
ADAPTIVE VIDEO COMPRESSION FOR VIDEO SURVEILLANCE APPLICATIONS

Andrew D. Bagdanov, Marco Bertini, Alberto Del Bimbo, Lorenzo Seidenari

Media Integration and Communication Center
University of Florence

Florence, Italy
Email: bagdanov@gmail.com, bertini|delbimbo|seidenari@dsi.unifi.it

ABSTRACT
This article describes an approach to adaptive video coding

for video surveillance applications. Using a combination of

low-level features with low computational cost, we show

how it is possible to control the quality of video compression

so that semantically meaningful elements of the scene are

encoded with higher fidelity, while background elements

are allocated fewer bits in the transmitted representation.

Our approach is based on adaptive smoothing of individual

video frames so that image features highly correlated to

semantically interesting objects are preserved. Using only

low-level image features on individual frames, this adaptive

smoothing can be seamlessly inserted into a video coding

pipeline as a pre-processing state. Experiments show that our

technique is efficient, outperforms standard H.264 encoding

at comparable bitrates, and preserves features critical for

downstream detection and recognition.
Keywords-Video coding; video analysis; video-surveillance;

H.264.

I. INTRODUCTION

Many critical video streaming applications require trans-

mission of many streams over limited bandwidth. Two such

examples are video surveillance networks and local UHF

video streaming networks like those based on the ETSI

TETRA standard used in emergency and security services

[1]. These two example applications have several things in

common, among them the need to deliver reasonably high-

quality video from multiple cameras spread over large areas

and to accomplish this using limited bandwidth [2]. One

way to optimize such systems is to control the amount

of redundant or irrelevant information transmitted by each

camera. In this article we describe a system of adaptive

video compression that automatically adjusts the amount

of information transmitted according to how semantically

“interesting” a part of a video is likely to be.

Consider the example of a video surveillance application,

such as in a hospital or airport, where hundreds of cameras

might be deployed to monitor tens of thousands of square

meters. Systems of this type typically stream raw video feeds

from all cameras to a central server for observation, analysis

and possibly further processing. This creates a bottleneck

at the central server, and bandwidth limitations become a

critical issue in overall system efficiency. This bandwidth

problem becomes even more acute when wireless IP cameras

are deployed – an option that is becoming increasingly

popular due to their rapid re-configurability and lack of

infrastructure requirements such as cabling. Note also that

a large percentage of bandwidth is expended transmitting

scenes of little or no interest because they do not contain

objects of semantic interest (e.g., people, cars or airplanes).

In such application scenarios selectively compressing video

streams depending on the semantic content of each frame

can result in significant bandwidth savings.

Another video streaming application that can benefit from

this type of semantic adaptation are the UHF networks

commonly used to stream video from dash-cams installed in

state and local police cars. Many police departments require

that dash-cams be used to record incidents and that they

stream video back to a central headquarters for monitoring

and archiving. At any one time, tens or even hundreds of

cameras might be streaming video and in this application

bandwidth is severely limited by the limitations imposed

by using UHF radio frequencies for transmission. Again,

significant amounts of bandwidth can be wasted transmitting

irrelevant portions of the video frame that contain no se-

mantically relevant information in the form of faces, people,

licence plates, etc.

In both of these examples, bandwidth is squandered by

transmitting entire video frames at high bitrates. That is,

the same number of bits is dedicated to encoding irrelevant

portions of the frame, portions that have no intrinsic value to

either application because they contain static and uninterest-

ing objects, as is used to encode truly interesting parts of the

frame that contain people, identifying details of cars or faces.

Our approach to this problem is to detect interesting portions

of video frames and allocate more bits in the compressed

representation to them. The rest of the frame is allocated

fewer bits in the compressed stream by smoothing away

details that would otherwise be unnecessarily encoded in the

transmitted video.

Robust and accurate object detectors have almost become

2011 IEEE International Symposium on Multimedia

978-0-7695-4589-9/11 $26.00 © 2011 IEEE

DOI 10.1109/ISM.2011.38

190

a commodity technology in computer vision applications.

