
         

      

         

      

Parallel 
Computing

Prof. Marco Bertini



         

      

         

      

Data parallelism: 
Lambda 

architecture



         

      
         

      

Big data and parallelism
• Big Data differs from traditional data processing 

through its use of parallelism — only by bringing 
multiple computing resources together we can process 
terabytes of data.  

• In this lecture we are going to analyze the Lambda 
Architecture.  
This architecture, originally proposed by Nathan Merz 
combines the large-scale batch-processing strengths of 
MapReduce with the real-time responsiveness of 
stream processing 

• The goal is to create scalable, responsive, and fault-
tolerant solutions to Big Data problems. 



         

      
         

      

Big data and parallelism
• The Lambda Architecture leverages data 

parallelism.  

• It does so on a huge scale, distributing both data 
and computation over clusters of tens or hundreds 
of machines.  

• Not only does this provide enough horsepower to 
make previously intractable problems tractable, 
but it also allows us to create systems that are 
fault tolerant against both hardware failure and 
human error. 



         

      
         

      

Lambda architecture: layers view
• Each layer satisfies a subset of the properties and builds 

upon the functionality provided by the layers beneath it.  

• The batch layer needs to be able to do two things: store an 
immutable, constantly growing master dataset, and compute 
arbitrary functions on that dataset.  

• The serving layer is a specialized distributed database that 
loads in a batch view and makes it possible to do random 
reads on it. A serving layer database supports batch updates 
and random reads. Most notably, it doesn’t need to support 
random writes. (e.g. ElephantDB) 

• The serving layer updates whenever the batch layer finishes 
precomputing a batch view. The speed layer only looks at 
recent data, whereas the batch layer looks at all the data at 
once.  
It updates the realtime views as it receives new data instead 
of recomputing the views from scratch like the batch layer 
does.
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be able to fix it. Let’s pretend that it’s okay for queries to be out of date by a few hours
and continue exploring this idea of precomputing a batch view by running a function
on the complete dataset. 

1.7.1 Batch layer

The portion of the Lambda Architecture
that implements the batch view = function(all
data) equation is called the batch layer. The
batch layer stores the master copy of the
dataset and precomputes batch views on that
master dataset (see figure 1.8). The master
dataset can be thought of as a very large list
of records. 

 The batch layer needs to be able to do two
things: store an immutable, constantly growing master dataset, and compute arbitrary
functions on that dataset. This type of processing is best done using batch-processing
systems. Hadoop is the canonical example of a batch-processing system, and Hadoop is
what we’ll use in this book to demonstrate the concepts of the batch layer. 

 The simplest form of the batch layer can be represented in pseudo-code like this: 

function runBatchLayer():
while(true):
recomputeBatchViews()

The batch layer runs in a while(true) loop and continuously recomputes the batch
views from scratch. In reality, the batch layer is a little more involved, but we’ll come to
that later in the book. This is the best way to think about the batch layer at the
moment. 

 The nice thing about the batch layer is that it’s so simple to use. Batch computa-
tions are written like single-threaded programs, and you get parallelism for free. It’s
easy to write robust, highly scalable computations on the batch layer. The batch layer
scales by adding new machines. 

 Here’s an example of a batch layer computation. Don’t worry about understanding
this code—the point is to show what an inherently parallel program looks like:

Api.execute(Api.hfsSeqfile("/tmp/pageview-counts"),
new Subquery("?url", "?count")

.predicate(Api.hfsSeqfile("/data/pageviews"),
"?url", "?user", "?timestamp")

.predicate(new Count(), "?count");

This code computes the number of pageviews for every URL given an input dataset of
raw pageviews. What’s interesting about this code is that all the concurrency chal-
lenges of scheduling work and merging results is done for you. Because the algorithm
is written in this way, it can be arbitrarily distributed on a MapReduce cluster, scaling
to however many nodes you have available. At the end of the computation, the output
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directory will contain some number of files with the results. You’ll learn how to write
programs like this in chapter 7. 

1.7.2 Serving layer 

The batch layer emits batch views as the
result of its functions. The next step is to
load the views somewhere so that they can
be queried. This is where the serving layer
comes in. The serving layer is a specialized
distributed database that loads in a batch
view and makes it possible to do random
reads on it (see figure 1.9). When new
batch views are available, the serving layer
automatically swaps those in so that more
up-to-date results are available. 

