
         

      

         

      

Parallel 
Computing

Prof. Marco Bertini



         

      

         

      

Data 
parallelism: 

GPU computing



         

      

         

      

CUDA: 
efficient 

programming



         

      
         

      

Basic problem: matrix multiplication
• When performing a matrix 

multiplication, each element of the 
output matrix P is an inner product of a 
row of M and a column of N.  

• Similarly to previous examples each 
thread will compute a single value of 
the output matrix 

• We organize threads as blocks
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A solution
__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) { 

  // Calculate the row index of the P element and M  
  int Row = blockIdx.y*blockDim.y+threadIdx.y;

  // Calculate the column index of P and N  
  int Col = blockIdx.x*blockDim.x+threadIdx.x;

  if ((Row < Width) && (Col < Width)) {  
    float Pvalue = 0;  
    // each thread computes one element of the block sub-matrix  
    for (int k = 0; k < Width; ++k) {  
      Pvalue += M[Row*Width+k]*N[k*Width+Col];  
    }  
    P[Row*Width+Col] = Pvalue;  
  }  

}



         

      
         

      

Toy example visualization
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Reduce 
memory traffic: 

tiling



         

      
         

      

Tiling and CUDA memories
• Remind the tradeoffs of CUDA memories: 

• the global memory is large but slow; 

• the shared memory is small but fast.  

• A common strategy is to partition the data into subsets 
called tiles so that each tile fits into the shared 
memory.  
An important criterion is that the kernel computation on 
these tiles can be done independently of each other.  

• Note that not all data structures can be partitioned 
into tiles given an arbitrary kernel function. 



         

      
         

      

Global vs. shared memory access
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Memory access in matrix multiplication

• Each thread accesses four elements of M and four elements of N during its execution. Among the four threads 
highlighted, there is a significant overlap in the M and N elements they access. For example, thread0,0 and 
thread0,1 both access M0,0 as well as the rest of row 0 of M.  

• If we can somehow manage to have thread0,0 and thread0,1 to collaborate so that these M elements are only 
loaded from global memory once, we can reduce the total number of accesses to the global memory by half.  

• In fact, we can see that every M and N element is accessed exactly twice during the execution of block0,0.  

• Larger block width leads to greater global memory traffic reduction.
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Memory access patterns
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Memory access patterns

Thread 1

Thread 2
Time

Thread 1
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Time

…
Good: when 

threads have similar 
access timing

Bad: when threads 
have very different 

timing

With tiling we are going to transform a program to localize memory locations 
accessed among threads and timing of their access.  

Long access sequences of each thread are broken into phases, using 
barriers to synchronize access times to each section by the threads.



         

      
         

      

Tiling: how ?
• Identify a tile of global memory contents that are accessed 

by multiple threads 

• Load the tile from global memory into on-chip memory 

• Use barrier synchronization to make sure that all threads 
are ready to start the phase 

• Have the multiple threads to access their data from the on-
chip memory 

• Use barrier synchronization to make sure that all threads 
have completed the current phase 

• Move on to the next tile



         

      
         

      

Tiling matrix multiplication
• Break up the execution of each thread into phases  

• so that the data accesses by the thread block in 
each phase are focused on one tile of M and one 
tile of N 

• The tile is of BLOCK_SIZE elements in each 
dimension 

• All threads in a block participate 

• Each thread loads one M  
element and one N element  
in tiled code
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Tiling phases
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Tiling phases
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Tiling phases
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Tiling phases
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Tiling phases

Phase 1 Use for Block (0,0) (iteration 0)
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Tiling phases

Phase 1 Use for Block (0,0) (iteration 1)
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Execution Phases of Toy Example

• Shared memory allows each value to be accessed by multiple threads 
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Execution Phases of Toy Example
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Execution Phases of Toy Example

• Shared memory allows each value to be accessed by multiple threads 

• In general, if an input matrix is of dimension Width and the tile size is TILE_WIDTH, the dot 
product would be performed in Width/TILE_WIDTH phases.  

• The creation of these phases is key to the reduction of accesses to the global memory.  
• With each phase focusing on a small subset of the input matrix values, the threads can 

collaboratively load the subset into the shared memory and use the values in the shared 
memory to satisfy their overlapping input needs in the phase.  

• Mds and Nds are re-used to hold the input values in different phases: reducing need of 
shared memory. 



         

      
         

      

Barrier Synchronization
• Synchronize all threads in a block 

• __syncthreads()

• All threads in the same block must reach the 
__syncthreads() before any of the them can move on 

• Best used to coordinate the phased execution tiled 
algorithms 

• To ensure that all elements of a tile are loaded at the 
beginning of a phase 

• To ensure that all elements of a tile are consumed at the 
end of a phase



         

      
         

      

Loading Input Tile 0 of M (Phase 0)

• Have each thread load an M element and an N 
element at the same relative position as its P 
element. 

• int Row = by * blockDim.y + ty;

• int Col = bx * blockDim.x + tx;

• 2D indexing for accessing Tile 0: 
 M[Row][tx] 
 N[ty][Col]
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Loading Input Tile 0 of N (Phase 0) 

• Have each thread load an M element and an N 
element at the same relative position as its P 
element. 

