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Core Apache Hadoop
• Core Hadoop is a software platform and 

framework for distributed computing of data. 

• It is a platform in the sense that it is a long-
running system that runs and executes 
computing tasks. 

• It is a framework in the sense that it provides a 
layer of abstraction to developers of data 
applications and data analytics, hiding the 
intricacies of the system.



         

      
         

      

Major components
• HDFS (Hadoop Distributed File System) 

A filesystem that stores data across multiple 
computers (i.e., in a distributed manner); it is designed 
to be high throughput, resilient, and scalable 

• YARN (Yet Another Resource Negotiator) 
A management framework for Hadoop resources; it 
keeps track of the CPU, RAM, and disk space being 
used, and tries to make sure processing runs smoothly 

• MapReduce  
A generalized framework for processing and analyzing 
data in a distributed fashion. 



         

      
         

      

Scaling Hadoop
• Hadoop scales out (it does not scale up): which 

means you can add to your existing system with 
newer or more powerful pieces.  

• For example, scaling up your refrigerator means 
you buy a larger refrigerator and trash your old 
one; scaling out means you buy another 
refrigerator to sit beside your old one. 

• If data doubles the double processing power and 
you’ll still process within the same time.



         

      
         

      

Hadoop cluster
• Running Hadoop means running a set of daemons on the 

different servers in your network. 
These daemons have specific roles; some exist only on 
one server, some exist across multiple servers.  
The daemons include: 

• NameNode  

• DataNode  

• Secondary NameNode  

• JobTracker  

• TaskTracker 



         

      
         

      

HDFS

• The Hadoop Distributed File System (HDFS) gives 
you a way to store a lot of data in a distributed 
fashion. It works with the other components of 
Hadoop to serve up data files to systems and 
frameworks. 

• HDFS is implemented as a “master and slave” 
architecture that is made up of a NameNode (the 
master) and one or more data nodes (the slaves).



         

      
         

      

Namenode
• The NameNode is the master of HDFS that directs 

the slave DataNode daemons to perform the low-level 
I/O tasks. It keeps track of how your files are broken 
down into file blocks, which nodes store those blocks, 
and the overall health of the distributed filesystem.  

• The function of the NameNode is memory and I/O 
intensive. As such, the server hosting the NameNode 
typically doesn’t store any user data or perform any 
computations for a MapReduce program to lower the 
workload on the machine. This means that the 
NameNode server doesn’t double as a DataNode or a 
TaskTracker. 



         

      
         

      

Namenode
• The NameNode is the master of HDFS that directs 

the slave DataNode daemons to perform the low-level 
I/O tasks. It keeps track of how your files are broken 
down into file blocks, which nodes store those blocks, 
and the overall health of the distributed filesystem.  

• The function of the NameNode is memory and I/O 
intensive. As such, the server hosting the NameNode 
typically doesn’t store any user data or perform any 
computations for a MapReduce program to lower the 
workload on the machine. This means that the 
NameNode server doesn’t double as a DataNode or a 
TaskTracker. 

The NameNode does three major things:  
1. it knows where data is,  
2. it tells clients where to send data,  
3.  tells clients where to retrieve data from.



         

      
         

      

Datanode
• Each slave machine in your cluster will host a 

DataNode daemon to perform the grunt work of the 
distributed filesystem — reading and writing HDFS 
blocks to actual files on the local filesystem.  

• When you want to read or write a HDFS file, the file is 
broken into blocks and the NameNode will tell your 
client which DataNode each block resides in.  

• Your client communicates directly with the DataNode 
daemons to process the local files corresponding to the 
blocks. Furthermore, a DataNode may communicate 
with other DataNodes to replicate its data blocks for 
redundancy. 



         

      
         

      

Namenode + datanode
• NameNode/DataNode interaction in HDFS. The NameNode keeps 

track of the file metadata — which files are in the system and how each 
file is broken down into blocks.  

• The DataNodes provide backup store of the blocks and constantly 
report to the NameNode to keep the metadata current. 



         

      
         

      

To/from HDFS
• Transferring data to and from HDFS is a two-step 

process: 

1. The client connects to the NameNode and asks 
which DataNode it can get the data from or where it 
should send the data. 