 A serving layer database supports batch updates and random reads. Most notably,
it doesn’t need to support random writes. This is a very important point, as random
writes cause most of the complexity in databases. By not supporting random writes,
these databases are extremely simple. That simplicity makes them robust, predictable,
easy to configure, and easy to operate. ElephantDB, the serving layer database you’ll
learn to use in this book, is only a few thousand lines of code.

1.7.3 Batch and serving layers satisfy almost all properties 

The batch and serving layers support arbitrary queries on an arbitrary dataset with the
trade-off that queries will be out of date by a few hours. It takes a new piece of data a
few hours to propagate through the batch layer into the serving layer where it can be
queried. The important thing to notice is that other than low latency updates, the
batch and serving layers satisfy every property desired in a Big Data system, as outlined
in section 1.5. Let’s go through them one by one:

■ Robustness and fault tolerance—Hadoop handles failover when machines go
down. The serving layer uses replication under the hood to ensure availability
when servers go down. The batch and serving layers are also human-fault toler-
ant, because when a mistake is made, you can fix your algorithm or remove the
bad data and recompute the views from scratch.

■ Scalability—Both the batch and serving layers are easily scalable. They’re both
fully distributed systems, and scaling them is as easy as adding new machines. 

■ Generalization—The architecture described is as general as it gets. You can com-
pute and update arbitrary views of an arbitrary dataset. 

■ Extensibility—Adding a new view is as easy as adding a new function of the mas-
ter dataset. Because the master dataset can contain arbitrary data, new types of
data can be easily added. If you want to tweak a view, you don’t have to worry

Batch layer

Speed layer 1. Random access to
batch views

2. Updated by batch layer

Serving layer

Figure 1.9 Serving layer
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about supporting multiple versions of the view in the application. You can sim-
ply recompute the entire view from scratch. 

■ Ad hoc queries—The batch layer supports ad hoc queries innately. All the data is
conveniently available in one location. 

■ Minimal maintenance—The main component to maintain in this system is
Hadoop. Hadoop requires some administration knowledge, but it’s fairly
straightforward to operate. As explained before, the serving layer databases are
simple because they don’t do random writes. Because a serving layer database
has so few moving parts, there’s lots less that can go wrong. As a consequence,
it’s much less likely that anything will go wrong with a serving layer database, so
they’re easier to maintain. 

■ Debuggability—You’ll always have the inputs and outputs of computations run
on the batch layer. In a traditional database, an output can replace the original
input—such as when incrementing a value. In the batch and serving layers, the
input is the master dataset and the output is the views. Likewise, you have the
inputs and outputs for all the intermediate steps. Having the inputs and outputs
gives you all the information you need to debug when something goes wrong. 

The beauty of the batch and serving layers is that they satisfy almost all the properties
you want with a simple and easy-to-understand approach. There are no concurrency
issues to deal with, and it scales trivially. The only property missing is low latency
updates. The final layer, the speed layer, fixes this problem. 

1.7.4 Speed layer

The serving layer updates whenever the batch layer finishes precomputing a batch
view. This means that the only data not represented in the batch view is the data that
came in while the precomputation was running. All that’s left to do to have a fully real-
time data system—that is, to have arbitrary functions computed on arbitrary data in
real time—is to compensate for those last few hours of data. This is the purpose of the
speed layer. As its name suggests, its goal is to ensure new data is represented in query
functions as quickly as needed for the application requirements (see figure 1.10). 

 You can think of the speed layer as being similar to the batch layer in that it produces
views based on data it receives. One big difference is that the speed layer only looks at
recent data, whereas the batch layer looks at all the data at once. Another big difference
is that in order to achieve the smallest
latencies possible, the speed layer
doesn’t look at all the new data at once.
Instead, it updates the realtime views as
it receives new data instead of recomput-
ing the views from scratch like the batch
layer does. The speed layer does incre-
mental computation instead of the
recomputation done in the batch layer. 

Batch layer

Serving layer

1. Compensate for high latency
of updates to serving layer

2. Fast, incremental algorithms
3. Batch layer eventually

overrides speed layer

Speed layer

Figure 1.10 Speed layer
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Lambda architecture: layers view
• Each layer satisfies a subset of the properties and builds 

upon the functionality provided by the layers beneath it.  