• int Row = by * blockDim.y + ty;

• int Col = bx * blockDim.x + tx;

• 2D indexing for accessing Tile 0: 
 M[Row][tx] 
 N[ty][Col]
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Loading Input Tile 1 of M (Phase 1) 

• 2D indexing for accessing Tile 1: 
 M[Row][1*TILE_WIDTH + tx] 
 N[1*TILE*WIDTH + ty][Col]
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Loading Input Tile 1 of N (Phase 1) 

• 2D indexing for accessing Tile 1: 
 M[Row][1*TILE_WIDTH + tx] 
 N[1*TILE*WIDTH + ty][Col]
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Allocating M and N
• M and N can be allocated dynamically, using 1D indexing 

• M[Row][ph*TILE_WIDTH+tx]

• M[Row*Width + ph*TILE_WIDTH + tx]

• N[ph*TILE_WIDTH+ty][Col]

• N[(ph*TILE_WIDTH+ty)*Width + Col]

• where ph is the sequence number of the current phase



         

      
         

      

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width) {

  __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];  
  __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

  int bx = blockIdx.x;  int by = blockIdx.y;  
  int tx = threadIdx.x; int ty = threadIdx.y;

  int Row = by * blockDim.y + ty;  
  int Col = bx * blockDim.x + tx;  
  float Pvalue = 0;

 // Loop over the M and N tiles required to compute the P element  
 for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {  
    // Collaborative loading of M and N tiles into shared memory  
    Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH+tx];  
    Nds[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];  
    __syncthreads();

    for (int i = 0; i < TILE_WIDTH; ++i)  
      Pvalue += Mds[ty][i] * Nds[i][tx];  
    __synchthreads();

  }

  P[Row*Width+Col] = Pvalue;  
}



         

      
         

      

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width) {
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Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width) {
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Tiled Matrix Multiplication Kernel
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Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width) {

  __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];  
  __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

  int bx = blockIdx.x;  int by = blockIdx.y;  
  int tx = threadIdx.x; int ty = threadIdx.y;
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  float Pvalue = 0;

 // Loop over the M and N tiles required to compute the P element  
 for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {  
    // Collaborative loading of M and N tiles into shared memory  
    Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH+tx];  
    Nds[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];  
    __syncthreads();

    for (int i = 0; i < TILE_WIDTH; ++i)  
      Pvalue += Mds[ty][i] * Nds[i][tx];  
    __synchthreads();

  }

  P[Row*Width+Col] = Pvalue;  
}

Shared variables: block scope



         

      
         

      

Tiled Matrix Multiplication Kernel
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  P[Row*Width+Col] = Pvalue;  
}

Shared variables: block scope

Automatic scalar variables: registers
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Automatic scalar variables: registers
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Tiled Matrix Multiplication Kernel
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Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width) {
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  P[Row*Width+Col] = Pvalue;  
}

Shared variables: block scope

Automatic scalar variables: registers

iterates over phases

load into shared memory
assures that all threads have loaded the data into shared mem.



         

      
         

      

Tiled Matrix Multiplication Kernel
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  int Col = bx * blockDim.x + tx;  
  float Pvalue = 0;

 // Loop over the M and N tiles required to compute the P element  
 for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {  
    // Collaborative loading of M and N tiles into shared memory  
    Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH+tx];  
    Nds[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];  
    __syncthreads();

    for (int i = 0; i < TILE_WIDTH; ++i)  
      Pvalue += Mds[ty][i] * Nds[i][tx];  
    __synchthreads();

  }

  P[Row*Width+Col] = Pvalue;  
}

Shared variables: block scope

Automatic scalar variables: registers

iterates over phases

load into shared memory
assures that all threads have loaded the data into shared mem.

assures that all threads have finished using the data into 
shared mem.



         

      
         

      

Tile (Thread Block) Size Considerations
• Each thread block should have many threads 

• TILE_WIDTH of 16 gives 16*16 = 256 threads 

• TILE_WIDTH of 32 gives 32*32 = 1024 threads 

• For 16, in each phase, each block performs 2*256 = 512 
float loads from global memory for 256 * (2*16) = 8,192 
mul/add operations. (16 floating-point operations for each 
memory load) 

• For 32, in each phase, each block performs 2*1024 = 2048 
float loads from global memory for 1024 * (2*32) = 65,536 
mul/add operations. (32 floating-point operation for each 
memory load)



         

      
         

      

Shared Memory and Threading
• For an SM with 16KB shared memory 

• Shared memory size is implementation dependent! 

• For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.  

• For 16KB shared memory, one can potentially have up to 8 thread blocks executing 

• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per 
block) 

• The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared memory 
usage per thread block, allowing 2 thread blocks active at the same time  

• However, the thread count limitation of 1536 threads per SM in current generation 
GPUs will reduce the number of blocks per SM to one! 

• Each __syncthread() can reduce the number of active threads for a block 

• More thread blocks can be advantageous



         

      
         

      

Boundary checks

• The previous code assumes that the matrix has a 
size (a width) that is an exact multiple of 
TILE_WIDTH. 