2. The client then connects to the DataNode the 
NameNode indicated and receives or sends the data 
directly to the DataNode, without the NameNode’s 
involvement.



         

      
         

      

To/from HDFS

• By default, HDFS stores three 
copies of your files scattered 
across the cluster somewhat 
randomly.  

• As a user you’ll never notice that 
there are three copies. Even if 
some failure occurs and there are 
temporarily only two copies, you’ll 
never know because it is all 
handled behind the scenes by the 
NameNode and the DataNodes



         

      
         

      

To/from HDFS

• By default, HDFS stores three 
copies of your files scattered 
across the cluster somewhat 
randomly.  

• As a user you’ll never notice that 
there are three copies. Even if 
some failure occurs and there are 
temporarily only two copies, you’ll 
never know because it is all 
handled behind the scenes by the 
NameNode and the DataNodes

Multiple copies of chunks are beneficial for: 

1. robustness to node failures (fault 
tolerance). In case of failure NameNode 
commands DataNodes to replicate lost 
copies 

2. performance: allows to data locality: 
perhaps one of the chunks is near the 
node that needs it



         

      
         

      

HDFS: non modifiable files

• To allow good throughput HDFS does not offer full 
functionalities of a traditional file system: files 
written to HDFS can not be modified 

• Either write a file to HDFS, read from it or delete. 
No edit.



         

      
         

      

Secondary NameNode 
• Secondary NameNode (SNN) is an assistant daemon for 

monitoring the state of the cluster HDFS. Like the 
NameNode, each cluster has one SNN, and it typically 
resides on its own machine as well.  
No other DataNode or TaskTracker daemons run on the 
same server.  

• The SNN differs from the NameNode in that this process 
doesn’t receive or record any real-time changes to HDFS. 
Instead, it communicates with the NameNode to take 
snapshots of the HDFS metadata at intervals defined by 
the cluster configuration.  

• It is used to recover a system in case of name node failure.



         

      
         

      

YARN
• The role of YARN is to divvy up cluster resources 

(such as compute and memory) over a pool of 
computers. 

• YARN spreads out tasks and workloads over the 
cluster, telling each individual computer what it 
should be running and how many resources should 
be given to it. 

• YARN works in the background and doesn’t require 
much interaction with Hadoop developers, that 
work with the MapReduce API.



         

      
         

      

MapReduce
• MapReduce is a generalized framework for analyzing 

data stored in HDFS over the computers in a cluster.  
It allows the analytic developer to write code that is 
completely ignorant of the nature of the massive 
distributed system underneath it. 

• MapReduce itself is a paradigm for distributed 
computing described in a 2004 paper by engineers at 
Google. The authors of the paper described a 
general-purpose method to analyze large amounts of 
data in a distributed fashion on commodity hardware, 
in a way that masks a lot of the complexities of 
distributed systems.



         

      

         

      

MapReduce



         

      
         

      

What is MapReduce
• MapReduce is a broad term. Sometimes it’s used to 

describe the common pattern of breaking an algorithm 
down into two steps: a map over a data structure, followed 
by a reduce operation.  

• In many programming languages, map is the name of a 
higher-order function that applies a given function to each 
element of a list, returning a list of results. It is often called 
apply-to-all when considered in functional form. 

• In functional programming, reduce refers to a family of 
higher-order functions that analyze a recursive data 
structure and through use of a given combining operation, 
recombine the results of recursively processing its 
constituent parts, building up a return value.



         

      
         

      

What is MapReduce
• MapReduce can also be used to mean something 

more specific — a system that takes an algorithm 
encoded as a map followed by a reduce and 
efficiently distributes it across a cluster of 
computers.  

• The system automatically partitions both the data 
and its processing between the machines within the 
cluster, but it also continues to operate if one or 
more of those machines fails.  

• The most popular MapReduce framework is Apache 
Hadoop.



         

      
         

      

What is MapReduce
• MapReduce can also be used to mean something 

more specific — a system that takes an algorithm 
encoded as a map followed by a reduce and 
efficiently distributes it across a cluster of 
computers.  

