

Parallel
Computing

Prof. Marco Bertini

Apache
Hadoop

Parallelism in
combiners and

shuffle

Effect of combiner

• Map operations are scheduled on data nodes, each
mapper operates on one HDFS block

• We could speedup processing combining some keys before
submitting them to the Reduce, avoiding data transfer

• This is an optimization of the reduce phase to allow it to
work on data that has been “partially reduced”.

Data node Map
Data block

Data node
<key, value>

Effect of combiner

• Map operations are scheduled on data nodes, each
mapper operates on one HDFS block

• We could speedup processing combining some keys before
submitting them to the Reduce, avoiding data transfer

• This is an optimization of the reduce phase to allow it to
work on data that has been “partially reduced”.

Data node Map
Data block

Data node
<key, value>

Combine
Data node

<key, value>

Effect of combiner

• Map operations are scheduled on data nodes, each
mapper operates on one HDFS block

• We could speedup processing combining some keys before
submitting them to the Reduce, avoiding data transfer

• This is an optimization of the reduce phase to allow it to
work on data that has been “partially reduced”.

Data node Map
Data block

Data node
<key, value>

Combine
Data node

<key, value>

Multiple mappers per data node

Combiner properties
• The combiner should be neutral w.r.t. the final

result

• Not all reducers can be used as combiners, e.g.:
compute average points scored by players in
basketball matches.

• Input: player names, points scored, id of match in
a CSV file. The mapper outputs player names
and number of scored points. The reducer
computes the average. Running the reducer as
combiner would give wrong results…

Combiner properties
• The combiner should be neutral w.r.t. the final

result

• Not all reducers can be used as combiners, e.g.:
compute average points scored by players in
basketball matches.

• Input: player names, points scored, id of match in
a CSV file. The mapper outputs player names
and number of scored points. The reducer
computes the average. Running the reducer as
combiner would give wrong results…

In this case the right combiner should sum the points

Controlling reducers
• By default there’s only 1 reducer (on a data node)

• Using multiple reducers increases parallelization

• add -D mapreduce.job.reduces=2 to the
command line (or add a call to
job.setNumReduceTasks(int num) when
setting the job configuration)

• Do not use too many or too few reducers: choose
a number that is either a multiple of block size,
reasonable task time, or lowers the number of
created files.

Controlling reducers
• By default there’s only 1 reducer (on a data node)

• Using multiple reducers increases parallelization

• add -D mapreduce.job.reduces=2 to the
command line (or add a call to
job.setNumReduceTasks(int num) when
setting the job configuration)

• Do not use too many or too few reducers: choose
a number that is either a multiple of block size,
reasonable task time, or lowers the number of
created files.

Shuffle happens when there are more than 1 reducers

Shuffle and hashing
• Shuffling uses the hash of the key values to

distribute the keys to the partitions.

• Hadoop has a HashPartitioner generic class for
this, that extends a Partitioner class

• It is possible to extend this class to create an
alternative partitioner, if needed

• …although HahsPartitioner already works quite
well.

Sorting

• Whether there is shuffling or not the results of
mappers are sorted based on key

• That’s why keys must implement
WritableComparable

Input/output
data formats

Input formats
• Hadoop can process many different types of data

formats, from flat text files to databases.

• An input split is a chunk of the input that is
processed by a single map.

• Each map processes a single split.

• Each split is divided into records, and the map
processes each record—a key-value pair—in turn.

• Splits and records are logical: there is nothing that
requires them to be tied to files.

Input formats
• Hadoop can process many different types of data

formats, from flat text files to databases.

• An input split is a chunk of the input that is
processed by a single map.

• Each map processes a single split.

• Each split is divided into records, and the map
processes each record—a key-value pair—in turn.

• Splits and records are logical: there is nothing that
requires them to be tied to files.

Represented by InputSplit class, storing references to the locations of data

Input formats
• An InputFormat object creates the input splits,

that is delegated by the Context to get the records

• It is the public and customizable run() method of
the Mapper to get the records from Context.

• FileInputFormat and DBInputFormat classes
are derived from InputFormat.

• FileInputFormat is further specialized, with
classes that f.e. combine small files or prevent file
splitting

TextInputFormat
• TextInputFormat is the default InputFormat.