Reliable, pre-trained detectors exist for pedestrians [3], for

text [4], and for a broad variety of general object cate-

gories [5], [6]. Despite recent advances in efficient object

detection [7], even single object detection still requires a sig-

nificant amount of computational resources. Application of

multiple detectors in order to detect semantically interesting

scene elements (e.g., for cars, faces, people, text and licence

plates) would require massive computational resources for

each individual stream. As such, the detector approach is

not feasible for our application scenarios. Note also that

new detectors would have to be trained for each potentially

interesting scene object, which limits the generality of the

detector approach as well.

Most modern detectors are based on high-frequency im-

age features in the form of edges, corner points or other

salient image features. The two most popular features are

the Histogram of Oriented Gradients (HOG) [3], [5], [7],

which is based on a local histogram of image gradient

directions, and SIFT descriptors calculated at interesting

points in the image [6], [8]. Both of these descriptors are

based on image derivatives calculated across a range of

scales in the image. As such, in order to preserve such

features in a compressed version of the video it is essential to

preserve high-frequencies in each frame and transmit them

with reasonable fidelity. If we selectively smooth a video

frame, preserving regions containing many high-frequency

features, we are more likely to preserve recognizability, or

“detectability” using modern object detectors in the transmit-

ted representation. At the same time, if we smooth regions

that do not contain dense, high-frequency features we will

can reduce the amount of information that must be encoded

and thus transmitted.

This paper is organized as follows: in the next section

we discuss some of the related work on adaptive video

encoding; the visual features used are described in sec-

tion III; a description of our approach to adaptive video

compression is provided in section IV. Experimental results

and a comparison of adaptive video coding with respect

to standard H.264 coding are reported in section V; and

conclusions are drawn in section VI.

II. RELATED WORK

Traditional adaptive video compression approaches do not

consider the semantic content of video and instead adapt

compression depending on the requirements of the network

or device used to deliver video to the end user [9]. Semantic

video compression, instead, alters the video by taking into

account objects [10]–[13] or a combination of objects and

events [14], using pattern recognition techniques. Kim and

Hwang proposed using video object planes (VOP) coding

of MPEG-4 to encode differently the interesting objects in

the scene [10]. However in [14] it was shown that this type

of compression is less efficient than directly performing re-

Video stream
Object

recognition /
feature extraction

Visual interest
map

Original video
frame

Image processing

Adapted video
frame

H.264 encoder H.264 Video

Video stream H.264 encoder H.264 Video

Fig. 1. Our approach to adaptive video coding. (top) The

schema for semantic video adaptation. (bottom) standard

video coding.

quantization blocks containing an object that is relevant to

users.

Adaptation in the compressed domain has been performed

through re-quantization [15], spatial resolution downscaling

[16], temporal resolution downscaling [17], and by a com-

bination of them [18].

Huang et al. [13] use smoothing to control the amount

of bits allocated locally to encode each video frame. The

more smoothing applied to a portion of a video frame, the

fewer bits will be used to encode that region. Their approach

is based on motion segmentation, however, and as such is

highly sensitive to scene and camera motion. As such it is not

directly applicable in cases where streams mobile or active

cameras are used, or to detect static objects, like the licence

plates of parked cars. Our approach is directly based on

image features correlated with downstream detector features.

As such, it is applicable to any type of stream, independent

of motion characteristics.

Our approach to adaptive video encoding is based on

the observation that the most useful image features for

downstream object detection are based on edges and salient

interest points. As such, by preserving these features we

maximize the ability to detect semantically interesting scene

objects after transmission. At the same time, by smoothing

features that are unlikely to contribute to positive detections

we reduce the amount of irrelevant information transmitted.

Fig. 1 illustrates our system for adaptive video coding. The

bottom diagram in Fig. 1 illustrates the standard H.264 video

coding pipeline. At the top of Fig. 1 is shown our pipeline:

before encoding each frame is passed through a sequence of

low-level feature extraction (Visual Interest Map), followed

by selective smoothing (Image Processing) which smoothes

details in uninteresting regions of the images before H.264

encoding.

191

III. VISUAL FEATURES FOR ADAPTIVE VIDEO
COMPRESSION

In most surveillance applications the most interesting

objects are faces, people and cars. Face and people detectors

are both often trained on features based on gradients [3],

[19]. Other, more general object detectors are also based on

similar features [5]. Moreover edge features are often ex-

ploited to estimate crowd density [20], [21] without resorting

to object detection and tracking.