• The system automatically partitions both the data 
and its processing between the machines within the 
cluster, but it also continues to operate if one or 
more of those machines fails.  

• The most popular MapReduce framework is Apache 
Hadoop.

A Map procedure (method) performs filtering and sorting (such as sorting students by first 
name into queues, one queue for each name)



         

      
         

      

What is MapReduce
• MapReduce can also be used to mean something 

more specific — a system that takes an algorithm 
encoded as a map followed by a reduce and 
efficiently distributes it across a cluster of 
computers.  

• The system automatically partitions both the data 
and its processing between the machines within the 
cluster, but it also continues to operate if one or 
more of those machines fails.  

• The most popular MapReduce framework is Apache 
Hadoop.

A Map procedure (method) performs filtering and sorting (such as sorting students by first 
name into queues, one queue for each name)

A Reduce method performs a summary operation (such as counting the number of students 
in each queue, yielding name frequencies)



         

      
         

      

What is MapReduce



         

      
         

      

Hadoop basics
• Hadoop is all about processing large amounts of data.  

Unless your data is measured in gigabytes or more, it’s unlikely to be the 
right tool for the job.  
Its power comes from the fact that that it splits data into sections, each 
of which is then processed independently by separate machines.  

• A MapReduce task is constructed from two primary types of 
components, mappers and reducers.  

• Mappers take some input format (by default, lines of plain text) and 
map it to a number of key/value pairs.  

• Reducers then convert these key/value pairs to the ultimate output 
format (normally also a set of key/value pairs).  

• Mappers and reducers are distributed across many different physical 
machines. there’s no requirement for there to be the same number of 
mappers as reducers.



         

      
         

      

Hadoop basics
• The input typically comprises one or more large text files. 

Hadoop splits these files (typical split is 64MB) and sends each 
split to a single mapper. The mapper outputs a number of key/
value pairs, which Hadoop then sends to the reducers.  

• The key/value pairs from a single mapper are sent to multiple 
reducers. Which reducer receives a particular key/value pair is 
determined by the key — Hadoop guarantees that all pairs with 
the same key will be processed by the same reducer, no matter 
which mapper generated them. This is commonly called the 
shuffle phase.  

• Hadoop calls the reducer once for each key, with a list of all the 
values associated with it. The reducer combines these values 
and generates the final output (which is typically, but not 
necessarily, also key/value pairs). 



         

      
         

      

Hadoop high-level data flow 



         

      
         

      

Hadoop high-level data flow 

"Map" step: Each worker node applies the "map()" function to the local data, and writes the
output to a temporary storage. A master node orchestrates that for redundant copies of input

data, only one is processed.



         

      
         

      

Hadoop high-level data flow 

"Map" step: Each worker node applies the "map()" function to the local data, and writes the
output to a temporary storage. A master node orchestrates that for redundant copies of input

data, only one is processed.

Shuffle" step: Worker nodes redistribute data based on the output keys (produced by the
"map()" function), such that all data belonging to one key is located on the same worker node.



         

      
         

      

Hadoop high-level data flow 

"Map" step: Each worker node applies the "map()" function to the local data, and writes the
output to a temporary storage. A master node orchestrates that for redundant copies of input

data, only one is processed.

Shuffle" step: Worker nodes redistribute data based on the output keys (produced by the
"map()" function), such that all data belonging to one key is located on the same worker node.

"Reduce" step: Worker nodes now process each group of output data, per key, in parallel.



         

      
         

      

Data flow

• MapReduce uses lists and (key/value) pairs as its main data 
primitives. The keys and values are often integers or strings but 
can also be dummy values to be ignored or complex object types.  

• The map and reduce functions must some constraints on the 
types of keys and values. 

Input Output

Map <k1, v1> list(<k2, v2>)

Reduce <k2, list(v2)> list(<k3, v3>)



         

      
         

      

Data flow: map
• The input to the application must be structured as a list of (key/value) 

pairs, list(<k1, v1>).  

• E.g. the input format for processing multiple files is usually 
list(<String filename, String file_content>).  
The input format for processing one large file, such as a log file, is 
list(<Integer line_number, String log_event>).  