Each record is a line of input. The key, a
LongWritable, is the byte offset within the file of
the beginning of the line. The value is the contents
of the line, excluding any line terminators (e.g.,
newline or carriage return), and is packaged as a
Text object.

• A file is broken into splits at byte, not line,
boundaries. Splits are processed independently.

Relationship between input splits and HDFS

blocks
• The logical records that FileInputFormats

define usually do not fit neatly into HDFS blocks.
For example, a TextInputFormat’s logical
records are lines, which will cross HDFS
boundaries more often than not.

• This has no bearing on the functioning of your
program: lines are not missed or broken

• This means it could be needed to perform some
remote reads. The slight overhead this causes is
not normally significant.

Relationship between input splits and HDFS

blocks

• A single file is broken into lines, and the line boundaries do
not correspond with the HDFS block boundaries. Splits honor
logical record boundaries, in this case lines, so we see that
the first split contains line 5, even though it spans the first and
second block. The second split starts at line 6.

Binary input
• Hadoop MapReduce is not restricted to processing textual

data. It has support for binary formats, too.

• Hadoop’s SequenceFileInputFormat stores sequences of
binary key-value pairs. Sequence files are splittable (they have
sync points so that readers can synchronize with record
boundaries from an arbitrary point in the file, such as the start
of a split), they support compression as a part of the format,
and they can store arbitrary types.

• SequenceFileAsBinaryInputFormat is a variant of
SequenceFileInputFormat that retrieves the sequence
file’s keys and values as opaque binary objects. They are
encapsulated as BytesWritable objects, and the application
is free to interpret the underlying byte array as it pleases

Database input

• DBInputFormat is an input format for reading
data from a relational database, using JDBC.
Because it doesn’t have any sharding capabilities,
you need to be careful not to overwhelm the
database from which you are reading by running
too many mappers.

• Use specifically designed databases like HBase for
more complex datasets.

Storing data

Beyond text files

• Some applications and datasets will require ad hoc
data structures to hold the le's contents. Over the
years, le formats have been created to address
both the requirements of MapReduce processing
(data has to be splittable) and to satisfy the need to
model both structured and unstructured data.

• There are several file formats available in Hadoop

Serialization and containers
• We are interested in two types of scenarios:

• Serialization: we want to encode data structures
generated and manipulated at processing time to a
format we can store to a file, transmit, and at a later
stage, retrieve and translate back for further
manipulation

• Containers: once data is serialized to files,
containers provide means to group multiple files
together and add additional metadata

Compression
• Apache Hadoop comes with a number of compression codecs: gzip,

bzip2, LZO, etc.

• We can add compression at different stages:

• input files to be processed

• output files that result after processing is completed

• intermediate/temporary files produced internally within the pipeline

• Remind that MapReduce is most efficient on files that can be split
into valid sub files.  
This can complicate decisions, such as the choice of whether to
compress and which codec to use if so, as most compression codecs
(such as gzip) do not support splittable files, whereas a few (such as
LZO) do.

General purpose formats
• Text: the simplest approach to storing data on HDFS is to

use text files. It can be used both to hold unstructured data
—a web page or a tweet—as well as structured data—a
CSV file that is a few million rows long. Text files are
splittable, though one needs to consider how to handle
boundaries between multiple elements (for example, lines).

• SequenceFile: it is a flat data structure consisting of 
binary key/value pairs. It is still extensively used in
MapReduce as an input/output format: the temporary
outputs of maps are stored using SequenceFile.

• can be compressed (both keys and values) and is
splittable.

Column-oriented data formats
• Column-oriented data stores organize and store

tables based on the columns; the data for each
column will be stored together.

• Most relational DBMS instead organize data per
row.

• Column-oriented storage has performance
advantages when performing operations like range
queries, counting numbers of matching records or
performing math over a set of data.

Column-oriented data formats
• Apache Avro is a schema-oriented binary data serialization format and le

container; developed by the original author of Hadoop. 
It is both splittable and compressible, processable with many languages.
When data is stored in an Avro file, its schema—defined as a JSON object
—is stored with it.

• Apache Parquet is a columnar storage format that can efficiently store
nested data. This is important since in real-world systems schemas with
several levels of nesting are commonplace.