Since all MPEG coding standards perform an initial step

of spatial color subsampling, as a form of lossy compression,

the visual features we use for this work are based on the

luminance of pixels. Another advantage of this is that the

color space used in MPEG and M-JPEG standards is YCbCr,

so it is possible to extract directly the luminance information

from the Y channel, without requiring any conversion.

As mentioned above, the features we use have been

selected to be highly correlated with those used for ob-

ject detection. In particular, corner points can be used to

effectively detect text (useful in the case of license plates

or identifying text on clothing) in video [4], [22], and edge

features in the form of image gradients are used in many

state-of-the-art object detectors [5]–[7]. Since our application

scenario requires onboard adaptive encoding, we selected

the features used in order to minimize the computational

resources required.

For detecting corner features we use the FAST detec-

tor [23]. This detector has recently been used on mobile

phones to augment reality using the limited computational

resources of the mobile device [24]. The FAST detector is

an approximation of the SUSAN detector in which a circular

region around a candidate corner is analyzed to determine

if differences between the central point and a pre-defined

sequence of pixels in the region satisfy a learned contrast

threshold. This detector has been shown to produce very

stable features and is the most efficient and robust corner

detection algorithm available.

Edge features are characterized by high image gradient

values perpendicular to the edge itself. We use the Sobel

gradient operator to detect pixels in the image corresponding

to edges. The Sobel operator is very efficient, involving only

two 3× 3 convolutions of the image:

Gx =

⎡
⎣ −1 0 +1
−2 0 +2
−1 0 +1

⎤
⎦ ∗ I (1)

Gy =

⎡
⎣ −1 −2 −1

0 0 0
−1 −2 −1

⎤
⎦ ∗ I, (2)

where I is the image to be processed (the video frame) and

∗ represents the 2D convolution operator. The Sobel edge

response G, an estimate of the gradient magnitude at each

point in the image, is then computed as:

G =
√

G2
x +G2

y. (3)

The FAST and Sobel edge features will be used in the next

section to drive adaptive image compression. Essentially,

regions of the image containing a high density of FAST

corner responses, or a high density of Sobel edge responses,

should be preserved. Other regions can be smoothed in order

to reduce detail encoded in transmission. See Fig. 2 for an

example of the extracted features on a typical video frame.

IV. ADAPTIVE VIDEO COMPRESSION

MPEG video coding is based on two basic techniques

[25], [26]: transform domain-based compression (intra-

coding), where blocks of 8 × 8 pixels are processed to

compute discrete cosine transform (DCT) of each, represent-

ing it as a matrix of coefficients; and block-based motion

compensation performed on macroblocks, i.e. groups of

2 × 2 blocks (16 × 16 pixels), coding them with motion

vectors and with the DCT coefficients of the “residual block”

obtained from motion estimation. In both cases the DCT

coefficients are quantized, as a lossy compression step, so

that the high frequency coefficients go to zero in order to

represent them with efficient Run Length Encoding (RLE)

encoding and Variable Length Codes (VLC). The residual

block typically contains high frequency components that

have to be quantized differently from the intra-coded blocks.

In our approach we reduce the bandwidth needed for video

streaming by selectively smoothing parts of each frame. We

do not directly exploit the temporal structure of videos in

order to reduce the need of buffering and to allow visual

feature extraction even on moving cameras. This approach

helps the encoder to more efficiently compress the DCT

coefficients of both intra-coded and residual blocks since

they will contain fewer high frequency components. The

smoothing is defined by a set of semantic binary masks

which are generated by collecting statistics of low-level

visual features in a video frame. These masks could also

be defined by a set of detectors for objects of interest. The

result would be a binary mask defined by the bounding

boxes of objects detected in each frame as shown in Fig. 4.

This approach performs extremely well (see Tab. II in

Sec. V) but does not allow a sufficient frame-rate on low-

end computational architectures and as discussed above does

not generalize well when the number of objects of interest

increases.

We instead design our masks by splitting each frame into

square pixel regions. Region size is selected in order to

optimally fit the DCT encoded pixel macroblocks used in

H.264 video encoding. We tested 8×8, 16×16 and 32×32
regions. Smoothed regions will be assigned fewer bits by

the encoding algorithm, allowing more bits to be assigned

to non-smoothed ones. This approach will therefore decrease

192

(a) (b) (c)

Fig. 2. Examples of the features used for adaptive image encoding. (a) The original video frame. (b) Corners points detected

using the FAST detector. (c) Edges detected using the Sobel gradient operator. Note how both the corner and edge features

tend to be concentrated on and around the semantically relevant objects in the scene: people, cars, license plates, etc.

the bandwidth needed for streaming while maintaining a high

quality of interesting frame regions.