• The list of (key/value) pairs is broken up and each individual (key/value) 
pair, <k1, v1>, is processed by calling the map function of the mapper.  
In practice, the key k1 is often ignored by the mapper.  
The mapper transforms each <k1, v1> pair into a list of <k2, v2> pairs.  
The details of this transformation largely determine what the 
MapReduce program does.  
 
Note that the (key/value) pairs are processed in arbitrary order. The 
transformation must be self-contained in that its output is dependent 
only on one single (key/value) pair. 



         

      
         

      

Data flow: reduce
• The output of all the mappers are (conceptually) 

aggregated into one giant list of <k2, v2> pairs.  

• All pairs sharing the same k2 are grouped together into 
a new (key/value) pair, <k2, list(v2)>.  
The framework asks the reducer to process each one 
of these aggregated (key/value) pairs individually.  

• The MapReduce framework automatically collects all 
the <k3, v3> pairs and writes them to file(s).  

• The data types k2 and k3, v2 and v3, may or may not 
be the same.  



         

      
         

      

Data flow
• The general 

MapReduce data flow. 

• Note that after 
distributing input data 
to different nodes, the 
only time nodes 
communicate with 
each other is at the 
“shuffle” step.  
This restriction on 
communication 
greatly helps 
scalability. 



         

      
         

      

Testing and Scaling 
• Decomposing a data processing application into 

mappers and reducers is sometimes nontrivial.  

• But, once you write an application in the 
MapReduce form, scaling the application to run 
over hundreds, thousands, or even tens of 
thousands of machines in a cluster is merely a 
configuration change.  

• Test MapReduce applications on a single 
machine, then deploy on an Hadoop cluster/
grid…



         

      
         

      

JobTracker
• The JobTracker daemon is the liaison between your 

application and Hadoop.  
Once you submit your code to your cluster, the 
JobTracker determines the execution plan by 
determining which files to process, assigns nodes to 
different tasks, and monitors all tasks as they’re 
running.  
Should a task fail, the JobTracker will automatically 
relaunch the task, possibly on a different node, up to a 
predefined limit of retries.  

• There is only one JobTracker daemon per Hadoop 
cluster. It’s typically run on a server as a master node 
of the cluster. 



         

      
         

      

TaskTracker
• As with the storage daemons, the computing daemons also follow 

a master/slave architecture: the JobTracker is the master 
overseeing the overall execution of a MapReduce job and the 
TaskTrackers manage the execution of individual tasks on each 
slave node.  

• Each TaskTracker is responsible for executing the individual tasks 
that the JobTracker assigns. Although there is a single 
TaskTracker per slave node, each TaskTracker can spawn 
multiple JVMs to handle many map or reduce tasks in parallel.  

• One responsibility of the TaskTracker is to constantly 
communicate with the JobTracker. If the JobTracker fails to 
receive a heartbeat from a TaskTracker within a specified amount 
of time, it will assume the TaskTracker has crashed and will 
resubmit the corresponding tasks to other nodes in the cluster. 



         

      
         

      

JobTracker + TaskTracker

• JobTracker and TaskTracker interaction. After a client calls the JobTracker 
to begin a data processing job, the JobTracker partitions the work and 
assigns different map and reduce tasks to each TaskTracker in the cluster. 



         

      
         

      

Overall architecture

• Topology of a typical Hadoop cluster. It’s a master/slave 
architecture in which the NameNode and JobTracker are masters 
and the DataNodes and TaskTrackers are slaves. 



         

      

         

      

A simple 
Hadoop 
program



         

      
         

      

Counting Words with Hadoop 
• Task: counting the number of words in a collection 

of plain-text files, e.g. tags of images in a social 
network, or words from Wikipedia.



         

      
         

      

Counting Words with Hadoop 
• Our mapper will process text a line at a time, break 

each line into words and output a single key/value 
pair for each word.  
The key will be the word itself, and the value will be 
the constant integer 1.  

• Our reducer will take all the key/value pairs for a 
given word and sum the values, generating a single 
key/value pair for each word, where the value is a 
count of the number of times that word occurred in 
the input.