• The batch layer needs to be able to do two things: store an 
immutable, constantly growing master dataset, and compute 
arbitrary functions on that dataset.  

• The serving layer is a specialized distributed database that 
loads in a batch view and makes it possible to do random 
reads on it. A serving layer database supports batch updates 
and random reads. Most notably, it doesn’t need to support 
random writes. (e.g. ElephantDB) 

• The serving layer updates whenever the batch layer finishes 
precomputing a batch view. The speed layer only looks at 
recent data, whereas the batch layer looks at all the data at 
once.  
It updates the realtime views as it receives new data instead 
of recomputing the views from scratch like the batch layer 
does.
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be able to fix it. Let’s pretend that it’s okay for queries to be out of date by a few hours
and continue exploring this idea of precomputing a batch view by running a function
on the complete dataset. 

1.7.1 Batch layer

The portion of the Lambda Architecture
that implements the batch view = function(all
data) equation is called the batch layer. The
batch layer stores the master copy of the
dataset and precomputes batch views on that
master dataset (see figure 1.8). The master
dataset can be thought of as a very large list
of records. 

 The batch layer needs to be able to do two
things: store an immutable, constantly growing master dataset, and compute arbitrary
functions on that dataset. This type of processing is best done using batch-processing
systems. Hadoop is the canonical example of a batch-processing system, and Hadoop is
what we’ll use in this book to demonstrate the concepts of the batch layer. 

 The simplest form of the batch layer can be represented in pseudo-code like this: 

function runBatchLayer():
while(true):
recomputeBatchViews()

The batch layer runs in a while(true) loop and continuously recomputes the batch
views from scratch. In reality, the batch layer is a little more involved, but we’ll come to
that later in the book. This is the best way to think about the batch layer at the
moment. 

 The nice thing about the batch layer is that it’s so simple to use. Batch computa-
tions are written like single-threaded programs, and you get parallelism for free. It’s
easy to write robust, highly scalable computations on the batch layer. The batch layer
scales by adding new machines. 

 Here’s an example of a batch layer computation. Don’t worry about understanding
this code—the point is to show what an inherently parallel program looks like:

Api.execute(Api.hfsSeqfile("/tmp/pageview-counts"),
new Subquery("?url", "?count")

.predicate(Api.hfsSeqfile("/data/pageviews"),
"?url", "?user", "?timestamp")

.predicate(new Count(), "?count");

This code computes the number of pageviews for every URL given an input dataset of
raw pageviews. What’s interesting about this code is that all the concurrency chal-
lenges of scheduling work and merging results is done for you. Because the algorithm
is written in this way, it can be arbitrarily distributed on a MapReduce cluster, scaling
to however many nodes you have available. At the end of the computation, the output
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directory will contain some number of files with the results. You’ll learn how to write
programs like this in chapter 7. 

1.7.2 Serving layer 

The batch layer emits batch views as the
result of its functions. The next step is to
load the views somewhere so that they can
be queried. This is where the serving layer
comes in. The serving layer is a specialized
distributed database that loads in a batch
view and makes it possible to do random
reads on it (see figure 1.9). When new
batch views are available, the serving layer
automatically swaps those in so that more
up-to-date results are available. 

 A serving layer database supports batch updates and random reads. Most notably,
it doesn’t need to support random writes. This is a very important point, as random
writes cause most of the complexity in databases. By not supporting random writes,
these databases are extremely simple. That simplicity makes them robust, predictable,
easy to configure, and easy to operate. ElephantDB, the serving layer database you’ll
learn to use in this book, is only a few thousand lines of code.

1.7.3 Batch and serving layers satisfy almost all properties 

The batch and serving layers support arbitrary queries on an arbitrary dataset with the
trade-off that queries will be out of date by a few hours. It takes a new piece of data a
few hours to propagate through the batch layer into the serving layer where it can be
queried. The important thing to notice is that other than low latency updates, the
batch and serving layers satisfy every property desired in a Big Data system, as outlined
in section 1.5. Let’s go through them one by one:

■ Robustness and fault tolerance—Hadoop handles failover when machines go
down. The serving layer uses replication under the hood to ensure availability
when servers go down. The batch and serving layers are also human-fault toler-
ant, because when a mistake is made, you can fix your algorithm or remove the
bad data and recompute the views from scratch.