• Let’s extend the code to handle matrices with 
arbitrary width… 

• …without using padding, that would waste space 
and time in copying data.



         

      
         

      

Phase 1 Loads for Block (0,0) for a 3x3 Example 

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

Threads (1,0) and (1,1) need special 

treatment in loading N tile 

Threads (0,1) and (1,1) need 

special treatment in loading M tile



         

      
         

      

Phase 1 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory



         

      
         

      

Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

All Threads need special 

treatment. None of them should 

introduce invalidate contributions 

to their P elements.



         

      
         

      

Phase 0 Loads for Block (1,1) for a 3x3 Example 

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M2,1M2,0

N0,2

N1,2

Shared Memory

Shared Memory

Threads (0,1) and (1,1) need special 

treatment in loading N tile 

Threads (1,0) and (1,1) need 

special treatment in loading M tile



         

      
         

      

Main cases in the example
• Threads that do not calculate valid P elements but 

still need to participate in loading the input tiles 

• Phase 0 of Block(1,1), Thread(0,1), assigned 
to calculate non-existent P[3,2] but need to 
participate in loading tile element N[1,2]  

• Threads that calculate valid P elements may 
attempt to load non-existing input elements when 
loading input tiles 

• Phase 0 of Block(0,0), Thread(1,0), assigned 
to calculate valid P[1,0] but attempts to load 
non-existing N[3,0]

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M2,1M2,0

N0,2

N1,2

Shared Memory

Shared Memory

Threads (0,1) and (1,1) need special 

treatment in loading N tile 

Threads (1,0) and (1,1) need 

special treatment in loading M tile

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

All Threads need special 

treatment. None of them should 

introduce invalidate contributions 

to their P elements.



         

      
         

      

A solution
• When a thread is to load any input element, test if it is in 

the valid index range 

• If valid, proceed to load 

• Else, do not load, just write a 0 

• Rationale: a 0 value will ensure that that the multiply-add 
step does not affect the final value of the output element 

• The condition tested for loading input elements is different 
from the test for calculating output P element 

• A thread that does not calculate valid P element can still 
participate in loading input tile elements



         

      
         

      

Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

0M0,2

M1,2 0

N2,1N2,0

0 0
Shared Memory

Shared Memory



         

      
         

      

Boundary Condition for Input M Tile
• Each thread loads 

• M[Row][p*TILE_WIDTH+tx] 

• M[Row*Width + p*TILE_WIDTH+tx] 

• Need to test 

• (Row < Width) && (p*TILE_WIDTH+tx < Width) 

• If true, load M element 

• Else , load 0

A

TILE_WIDTHTILE_WIDTH



         

      
         

      

Boundary Condition for Input N Tile
• Each thread loads 

• N[p*TILE_WIDTH+ty][Col] 

• N[(p*TILE_WIDTH+ty)*Width+ Col] 

• Need to test 

• (p*TILE_WIDTH+ty < Width) && (Col< Width) 

• If true, load N element 

• Else , load 0 B

T
IL
E
_W

ID
TH

T
IL
E
_W

ID
TH



         

      
         

      

Loading Elements – with boundary check
for (int p = 0; p < (Width-1) / TILE_WIDTH + 1; ++p) {

    if(Row < Width && t * TILE_WIDTH + tx < Width) {

        ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];

    } else {

        ds_M[ty][tx] = 0.0;

    }

    if (p*TILE_WIDTH+ty < Width && Col < Width) {

        ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];

    } else {

        ds_N[ty][tx] = 0.0;

    }

    __syncthreads();

}



         

      
         

      

Inner Product – Before and After
    if(Row < Width && Col < Width) {

        for (int i = 0; i < TILE_WIDTH; ++i) {

            Pvalue += ds_M[ty][i] * ds_N[i][tx];

        }

        __syncthreads();

    } /* end of outer for loop */

    if (Row < Width && Col < Width) 

        P[Row*Width + Col] = Pvalue;

} /* end of kernel */



         

      
         

      

Some Important Points
• For each thread the conditions are different for  

• Loading M element 

• Loading N element 

• Calculating and storing output elements 

• The effect of control divergence should be small for 
large matrices



         

      
         

      

Handling General Rectangular Matrices
• In general, the matrix multiplication is defined in terms of rectangular matrices 

• A j × k M matrix multiplied with a k × l N matrix results in a j × l P matrix 

• So far we have seen square matrix multiplication, a special case 

• The kernel function needs to be generalized to handle general rectangular 
matrices 

• The Width argument is replaced by three arguments: j, k, l 

• When Width is used to refer to the height of M or height of P, replace it with 
j 

• When Width is used to refer to the width of M or height of N, replace it with 
k 

• When Width is used to refer to the width of N or width of P, replace it with l



         

      
         

      

Credits

• These slides report material from: 

• NVIDIA GPU Teaching Kit



         

      
         

      

Books

• Programming Massively Parallel Processors: A 
Hands-on Approach, D. B. Kirk and W-M. W. Hwu, 
Morgan Kaufman - Chapt. 4-6