         

      
         

      

Hadoop data types 
• The MapReduce framework won’t allow keys and values to be any 

arbitrary class. I.e. can not use standard Java classes, such as 
Integer, String, and so forth.  
This is because the MapReduce framework has a certain defined 
way of serializing the key/value pairs to move them across the 
cluster’s network, and only classes that support this kind of 
serialization can function as keys or values in the framework.  

• Classes that implement the Writable interface can be values, and 
classes that implement the WritableComparable<T> interface 
can be either keys or values.  
Note that the WritableComparable<T> interface is a combination 
of the Writable and java.lang.Comparable<T> interfaces.  
We need the comparability requirement for keys because they will 
be sorted at the reduce stage, whereas values are simply passed 
through. 



         

      
         

      

Example of WritableComparable class
import java.io.DataInput;  
import java.io.DataOutput;  
import java.io.IOException;  
 
import org.apache.hadoop.io.WritableComparable;  
 
public class Edge implements WritableComparable<Edge> {  
    private String departureNode;  
    private String arrivalNode;  
 
    public String getDepartureNode() { return departureNode;}  
 
    @Override  
    public void readFields(DataInput in) throws IOException {  
        departureNode = in.readUTF();  
        arrivalNode = in.readUTF();      
    }  
 
    @Override  
    public void write(DataOutput out) throws IOException {  
        out.writeUTF(departureNode);  
        out.writeUTF(arrivalNode);   
    }  
 
    @Override  
    public int compareTo(Edge o) {  
     return (departureNode.compareTo(o.departureNode) != 0)  
        ? departureNode.compareTo(o.departureNode)  
         : arrivalNode.compareTo(o.arrivalNode);  
    }  
}



         

      
         

      

Example of WritableComparable class
import java.io.DataInput;  
import java.io.DataOutput;  
import java.io.IOException;  
 
import org.apache.hadoop.io.WritableComparable;  
 
public class Edge implements WritableComparable<Edge> {  
    private String departureNode;  
    private String arrivalNode;  
 
    public String getDepartureNode() { return departureNode;}  
 
    @Override  
    public void readFields(DataInput in) throws IOException {  
        departureNode = in.readUTF();  
        arrivalNode = in.readUTF();      
    }  
 
    @Override  
    public void write(DataOutput out) throws IOException {  
        out.writeUTF(departureNode);  
        out.writeUTF(arrivalNode);   
    }  
 
    @Override  
    public int compareTo(Edge o) {  
     return (departureNode.compareTo(o.departureNode) != 0)  
        ? departureNode.compareTo(o.departureNode)  
         : arrivalNode.compareTo(o.arrivalNode);  
    }  
}

Methods of Writable interface. They work with the 
Java DataInput and DataOutput classes to 

serialize the class contents. 



         

      
         

      

Example of WritableComparable class
import java.io.DataInput;  
import java.io.DataOutput;  
import java.io.IOException;  
 
import org.apache.hadoop.io.WritableComparable;  
 
public class Edge implements WritableComparable<Edge> {  
    private String departureNode;  
    private String arrivalNode;  
 
    public String getDepartureNode() { return departureNode;}  
 
    @Override  
    public void readFields(DataInput in) throws IOException {  
        departureNode = in.readUTF();  
        arrivalNode = in.readUTF();      
    }  
 
    @Override  
    public void write(DataOutput out) throws IOException {  
        out.writeUTF(departureNode);  
        out.writeUTF(arrivalNode);   
    }  
 
    @Override  
    public int compareTo(Edge o) {  
     return (departureNode.compareTo(o.departureNode) != 0)  
        ? departureNode.compareTo(o.departureNode)  
         : arrivalNode.compareTo(o.arrivalNode);  
    }  
}

Methods of Writable interface. They work with the 
Java DataInput and DataOutput classes to 

serialize the class contents. 

Method of the Comparable interface. It returns 
-1, 0, or 1 if the called Edge is less than, equal 

to, or greater than the given Edge.  
 