The amount of smoothing applied to each region is deter-

mined by the density of Sobel and FAST features contained

therein. Let I denote the current image to be encoded, and

F (x) and S(x) the FAST and Sobel feature responses at

pixel x, respectively. Also, let Bi denote the i-th block of

the image and let the function B(x) map pixel x to the

block containing it. We define the following feature threshold

functions on local image blocks:

F (Bi) = {x|x ∈ Bi | F (x) > TF } (4)

S(Bi) = {x|x ∈ Bi | S(x) > TS}, (5)

where TF and TS are empirically determined thresholds on

the FAST and Sobel feature responses.

Assuming there are n levels of smoothing, we will now

define smoothing masks that are based on feature densities

in each image block. The masks correspond to increasing

feature densities. The i-th level mask corresponding to FAST

feature density is defined as:

MF
i (x) =

{
1 if τFi−1 ≤ |F (B(x))| < τFi
0 otherwise

, (6)

where τFi for i ∈ {0, 1, . . . , n} is a strictly increasing

series of thresholds used to determine which feature densities

correspond to which mask. We require that τF0 = 0 and

τSn = w×h, where w and h are the width and height of the

image blocks used for encoding. These restrictions ensure

that the sequence of image masks Mi completely partitions

the image: ⋂
i

⋃
x

MF
i (x) = ∅ (7)

⋃
i

⋃
x

MF
i (x) ◦ I = I (8)

.

The i-th level mask corresponding to Sobel feature density

is similarly defined:

MS
i (x) =

{
1 if τSi−1 ≤ |F (B(x))| < τSi
0 otherwise

, (9)

with identical conditions on τSi as for FAST features above.

The final smoothed image can now be written as:

Is =

n∑
i=1

(MS
i ◦MF

i ◦ I) ∗Gσi
, (10)

where MS
i ◦MF

i ◦ I represents the Hadamard (element-by-

element) multiplication of the feature masks and image I ,

and Gσi
is a Gaussian function with variance σ2

i . Is is an

adaptively smoothed version of the original image I . Based

on the density of FAST and Sobel features in each w × h
block of the image, a variable amount of smoothing will be

applied. The amount of smoothing applied is controlled by

the sequence σi, while the density thresholds τSi and τFi are

used to determine how interesting each block is in terms of

each feature.

V. EXPERIMENTAL RESULTS
In order to evaluate the performance of our approach to

adaptive video compression, we acquired a set of three test

videos using a real-world surveillance setup. Two Sony SNC

RZ30 cameras recorded videos of a parking lot at 640×480
pixels and 25 FPS for a total of 2327 frames. The videos

were been recorded in MPEG-4 format using the H.264

codec provided by the open source library x264. Each video

is encoded with an average bitrate of 3532,44 Kbit/s.

We evaluate the performance of our algorithm by mea-

suring the structural similarity index (SSIM) [27] and

comparing the non-H.264 compressed videos and videos

compressed with our approach, computing SSIM on the

computed masks. SSIM is a visual quality assessment metric

that models the perception of compression artifacts by the

human visual system better than other standard quality

measures based on peak signal-to-noise ratio (PSNR) or

193

(a) (b) (c)

Fig. 4. Adaptive compression driven by pedestrian detector. A frame with two people (a), the masks built with the pedestrian

detector (b) and the final adaptively encoded frame (c). All the scene but the two pedestrian is smoothed.

(a) (b)

(c) (d)

Fig. 3. An example of feature-preserving adaptive compres-

sion. (a) Original video frame. (b) The multi-level mask

computed from FAST and Sobel responses. (c) A single

level mask from FAST and Sobel features. (d) The frame

compressed using the single-level mask. Note how persons

and license plates are encoded with high enough quality

to preserve recognizability, while background details are

smoothed away.

mean squared error (MSE). In fact MSE, and consequently

PSNR, perform badly in predicting human perception of

image fidelity and quality: MSE values of distorted images

that present dramatically and visibly different visual qualities

can be nearly identical [28]. For this reason its use has been

proposed to drive the motion compensation coding of H.264

[29] and some encoders, like x2641, have started to use it to

drive the adaptation of the quantization coefficients during

1http://www.x264.org

compression. SSIM is defined as:

SSIM(X,Y) =
(2μXμY + C1)(2σXY + C2)

(μ2
X + μ2

Y + C1)(σ2
X + σ2

Y + C2)
, (11)

where X and Y are images, μX is the average of the

luminance of X, μY is the average of the luminance of Y,

σXY is the covariance of the contrast of X and Y , σ2
X is

the variance of the contrast of X, σ2
Y is the variance of the

contrast of Y, Ci = (KiL)
2 are constants used to avoid

instability when μ2
X +μ2

Y is near 0, where Ki � 1 and L is

the amplitude of the range of values that a pixel can have.

SSIM is typically computed on 8 × 8 pixel windows, and

can assume values between [−1, 1], where 1 means that two

images are identical. SSIM is measured in the non-smoothed

regions only.

After an initial evaluation we found that the best per-

formance is obtained by exploiting both low-level features

(FAST and Sobel), using blocks of 16×16 and smoothing all

regions without corners and with less than 3 non-zero pixels.

Smoothing is performed using block filters approximating a

Gaussian filter of the correct σ. In a preliminary set of ex-

periments we also explored the possibility of using multiple

levels of smoothing, in particular we used three levels of

smoothing selected with three thresholds for both features.

The performance of this approach is less appealing, see

Tab. I, with respect to plain binary mask driven smoothing.

Fig. 3 illustrates the performance of our approach, along with

example masks derived from low-level features, on a typical

video frame. Note how semantically meaningful features like

the license plate and persons are preserved in the compressed

representation.

V-A. Feature and Compression Evaluation

We evaluated low-level features, mask size and type for

a set of sensible configurations. In particular, we tested the

FAST and Sobel features separately and together. Results are

reported for each feature or combination for the best window

size. The average SSIM gain (ΔSSIM) is obtained with the

194

Method ΔSSIM (binary masks) ΔSSIM multi-level masks
Sobel 8 0.013 -0.002

FAST 32 0.024 0.009

Sobel + Fast 16 0.027 0.01

Table I. Comparison of different low-level features and

mask generation strategies. Binary masks correspond to

the situation where only two levels of smoothing are used

(n = 2), whereas for multi-level masking three levels were

used (n = 3). Average ΔSSIM is reported with respect to

identical bitrate video encoded with standard H.264 com-

pression. CRF is varied in order to obtain files of the same

bitrate.

20 20.5 21 21.5 22 22.5 23 23.5 24 24.5 25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CRF

S
iz

e
%

Our approach

H.264

Fig. 5. Average file size obtained by varying the CRF. File

size is normalized with respect to the original (high quality)

video.

following procedure: first videos are compressed with H.264

with Constant Rate Factor (CRF) in the range 25-20; for each

of these files we compress the original video (Vo) with our

adaptive technique tuning the CRF (lowering) in order to

obtain approximately the same bitrate. We finally compute

ΔSSIM as SSIM(Vac,Vo) - SSIM(Vc,Vo), where Vac and Vc

are the adaptive and H.264 coded videos, respectively. A

negative value means that our technique degrades the video

more than standard H.264 encoding, note that this happens

only for Sobel features alone and with multi-level masks.

For all other combinations we improve the SSIM without

increasing the bitrate.

Apart from the increase of quality in regions of interest

we are mainly interested in the reduction of bandwidth. To

this end we measure how the file size decrease with the

increase of CRF for adaptive encoded videos and H.264

encoded videos. As shown in Fig. 5 we are able to spare

between 40% to 10% of the bandwidth depending on the

quality of the final encoding. It is also interesting to see how

our encoder is able to retain the appearance of the original

video; Fig. 5 shows the average behavior of our algorithm.

V-B. Efficiency of Our Approach
We report in Tab. II the frame rate of our approach

compared with the frame rate obtained using the pedestrian

detector-based approach on the same machine. Low-level

features allow our system to run at a very high frame rate,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Size %

S
S

IM

Fig. 6. SSIM versus file size (normalized with respect to the

original video size). For a video size of about 20% of the

original, the SSIM computed on the interesting areas is above

0.9 and approaches 0.95. Even when video size decreases

rapidly, below 20% of the original size, SSIM still remains

above 0.8.