■ Scalability—Both the batch and serving layers are easily scalable. They’re both
fully distributed systems, and scaling them is as easy as adding new machines. 

■ Generalization—The architecture described is as general as it gets. You can com-
pute and update arbitrary views of an arbitrary dataset. 

■ Extensibility—Adding a new view is as easy as adding a new function of the mas-
ter dataset. Because the master dataset can contain arbitrary data, new types of
data can be easily added. If you want to tweak a view, you don’t have to worry

Batch layer

Speed layer 1. Random access to
batch views

2. Updated by batch layer

Serving layer

Figure 1.9 Serving layer
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about supporting multiple versions of the view in the application. You can sim-
ply recompute the entire view from scratch. 

■ Ad hoc queries—The batch layer supports ad hoc queries innately. All the data is
conveniently available in one location. 

■ Minimal maintenance—The main component to maintain in this system is
Hadoop. Hadoop requires some administration knowledge, but it’s fairly
straightforward to operate. As explained before, the serving layer databases are
simple because they don’t do random writes. Because a serving layer database
has so few moving parts, there’s lots less that can go wrong. As a consequence,
it’s much less likely that anything will go wrong with a serving layer database, so
they’re easier to maintain. 

■ Debuggability—You’ll always have the inputs and outputs of computations run
on the batch layer. In a traditional database, an output can replace the original
input—such as when incrementing a value. In the batch and serving layers, the
input is the master dataset and the output is the views. Likewise, you have the
inputs and outputs for all the intermediate steps. Having the inputs and outputs
gives you all the information you need to debug when something goes wrong. 

The beauty of the batch and serving layers is that they satisfy almost all the properties
you want with a simple and easy-to-understand approach. There are no concurrency
issues to deal with, and it scales trivially. The only property missing is low latency
updates. The final layer, the speed layer, fixes this problem. 

1.7.4 Speed layer

The serving layer updates whenever the batch layer finishes precomputing a batch
view. This means that the only data not represented in the batch view is the data that
came in while the precomputation was running. All that’s left to do to have a fully real-
time data system—that is, to have arbitrary functions computed on arbitrary data in
real time—is to compensate for those last few hours of data. This is the purpose of the
speed layer. As its name suggests, its goal is to ensure new data is represented in query
functions as quickly as needed for the application requirements (see figure 1.10). 

 You can think of the speed layer as being similar to the batch layer in that it produces
views based on data it receives. One big difference is that the speed layer only looks at
recent data, whereas the batch layer looks at all the data at once. Another big difference
is that in order to achieve the smallest
latencies possible, the speed layer
doesn’t look at all the new data at once.
Instead, it updates the realtime views as
it receives new data instead of recomput-
ing the views from scratch like the batch
layer does. The speed layer does incre-
mental computation instead of the
recomputation done in the batch layer. 

Batch layer

Serving layer

1. Compensate for high latency
of updates to serving layer

2. Fast, incremental algorithms
3. Batch layer eventually

overrides speed layer

Speed layer

Figure 1.10 Speed layer
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The Lambda Architecture in full is summarized by these three equations:  
batch view = function(all data)  

realtime view = function(realtime view, new data) 
query = function(batch view, realtime view)



         

      
         

      

Lambda architecture

• The primary building blocks are the batch layer and the speed layer. 

• The batch layer uses batch-oriented technologies like MapReduce to precompute 
batch views from historical data. This is effective, but latency is high. 

• The speed layer uses low-latency techniques like stream processing to create real-
time views from new data as it arrives.  

• The two types of views are then combined to create query results. 



         

      

         

      

Batch layer



         

      
         

      

Raw data
• We can divide information into two categories: 

• raw data, 

• derived information.  

• Consider a page on Wikipedia — pages are constantly being 
updated and improved, so if I view a particular page today, I may 
well see something different from what I saw yesterday.  

• But pages aren’t the raw data from which Wikipedia is 
constructed — a single page is the result of combining many 
edits by many different contributors. These edits are the raw 
data from which pages are derived.  

• Pages change day by day but edits do not. Edits are immutable.



         

      
         

      

Raw data and immutability

• The fundamental basis of the Lambda Architecture 
is that raw data is immutable. 