• The Optimized Row Columnar file format (ORC) aims to combine the
performance of the RCFile (a file format developed by Facebook) with the
flexibility of Avro. It is primarily intended to work with Apache Hive

• Hive: a framework for data warehousing that allows to run SQL queries
on the huge volumes of data stored in HDFS. It takes SQL queries and
translates the queries into one or more MapReduce jobs. It then
executes the overall MapReduce program and returns the results to the
user.

Database storage
• Apache HBase is a distributed column-oriented

database built on top of HDFS. HBase is the
Hadoop application to use when you require real-
time read/write random access to very large
datasets.

• It is designed to scale out.

• RDBMS can not scale as much as specific Hadoop
databases

• HBase is not relational and does not support SQL

HBase data model
• Applications store data in labeled tables. Tables are made of rows and columns.

• Table cells—the intersection of row and column coordinates—are versioned. By default, their version is
a timestamp auto-assigned by HBase at the time of cell insertion.

• A cell’s content is an uninterpreted array of bytes.

• Table row keys are also byte arrays, so theoretically anything can serve as a row key, from strings to
binary representations of long or even serialized data structures. Table rows are sorted by row key, the
table’s primary key. The sort is byte-ordered. All table accesses are via the table primary key.

• Row columns are grouped into column families. All column family members have a common prefix. The
column family and the qualifier are always separated by a colon character (:). A table’s column families
must be specified up front as part of the table schema definition, but new column family members can
be added on demand.

• Physically, all column family members are stored together on the filesystem. So is more accurately
described as a column-family-oriented store.

• Because tuning and storage specifications are done at the column-family level, it is advised that all
column family members have the same general access pattern and size characteristics.

• In synopsis, HBase tables are like those in an RDBMS, only cells are versioned, rows are sorted, and
columns can be added on the fly by the client as long as the column family they belong to preexists.

HBase data model
• Applications store data in labeled tables. Tables are made of rows and columns.

• Table cells—the intersection of row and column coordinates—are versioned. By default, their version is
a timestamp auto-assigned by HBase at the time of cell insertion.

• A cell’s content is an uninterpreted array of bytes.

• Table row keys are also byte arrays, so theoretically anything can serve as a row key, from strings to
binary representations of long or even serialized data structures. Table rows are sorted by row key, the
table’s primary key. The sort is byte-ordered. All table accesses are via the table primary key.

• Row columns are grouped into column families. All column family members have a common prefix. The
column family and the qualifier are always separated by a colon character (:). A table’s column families
must be specified up front as part of the table schema definition, but new column family members can
be added on demand.

• Physically, all column family members are stored together on the filesystem. So is more accurately
described as a column-family-oriented store.

• Because tuning and storage specifications are done at the column-family level, it is advised that all
column family members have the same general access pattern and size characteristics.

• In synopsis, HBase tables are like those in an RDBMS, only cells are versioned, rows are sorted, and
columns can be added on the fly by the client as long as the column family they belong to preexists.

HBase data model

• For the photos table, the image data, which is large (megabytes), is stored in a
separate column family to the metadata, which is much smaller in size
(kilobytes).

HBase

• HBase’s TableInputFormat is designed to allow
a MapReduce program to operate on data stored in
an HBase table. TableOutputFormat is for
writing MapReduce outputs into an HBase table.

• If there is need to move data from RDBMS to
HDFS there are other Hadoop-related tools like
Sqoop to perform these operations.

Installation

3 install modes
• Standalone (for testing)

• used to test MapReduce program logic

• Pseudo-distributed (for testing)

• 2 JVMs: a Namenode and a Datanode

• Runs MapReduce, HDFS and YARN

• Fully Distributed (real deployment)

• Production mode, runs on cluster machines (local
cluster or cloud, like AWS)

Download Hadoop

Set paths
• Uncompress the Hadoop tarball

• Set JAVA_HOME to point to the Java installation

• optional

• Add Hadoop bin/ path to the executable paths of the O.S.

• optional, just to ease the execution of Hadoop
commands

• Update etc/hadoop/hadoop-env.sh, changing JAVA_HOME
(if first step is not done) and HADOOP_CONF_DIR (must
contain full path to te etc/hadoop directory)

Set paths
• Uncompress the Hadoop tarball

• Set JAVA_HOME to point to the Java installation

• optional

• Add Hadoop bin/ path to the executable paths of the O.S.