Video Method Frames/sec Video Size (MB)
V1 Pedestrian Detector 1.3 2.2

V1 Sobel + Fast16 71.8 4.1

V2 Pedestrian Detector 1.6 3.0

V2 Sobel + Fast16 87.0 7.2

V3 Pedestrian Detector 1.9 15.5

V3 Sobel + Fast16 71.5 18.0

Table II. Frame rate comparison for the two feature extrac-

tion approaches. File size is also reported for the same CRF

(17).

permitting our system to stream video in real-time. Though

pedestrian detection allows us to reduce the video size by

a higher factor, it should be noted that this is mainly due

to the fact that masks generated by the pedestrian detector

drive the algorithm to smooth most of the frame, reducing the

bandwidth needed. Even if this seems a desirable property,

objects other than pedestrians are encoded with a lower

quality. As an example, license plates are unreadable and

other car details are consistently degraded.

V-C. Semantic Cue Preservation
Videos compressed and transmitted with our adaptive

encoding will be subsequently inspected either by person-

nel or machines. In the following experiment we measure

how encoded videos preserve the image features that allow

high level object detectors to extract semantic information

from videos. In particular, we processed a video with the

Dalal&Triggs [3] pedestrian detector before and after the

adaptive encoding for three levels of adaptive compression.

From Tab. III it appears that the performance of the pedes-

trian detector is not substantially affected by our adaptive

compression. In particular, the precision on the compressed

video is reduced but the overall recall is improved. We

also report the increase in true positives and false positives

for compressed videos, which also explains the increase in

recall.

195

Video (size) Precision Recall ΔTP/P ΔFP/P
Original (7.9 MB) .92 .67 - -

Compressed (1.8 MB) .89 .81 .11 .09

Compressed (4.4 MB) .93 .84 .13 .05

Compressed (7.2 MB) .89 .84 .11 .09

Table III. Performance of a pedestrian detector on the

original and adaptively encoded frames. Precision is slightly

reduced but recall is increased.

VI. CONCLUSIONS
In this paper we have presented a novel method for se-

mantic video coding based on low-level features that require

a very limited computational resources. The technique can

be used as a pre-processing state before DCT encoding,

and is able to reduce the size of videos down to half the

original size, while maintaining the perceptive quality of the

areas considered of interest. The approach has been shown

to have also a beneficial effect on automatic analysis of the

compressed video, improving the performance of the person

detector based on the histogram of gradients.

ACKNOWLEDGEMENTS

This work is partially supported by the EU EraSME

ORUSSI Project and by SELEX Communications.

VII. REFERENCES
[1] N. Qadri, M. Altaf, M. Fleury, and M. Ghanbari,

“Robust video communication over an urban VANET,”

Mobile Information Systems, vol. 6, no. 3, pp. 259–280,

2010.

[2] S. Z. Hussain, “Performance evaluation of H.264/AVC

encoded video over TETRA enhanced data service

(TEDS),” Master’s thesis, Helsinki University of Tech-

nology, 2009.

[3] N. Dalal and B. Triggs, “Histograms of oriented gra-

dients for human detection,” in Proc. of CVPR, 2005.

[4] L. Sun, G. Liu, X. Qian, and D. Guo, “A novel text

detection and localization method based on corner re-

sponse,” in Proc. of the IEEE international conference
on Multimedia and Expo (ICME). IEEE Press, 2009,

pp. 390–393.

[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and

D. Ramanan, “Object Detection with Discriminatively

Trained Part-Based Models,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 32,

no. 9, pp. 1627–1645, Sep. 2010.

[6] M. Everingham, L. Van Gool, C. K. I. Williams,

J. Winn, and A. Zisserman, “The Pascal visual object

classes (voc) challenge,” International Journal of Com-
puter Vision, vol. 88, no. 2, pp. 303–338, Jun. 2010.

[7] M. Pedersoli, J. Gonzàlez, A. D. Bagdanov, and

X. Roca, “Efficient discriminative multiresolution cas-

cade for real-time human detection applications,” Pat-

tern Recognition Letters, vol. 32, no. 13, pp. 1581–

1587, October 2011.

[8] C. H. Lampert, “Detecting objects in large image

collections and videos by efficient subimage retrieval,”

in Proc. of ICCV, 2009.