• In some cases we’ll need to add a timestamp to 
make some data immutable, e.g. a timestamp 
associated to the address of a person to record 
immutably that at time X somebody lived at 
address A and at time Y the same person lived at 
address B.



         

      
         

      

Immutable data
• Storing immutable data is easy: just append new data 

when it becomes available. 

• Multiple threads can access immutable data in parallel 
without any concern of interfering with each other.  
We can take copies of it and operate on those copies, 
without worrying about them becoming out- of-date. 

• Distribution of immutable data across a cluster 
immediately becomes much easier.  

• We can compute batch views from raw data to simply 
select the views that we need. This is exactly the task 
of the batch layer of Lambda Architecture.



         

      
         

      

Mutable vs. Immutable database: example

• Mutable schema: 
When details change—e.g., Tom 
moves to Los Angeles—previous 
values are overwritten and lost.  

• Immutable schema 
Each field is tracked in a 
separate table, and each row has 
a timestamp for when it’s known 
to be true. 

34 CHAPTER 2 Data model for Big Data

2.1.2 Data is immutable

Immutable data may seem like a strange concept if you’re well versed in relational
databases. After all, in the relational database world—and most other databases as
well—update is one of the fundamental operations. But for immutability you don’t
update or delete data, you only add more.1 By using an immutable schema for Big
Data systems, you gain two vital advantages: 

■ Human-fault tolerance—This is the most important advantage of the immutable
model. As we discussed in chapter 1, human-fault tolerance is an essential prop-
erty of data systems. People will make mistakes, and you must limit the impact
of such mistakes and have mechanisms for recovering from them. With a muta-
ble data model, a mistake can cause data to be lost, because values are actually
overridden in the database. With an immutable data model, no data can be lost. If
bad data is written, earlier (good) data units still exist. Fixing the data system is
just a matter of deleting the bad data units and recomputing the views built
from the master dataset. 

■ Simplicity—Mutable data models imply that the data must be indexed in some
way so that specific data objects can be retrieved and updated. In contrast, with
an immutable data model you only need the ability to append new data units to
the master dataset. This doesn’t require an index for your data, which is a huge
simplification. As you’ll see in the next chapter, storing a master dataset is as
simple as using flat files. 

The advantages of keeping your data immutable become evident when comparing
with a mutable schema. Consider the basic mutable schema shown in figure 2.8, which
you could use for FaceSpace.

1 There are a few scenarios in which you can delete data, but these are special cases and not part of the day-to-
day workflow of your system. We’ll discuss these scenarios in section 2.1.3. 

User information

id name age gender employer location

1 Alice 25 female Apple Atlanta, GA

2 Bob 36 male SAS Chicago, IL

4 Charlie 25 male Microsoft Washington, DC

... ... ... ... ... ...

Tom 28 male Google San Francisco, CA3

Should Tom move to
 a different city, this value 

would be owerwritten.

Figure 2.8 A mutable schema for FaceSpace user information. When details change—say, Tom 
moves to Los Angeles—previous values are overwritten and lost.
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Should Tom move to Los Angeles, you’d update the highlighted entry to reflect his
current location—but in the process, you’d also lose all knowledge that Tom ever
lived in San Francisco. 

 With an immutable schema, things look different. Rather than storing a current
snapshot of the world, as done by the mutable schema, you create a separate record
every time a user’s information evolves. Accomplishing this requires two changes.
First, you track each field of user information in a separate table. Second, you tie each
unit of data to a moment in time when the information is known to be true. Figure 2.9
shows a corresponding immutable schema for storing FaceSpace information. 

 Tom first joined FaceSpace on April 4, 2012, and provided his profile information.
The time you first learn this data is reflected in the record’s timestamp. When he sub-
sequently moves to Los Angeles on June 17, 2012, you add a new record to the loca-
tion table, timestamped by when he changed his profile—see figure 2.10. 

 You now have two location records for Tom (user ID #3), and because the data
units are tied to particular times, they can both be true. Tom’s current location involves
a simple query on the data: look at all the locations, and pick the one with the most
recent timestamp. By keeping each field in a separate table, you only record the infor-
mation that changed. This requires less space for storage and guarantees that each
record is new information and is not simply carried over from the last record. 