         

      
         

      

The Mapper
 
 
public static class Map extends  
                    Mapper<Object, Text, Text, IntWritable> {  
 
    private final static IntWritable one = new IntWritable(1); 

    public void map(Object key, Text value, Context context)  
                throws IOException, InterruptedException {  
 
        String line = value.toString();  
        Iterable<String> words = new Words(line);  
        for (String word: words)  
            context.write(new Text(word), one);  
    }

} 



         

      
         

      

The Mapper
 
 
public static class Map extends  
                    Mapper<Object, Text, Text, IntWritable> {  
 
    private final static IntWritable one = new IntWritable(1); 

    public void map(Object key, Text value, Context context)  
                throws IOException, InterruptedException {  
 
        String line = value.toString();  
        Iterable<String> words = new Words(line);  
        for (String word: words)  
            context.write(new Text(word), one);  
    }

} 

The mapper handles plain text data, not key/value pairs, so the input key type is unused
(we pass Object) and the input value type is Text.

The output key type is also Text, with a value type of IntWritable.
Text is a Hadoop wrapper to store text using the UTF8 format



         

      
         

      

The Reducer
public static class Reduce extends  
   Reducer<Text, IntWritable, Text, IntWritable> { 

  public void reduce(Text key,  
                     Iterable<IntWritable> values,  
                     Context context)  
     throws IOException, InterruptedException { 

    int sum = 0;  
    for (IntWritable val: values)  
      sum += val.get();  
    context.write(key, new IntWritable(sum));  
  } 

} 



         

      
         

      

The Reducer
public static class Reduce extends  
   Reducer<Text, IntWritable, Text, IntWritable> { 

  public void reduce(Text key,  
                     Iterable<IntWritable> values,  
                     Context context)  
     throws IOException, InterruptedException { 

    int sum = 0;  
    for (IntWritable val: values)  
      sum += val.get();  
    context.write(key, new IntWritable(sum));  
  } 

} 

It also takes type parameters indicating the input and output key and value types.  
In our case, Text for both key types and IntWritable for both value types.



         

      
         

      

The Reducer
public static class Reduce extends  
   Reducer<Text, IntWritable, Text, IntWritable> { 

  public void reduce(Text key,  
                     Iterable<IntWritable> values,  
                     Context context)  
     throws IOException, InterruptedException { 

    int sum = 0;  
    for (IntWritable val: values)  
      sum += val.get();  
    context.write(key, new IntWritable(sum));  
  } 

} 

It also takes type parameters indicating the input and output key and value types.  
In our case, Text for both key types and IntWritable for both value types.

The reduce() method will be called once for each key, with values containing a collection of all 
the values associated with that key. 



         

      
         

      

API
public static class MapClass extends Mapper<K1, V1, K2, V2> {

    public void map(K1 key, V1 value, Context context)  
                    throws IOException, InterruptedException {    
    }

}

public static class Reduce extends Reducer<K2, V2, K3, V3> {

    public void reduce(K2 key, Iterable<V2> values, Context 
context)  
                  throws IOException, InterruptedException { }

} 



         

      
         

      

The Driver

• We need a driver, that tells Hadoop how to run 
mapper and reducer.  

• We are going to set the names of mapper and 
reducer classes, set the input and value types, tell 
Hadoop where to find input data and where to write 
output data. 

• Then we’ll start the job and wait for its completion. 



         

      
         

      

Job and Configuration

• The Configuration class configures a job 

• The Job class defines and controls the execution 
of a job.  

• A job’s construction and submission for execution 
are under Job. 



         

      
         

      

The Driver
public class WordCount extends Configured implements Tool { 

  public int run(String[] args) throws Exception {  
    Configuration conf = getConf();  
    Job job = Job.getInstance(conf, "wordcount");  
    job.setJarByClass(WordCount.class);  
    job.setMapperClass(Map.class);  
    job.setReducerClass(Reduce.class);  
    job.setOutputKeyClass(Text.class);  
    job.setOutputValueClass(IntWritable.class);  
    FileInputFormat.addInputPath(job, new Path(args[0]));  
    FileOutputFormat.setOutputPath(job, new Path(args[1]));  
    boolean success = job.waitForCompletion(true);  
    return success ? 0 : 1;  
  } 

  public static void main(String[] args) throws Exception {  
    int res = ToolRunner.run(new Configuration(), new WordCount(), args);  
    System.exit(res);  
  } 

} 



         

      
         

      

