSM models instead of learning-based approaches has the ad-

vantage of avoiding erroneous classifications due to incomplete training sets. In that

we use FSM models to describe highlights and visual cues combinations to define

transitions from one state to the other of the FSMs the approach can be in principle

extended to other domains, provided that visual cues specific of these domains are
appropriately selected so as to reflect meaningful changes of phases in the play.

With edited streams, as usually available for posterity logging, highlight models

can be enhanced by including new cues—like voice comments, crowd cheering, re-

play and text captions—with the goal of enriching the annotation and improving

the accuracy of model checking. Research on the semantic annotation of edited soc-

cer streams for posterity logging is presently under development.
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