 One of the trade-offs of the immutable approach is that it uses more storage than a
mutable schema. First, the user ID is specified for every property, rather than just once
per row, as with a mutable approach. Additionally, the entire history of events is stored
rather than just the current view of the world. But Big Data isn’t called “Big Data” for

4
...

user id
2012/03/29 08:12:24
2012/04/12 14:47:51Bob
2012/04/04 18:31:24

timestamp
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...
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information is
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when it is stored.

b

c

Figure 2.9 An equivalent immutable schema for FaceSpace user information. Each field is tracked in 
a separate table, and each row has a timestamp for when it’s known to be true. (Gender and employer 
data are omitted for space, but are stored similarly.)
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Immutable data may seem like a strange concept if you’re well versed in relational
databases. After all, in the relational database world—and most other databases as
well—update is one of the fundamental operations. But for immutability you don’t
update or delete data, you only add more.1 By using an immutable schema for Big
Data systems, you gain two vital advantages: 

■ Human-fault tolerance—This is the most important advantage of the immutable
model. As we discussed in chapter 1, human-fault tolerance is an essential prop-
erty of data systems. People will make mistakes, and you must limit the impact
of such mistakes and have mechanisms for recovering from them. With a muta-
ble data model, a mistake can cause data to be lost, because values are actually
overridden in the database. With an immutable data model, no data can be lost. If
bad data is written, earlier (good) data units still exist. Fixing the data system is
just a matter of deleting the bad data units and recomputing the views built
from the master dataset. 

■ Simplicity—Mutable data models imply that the data must be indexed in some
way so that specific data objects can be retrieved and updated. In contrast, with
an immutable data model you only need the ability to append new data units to
the master dataset. This doesn’t require an index for your data, which is a huge
simplification. As you’ll see in the next chapter, storing a master dataset is as
simple as using flat files. 

The advantages of keeping your data immutable become evident when comparing
with a mutable schema. Consider the basic mutable schema shown in figure 2.8, which
you could use for FaceSpace.

1 There are a few scenarios in which you can delete data, but these are special cases and not part of the day-to-
day workflow of your system. We’ll discuss these scenarios in section 2.1.3. 

User information
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1 Alice 25 female Apple Atlanta, GA

2 Bob 36 male SAS Chicago, IL

4 Charlie 25 male Microsoft Washington, DC
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Tom 28 male Google San Francisco, CA3

Should Tom move to
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Figure 2.8 A mutable schema for FaceSpace user information. When details change—say, Tom 
moves to Los Angeles—previous values are overwritten and lost.
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Should Tom move to Los Angeles, you’d update the highlighted entry to reflect his
current location—but in the process, you’d also lose all knowledge that Tom ever
lived in San Francisco. 

 With an immutable schema, things look different. Rather than storing a current
snapshot of the world, as done by the mutable schema, you create a separate record
every time a user’s information evolves. Accomplishing this requires two changes.
First, you track each field of user information in a separate table. Second, you tie each
unit of data to a moment in time when the information is known to be true. Figure 2.9
shows a corresponding immutable schema for storing FaceSpace information. 

 Tom first joined FaceSpace on April 4, 2012, and provided his profile information.
The time you first learn this data is reflected in the record’s timestamp. When he sub-
sequently moves to Los Angeles on June 17, 2012, you add a new record to the loca-
tion table, timestamped by when he changed his profile—see figure 2.10. 

 You now have two location records for Tom (user ID #3), and because the data
units are tied to particular times, they can both be true. Tom’s current location involves
a simple query on the data: look at all the locations, and pick the one with the most
recent timestamp. By keeping each field in a separate table, you only record the infor-
mation that changed. This requires less space for storage and guarantees that each
record is new information and is not simply carried over from the last record. 

 One of the trade-offs of the immutable approach is that it uses more storage than a
mutable schema. First, the user ID is specified for every property, rather than just once
per row, as with a mutable approach. Additionally, the entire history of events is stored
rather than just the current view of the world. But Big Data isn’t called “Big Data” for
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Figure 2.9 An equivalent immutable schema for FaceSpace user information. Each field is tracked in 
a separate table, and each row has a timestamp for when it’s known to be true. (Gender and employer 
data are omitted for space, but are stored similarly.)
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nothing. You should take advantage of the ability to store large amounts of data using
Big Data technologies to get the benefits of immutability. The importance of having a
simple and strongly human-fault tolerant master dataset can’t be overstated. 