The Driver
public class WordCount extends Configured implements Tool { 

  public int run(String[] args) throws Exception {  
    Configuration conf = getConf();  
    Job job = Job.getInstance(conf, "wordcount");  
    job.setJarByClass(WordCount.class);  
    job.setMapperClass(Map.class);  
    job.setReducerClass(Reduce.class);  
    job.setOutputKeyClass(Text.class);  
    job.setOutputValueClass(IntWritable.class);  
    FileInputFormat.addInputPath(job, new Path(args[0]));  
    FileOutputFormat.setOutputPath(job, new Path(args[1]));  
    boolean success = job.waitForCompletion(true);  
    return success ? 0 : 1;  
  } 

  public static void main(String[] args) throws Exception {  
    int res = ToolRunner.run(new Configuration(), new WordCount(), args);  
    System.exit(res);  
  } 

} 

• In this simple case there’s no need to set the input key and value type, because Hadoop 
assumes by default that we’re processing text files.  

• We don’t need to independently set the mapper output or reducer input key/value types, 
because Hadoop assumes by default that they’re the same as the output key/value types.   

• We set the output key and value types



         

      
         

      

Processing XML
• Hadoop’s default splitter divides files at line boundaries, 

meaning that it’s likely to split files in the middle of XML 
tags.  

• There are other default splitters to handle 
compressed files, K/V pairs, specified n lines 
splitters… 

• There’s need to use a splitter that is aware of the 
structure of the data being processed, like a Mahout 
XML splitter 

• Implement interface InputFormat<K, V> to create 
other managers of input format



         

      
         

      

Processing XML
public int run(String[] args) throws Exception {  
  Configuration conf = getConf();  
  conf.set("xmlinput.start", "<text");  
  conf.set("xmlinput.end", "</text>"); 

  Job job = Job.getInstance(conf, "wordcount");     
  job.setJarByClass(WordCount.class);  
  job.setInputFormatClass(XmlInputFormat.class);  
  job.setMapperClass(Map.class);    
  job.setCombinerClass(Reduce.class);  
  job.setReducerClass(Reduce.class);  
  job.setOutputKeyClass(Text.class);  
  job.setOutputValueClass(IntWritable.class);  
  FileInputFormat.addInputPath(job, new Path(args[0])); 15    
  FileOutputFormat.setOutputPath(job, new Path(args[1])); 

  boolean success = job.waitForCompletion(true);  
  return success ? 0 : 1;  
} 
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  return success ? 0 : 1;  
} 

 tell Hadoop to use XmlInputFormat 
instead of the default splitter 



         

      
         

      

Processing XML
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 tell Hadoop to use XmlInputFormat 
instead of the default splitter 

 let the splitter know which 
tags we’re interested in 



         

      
         

      

Processing XML
public int run(String[] args) throws Exception {  
  Configuration conf = getConf();  
  conf.set("xmlinput.start", "<text");  
  conf.set("xmlinput.end", "</text>"); 

  Job job = Job.getInstance(conf, "wordcount");     
  job.setJarByClass(WordCount.class);  
  job.setInputFormatClass(XmlInputFormat.class);  
  job.setMapperClass(Map.class);    
  job.setCombinerClass(Reduce.class);  
  job.setReducerClass(Reduce.class);  
  job.setOutputKeyClass(Text.class);  
  job.setOutputValueClass(IntWritable.class);  
  FileInputFormat.addInputPath(job, new Path(args[0])); 15    
  FileOutputFormat.setOutputPath(job, new Path(args[1])); 

  boolean success = job.waitForCompletion(true);  
  return success ? 0 : 1;  
} 

 tell Hadoop to use XmlInputFormat 
instead of the default splitter 

 let the splitter know which 
tags we’re interested in 

 XmlInputFormat doesn’t perform a full XML parse; instead it simply looks for start 
and end patterns. If the <text> tag takes attributes, we just search for <text 



         

      
         

      

Processing XML
private final static Pattern textPattern = 
Pattern.compile("^<text.*>(.*)</text>$", Pattern.DOTALL); 

 
public void map(Object key, Text value, Context context)  
               throws IOException, InterruptedException {  
 