[9] B. Tseng, C.-Y. Lin, and J. Smith, “Using MPEG-7 and

MPEG-21 for personalizing video,” IEEE Multimedia,

vol. 11, no. 1, pp. 42–52, 2004.

[10] C. Kim and J.-N. Hwang, “Fast and automatic video

object segmentation and tracking for content-based ap-

plications,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 12, no. 2, pp. 122–129,

2002.

[11] A. Cavallaro, O. Steiger, and T. Ebrahimi, “Semantic

segmentation and description for video transcoding,” in

Proc. of the IEEE international conference on Multi-
media and Expo (ICME), 2003.

[12] T. Nishi and H. Fujiyoshi, “Object-based video coding

using pixel state analysis,” in Proc. of IEEE ICPR,

2004.

[13] H.-J. Huang, X.-M. Zhang, and Z.-W. Xu, “Semantic

video adaptation using a preprocessing method for

mobile environment,” in Proc. of IEEE CIT, 2010.

[14] M. Bertini, A. Del Bimbo, A. Prati, and R. Cucchiara,

“Semantic adaptation of sport videos with user-centred

performance analysis,” IEEE Transactions on Multime-
dia, vol. 8, no. 3, pp. 433–443, Jun 2006.

[15] O. Werner, “Requantization for transcoding of MPEG-2

bit streams,” IEEE Transactions on Image Processing,

vol. 8, no. 2, pp. 179–191, 1999.

[16] T. Shanableh and M. Ghanbari, “Heterogeneous video

transcoding to lower spatio-temporal resolution and

different encoding formats,” IEEE Transactions on
Multimedia, vol. 2, no. 2, pp. 101–110, 2000.

[17] Z. Lei and N. Georganas, “H.263 video transcoding fo

spatial resolution downscaling,” in Proc. of Conference
Information Technology: Coding and Computing, 2002.

[18] Y. Liang and Y.-P. Tan, “A new content-based hybrid

video transcoding method,” in Proc. of ICIP, 2001.

[19] P. A. Viola and M. J. Jones, “Rapid object detection

using a boosted cascade of simple features,” in Proc.
of CVPR, 2001, pp. 511–518.

[20] D. Kong, D. Gray, and H. Tao, “Counting pedestrians in

crowds using viewpoint invariant training,” in Proc. of
the IEEE British Machine Vision Conference (BMVC),
2005.

[21] A. Chan, M. Morrow, and N. Vasconcelos, “Analysis

of crowded scenes using holistic properties,” in Proc.
of IEEE Intl. Workshop on Performance Evaluation of
Tracking and Surveillance (PETS 2009), 2009.

[22] M. Bertini, C. Colombo, and A. Del Bimbo, “Au-

tomatic caption localization in videos using salient

points,” in Proc. of the IEEE international conference
on Multimedia and Expo (ICME), 2001, pp. 68–71.

196

[23] E. Rosten and T. Drummond, “Machine learning for

high-speed corner detection,” in Proc. of ECCV, 2006.

[24] G. Klein and D. Murray, “Parallel tracking and map-

ping for small AR workspaces,” in Proc. of IEEE and
ACM International Symposium on Mixed and Aug-
mented Reality (ISMAR’07), 2007.

[25] K. Jack, Video Demystified. LLH Publishing, 2001.

[26] T. Wiegand, G. Sullivan, G. Bjontegaard, and

A. Luthra, “Overview of the H.264/AVC video coding

standard,” Circuits and Systems for Video Technology,
IEEE Transactions on, vol. 13, no. 7, pp. 560 –576,

july 2003.

[27] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli,

“Image quality assessment: From error visibility to

structural similarity,” IEEE Transactions on Image Pro-
cessing, vol. 13, no. 4, 2004.

[28] Z. Wang and A. C. Bovik, “Mean squared error: Love

it or leave it? A new look at signal fidelity measures,”

IEEE Signal Processing Magazine, vol. 26, pp. 98–117,

2009.

[29] C.-l. Yang, H.-x. Wang, and L.-M. Po, “A novel fast

motion estimation algorithm based on ssim for h.264

video coding,” in Advances in Multimedia Information
Processing – PCM 2007, ser. Lecture Notes in Com-

puter Science. Springer Berlin / Heidelberg, 2007, vol.

4810, pp. 168–176.

197