• optional, just to ease the execution of Hadoop
commands

• Update etc/hadoop/hadoop-env.sh, changing JAVA_HOME
(if first step is not done) and HADOOP_CONF_DIR (must
contain full path to te etc/hadoop directory)

In macOS just add this line to the ~.profile file:

export JAVA_HOME=$(/usr/libexec/java_home)

Set paths
• Uncompress the Hadoop tarball

• Set JAVA_HOME to point to the Java installation

• optional

• Add Hadoop bin/ path to the executable paths of the O.S.

• optional, just to ease the execution of Hadoop
commands

• Update etc/hadoop/hadoop-env.sh, changing JAVA_HOME
(if first step is not done) and HADOOP_CONF_DIR (must
contain full path to te etc/hadoop directory)

In macOS just add this line to the ~.profile file:

export JAVA_HOME=$(/usr/libexec/java_home)

export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop

Pseudo-distributed setup
• Edit etc/hadoop/core-site.xml to use HDFS: 
 
<configuration>  
 <property>  
 <name>fs.defaultFS</name>  
 <value>hdfs://localhost:9000</value>  
 </property>  
</configuration>

• Avoid HDFS replication editing etc/hadoop/hdfs-site.xml: 
 
<configuration>  
 <property>  
 <name>dfs.replication</name>  
 <value>1</value>  
 </property>  
</configuration>

Pseudo-distributed setup
• Edit etc/hadoop/core-site.xml to use HDFS: 
 
<configuration>  
 <property>  
 <name>fs.defaultFS</name>  
 <value>hdfs://localhost:9000</value>  
 </property>  
</configuration>

• Avoid HDFS replication editing etc/hadoop/hdfs-site.xml: 
 
<configuration>  
 <property>  
 <name>dfs.replication</name>  
 <value>1</value>  
 </property>  
</configuration>

Decide where to keep the HDFS system (default is /tmp):  
 
<property>
 <name>hadoop.tmp.dir</name>
 <value>path to temp_directory</value>
 <description>Location for HDFS.</description>
</property>

SSH
• Hadoop requires SSH(Secure Shell) access to the

machines it uses as nodes.

• Activate SSH daemon on your machine (in macOS:
System Preferences > Sharing > Remote login)

• Add ssh access without password: 
 
ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa  
 
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys  
 
chmod 0600 ~/.ssh/authorized_keys

Create HDFS filesystem
• Create the HDFS filesystem using the Hadoop command: 
 
bin/hdfs namenode -format

• Start namenode and datanode daemons: 
 
sbin/start-dfs.sh

• To test use the browser to visit: http://localhost:50070/

• Create directories and copy files: 
 
bin/hdfs dfs -mkdir /user  
bin/hdfs dfs -put /somepath/*.txt hadoop_path  
bin/hdfs dfs -ls hadoop_path  
bin/hdfs dfs -get hadoop_path/hadoop_file host_path

• Stop HDFS daemon: 
 
sbin/stop-dfs.sh  

localhost:50070/

Configure YARN
• Copy the etc/mapred-site.xml-template file as etc/mapred-site.xml and edit to add: 
 
<property>  
 <name>mapreduce.framework.name</name>  
 <value>yarn</value>  
</property>

• Edit etc/hadoop/yarn-site.xml to activate shuffle: 
 
<configuration>  
 <property>  
 <name>yarn.nodemanager.aux-services</name>  
 <value>mapreduce_shuffle</value>  
 </property>  
</configuration>

• Start / stop YARN with: 
 
sbin/start-yarn.sh  
sbin/stop-yarn.sh

Configure YARN
• Copy the etc/mapred-site.xml-template file as etc/mapred-site.xml and edit to add: 
 
<property>  
 <name>mapreduce.framework.name</name>  
 <value>yarn</value>  
</property>

• Edit etc/hadoop/yarn-site.xml to activate shuffle: 
 
<configuration>  
 <property>  
 <name>yarn.nodemanager.aux-services</name>  
 <value>mapreduce_shuffle</value>  
 </property>  
</configuration>