  String text = value.toString();  
  Matcher matcher = textPattern.matcher(text);  
  if (matcher.find()) {  
    Iterable<String> words = new Words(matcher.group(1));     
    for (String word: words)  
      context.write(new Text(word), one);  
  }  
} 



         

      
         

      

Processing XML
private final static Pattern textPattern = 
Pattern.compile("^<text.*>(.*)</text>$", Pattern.DOTALL); 

 
public void map(Object key, Text value, Context context)  
               throws IOException, InterruptedException {  
 
  String text = value.toString();  
  Matcher matcher = textPattern.matcher(text);  
  if (matcher.find()) {  
    Iterable<String> words = new Words(matcher.group(1));     
    for (String word: words)  
      context.write(new Text(word), one);  
  }  
} 

Each split will consist of text between the xmlinput.start and xmlinput.end patterns, 
including the matching patterns. So we use a something like a regular-expression to strip the 

<text></text> tags before counting words (to avoid overcounting the word text).  



         

      
         

      

The Combiner
• A combiner is an optimization that allows key/value 

pairs to be combined before they’re sent to a reducer. 

• It’s a “local reduce” before we distribute the mapper 
results.  

• A reducer, like in this case, may be used also as a 
combiner. 

• Hadoop does not guarantee use of a combiner if one 
is provided, so we need to make sure that our 
algorithm doesn’t depend on whether, or how often, it 
is used. 



         

      
         

      

The Combiner



         

      
         

      

The Partitioner
• With multiple reducers, we need some way to 

determine the appropriate one to send a (key/
value) pair outputted by a mapper.  

• The default behavior is to hash the key to 
determine the reducer. Hadoop enforces this 
strategy by use of the HashPartitioner class.  

• Sometimes we may need to write our own 
partitioner



         

      
         

      

The Partitioner
Consider the Edge for which we wrote the WritableComparable<T> 
interface. Two edges with the same start (e.g. a departure of a travel) 
and different end (arrival of a travel) would be treated differently. If we 
wanted to assign them to the same reducer we need to implement a  
Partitioner<T, Writable> interface. 
 
public class EdgePartitioner implements  
                             Partitioner<Edge, Writable>  {  
    @Override  
    public int getPartition(Edge key, Writable value,  
                            int numPartitions)  {  
      return key.getDepartureNode().hashCode() % numPartitions;  
    }

    @Override  
    public void configure(JobConf conf) { }  
}



         

      
         

      

The Partitioner
Consider the Edge for which we wrote the WritableComparable<T> 
interface. Two edges with the same start (e.g. a departure of a travel) 
and different end (arrival of a travel) would be treated differently. If we 
wanted to assign them to the same reducer we need to implement a  
Partitioner<T, Writable> interface. 
 
public class EdgePartitioner implements  
                             Partitioner<Edge, Writable>  {  
    @Override  
    public int getPartition(Edge key, Writable value,  
                            int numPartitions)  {  
      return key.getDepartureNode().hashCode() % numPartitions;  
    }

    @Override  
    public void configure(JobConf conf) { }  
}

Returns an integer between 0 and the number of reduce 
tasks indexing to which reducer the (key/value) pair will be 

sent. 



         

      
         

      

Partitioning and shuffling

• The MapReduce data flow - partitioning and shuffling. Each icon is a key/value pair. The 
shapes represents keys, whereas the inner patterns represent values. After shuffling, all 
icons of the same shape (key) are in the same reducer. Different keys can go to the same 
reducer, as seen in the rightmost reducer. The partitioner decides which key goes where. 
Note that the leftmost reducer has more load due to more data under the “ellipse” key. 



         

      
         

      

Output
• The output has no splits, as each reducer writes its 

output only to its own file. The output files reside in 
a common directory and are typically named 
part-nnnnn, where nnnnn is the partition ID of 
the reducer.  

• Again: create your own class or use one of the 
default. A reducer may use 
NullOutputFormat<K,V> to output nothing 
from Hadoop and instead create its own output



         

      
         

      

Books

• The Art of Concurrency, Paul Butcher, Pragmatic 
Bookshelf - Chapt. 8 

• Hadoop in Action, Chuck Lam, Manning - Chapt. 
1-4