• Start / stop YARN with: 
 
sbin/start-yarn.sh  
sbin/stop-yarn.sh

Check Hadoop status browsing http://localhost:8088

http://localhost:8088

Configure YARN
• Copy the etc/mapred-site.xml-template file as etc/mapred-site.xml and edit to add: 
 
<property>  
 <name>mapreduce.framework.name</name>  
 <value>yarn</value>  
</property>

• Edit etc/hadoop/yarn-site.xml to activate shuffle: 
 
<configuration>  
 <property>  
 <name>yarn.nodemanager.aux-services</name>  
 <value>mapreduce_shuffle</value>  
 </property>  
</configuration>

• Start / stop YARN with: 
 
sbin/start-yarn.sh  
sbin/stop-yarn.sh

Check Hadoop status browsing http://localhost:8088

If you are low on disk space the node will be displayed as Unhealthy in the
Nodes view, then add:  
 
<property>
 <name>yarn.nodemanager.disk-health-checker.max-disk-
utilization-per-disk-percentage</name>
 <value>99.9</value>
</property>

in etc/hadoop/yarn-site.xml

http://localhost:8088

Configure YARN
• Copy the etc/mapred-site.xml-template file as etc/mapred-site.xml and edit to add: 
 
<property>  
 <name>mapreduce.framework.name</name>  
 <value>yarn</value>  
</property>

• Edit etc/hadoop/yarn-site.xml to activate shuffle: 
 
<configuration>  
 <property>  
 <name>yarn.nodemanager.aux-services</name>  
 <value>mapreduce_shuffle</value>  
 </property>  
</configuration>

• Start / stop YARN with: 
 
sbin/start-yarn.sh  
sbin/stop-yarn.sh

Check Hadoop status browsing http://localhost:8088

If you are low on disk space the node will be displayed as Unhealthy in the
Nodes view, then add:  
 
<property>
 <name>yarn.nodemanager.disk-health-checker.max-disk-
utilization-per-disk-percentage</name>
 <value>99.9</value>
</property>

in etc/hadoop/yarn-site.xml

The macOS script (Hadoop 2.7.3) still has a bug !
Change libexec/hadoop-config.sh from:

if ["Darwin" == "$(uname -s)"]; then
 if [-x /usr/libexec/java_home]; then
 export JAVA_HOME=($(/usr/libexec/java_home))
 else
 export JAVA_HOME=(/Library/Java/Home)
 fi
 fi

to:
if ["Darwin" == "$(uname -s)"]; then
 if [-x /usr/libexec/java_home]; then
 export JAVA_HOME=$(/usr/libexec/java_home)
 else
 export JAVA_HOME=(/Library/Java/Home)
 fi
 fi

http://localhost:8088

Run a
MapReduce

job

Copy data to HDFS

• Use either hadoop fs or hdfs dfs to issue the
commands to HDFS

• execute without any params to get a list of
possible commands

• Copy data to HDFS, e.g.:

hdfs dfs -put input_file /path_to_hdfs/path/input_file

Change spaces in path/file names to %20

Copy data to HDFS: Flume
• Within the Hadoop-related projects there are

specific tools to handle copying data to/from HDFS,
without requiring the commands seen in the
previous slide

• Apache Flume is designed for high-volume
ingestion into Hadoop of event-based data. E.g. to
collect log files from a bank of web servers, then
moving the log events from those files into new
aggregated files in HDFS for processing.  
The usual destination (called sink) is HDFS, but
Flume is flexible enough to write to other systems
like HBase or Solr.

Run the job at command line
• bin/hadoop jar <JARPath> <mainclass> <params>

• mainclass is the complete path (including package
name) of the main class. It is not needed if the JAR is
already executable.

• params are the possible command line arguments of
the program

• The OutputPath of the MapReduce job should not
exist

• The JAR file should not be in the HDFS filesystem, but it
should be in the local path

Books

• Learning Hadoop 2, Garry Turkington and Gabriele
Modena, Packt Publishing - Chapt. 2

• Hadoop The Definitive Guide, Tom White, O’Reilly -
Chapt. 8

• Hadoop in Action, Chuck Lam, Manning - Chapt.
1-4