2.1.3 Data is eternally true
The key consequence of immutability is that each piece of data is true in perpetuity.
That is, a piece of data, once true, must always be true. Immutability wouldn’t make
sense without this property, and you saw how tagging each piece of data with a time-
stamp is a practical way to make data eternally true. 

 This mentality is the same as when you learned history in school. The fact The
United States consisted of thirteen states on July 4, 1776, is always true due to the specific
date; the fact that the number of states has increased since then is captured in addi-
tional (also perpetual) data. 

 In general, your master dataset consistently grows by adding new immutable and
eternally true pieces of data. There are some special cases, though, in which you do
delete data, and these cases are not incompatible with data being eternally true. Let’s
consider the cases: 

■ Garbage collection—When you perform garbage collection, you delete all data
units that have low value. You can use garbage collection to implement data-
retention policies that control the growth of the master dataset. For example,
you may decide to implement a policy that keeps only one location per person
per year instead of the full history of each time a user changes locations. 

■ Regulations—Government regulations may require you to purge data from your
databases under certain conditions. 

In both of these cases, deleting the data is not a statement about the truthfulness of
the data. Instead, it’s a statement about the value of the data. Although the data is
eternally true, you may prefer to “forget” the information either because you must or
because it doesn’t provide enough value for the storage cost. 

 We’ll proceed by introducing a data model that uses these key properties of data. 
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San Francisco, CA3 2012/04/04 18:31:24

Figure 2.10 Instead of updating preexisting records, an immutable schema uses new records to 
represent changed information. An immutable schema thus can store multiple records for the same 
user. (Other tables omitted because they remain unchanged.)
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Example of batch views

• Get a snapshot of contributors to Wikipedia and 
compute who is the most active. 

• We get the raw data (e.g. Wikipedia metadata 
dumps) and compute a batch view with the batch 
layer. 

• As said before Wikipedia edits are immutable: 
perfect for some batch processing…



         

      
         

      

Batch view
• Ideally we recompile a batch view from scratch but in some 

cases we may need to implement an incremental approach. 

• Batch views can be stored in a database, e.g. to serve 
them through a serving layer of the Lambda Architecture. 

• But the DB can be simplified since there is no need of 
random writes: the batch view is updated when the batch 
layer is executed. 

• There are specific databases like ElephantDB, that is a 
database that specializes in exporting key/value data 
from Hadoop, that creates an indexed key/value dataset 
that is stored on a distributed filesystem.



         

      
         

      

Batch view process

• The batch layer runs in an infinite loop, regenerating batch views from our raw data. Each time a batch run 
completes, the serving layer updates its database.  

• Because it only ever operates on immutable raw data, the batch layer can easily exploit parallelism.  

• The main problem is latency: if the batch layer takes an hour to run, then our batch views will always be at 
least an hour out-of-date. 



         

      

         

      

Speed layer



         

      
         

      

Speed layer: motivations

• The scope of the speed layer is to reduce the problem of latency. We can’t use batch-oriented 
approach for this. 

• As new data arrives, we both append it to the raw data that the batch layer works on and send it to the 
speed layer. The speed layer generates real-time views, which are combined with batch views to create 
fully up-to-date answers to queries.  

• Real-time views contain only information derived from the data that arrived since the batch views were 
last generated and are discarded when the data they were built from is processed by the batch layer. 



         

      
         

      

Difficulties
• We can not rely on immutability of data. 

• Need to follow an incremental approach at 
processing data. 

• Typically need to handle data from traditional 
databases (with random writes, locks, transactions, 
etc.) 

• All these issues must be handled to manage the 
most recent data. Once the batch layer catches 
up all this data can be expired from speed layer.



         

      
         

      

Expiring data
• Imagine that batch run N-1 has just completed and batch 

run N is just about to start.  
If each takes two hours to run, that means that our batch 
views will be two hours out-of-date.  

• The speed layer therefore needs to serve requests for those 
two hours’ worth of data plus any data that arrives before 
batch run N completes, for a total of four hours’ worth. 



         

      
         

      

Ping pong schema
• When batch run N does complete, we then need to expire the data that 

represents the oldest two hours but still retain the most recent two hours’ worth.  

• A simple solution can be to run two copies of the speed layer in parallel and 
ping-pong between them: 

• Whenever a batch run completes and new data becomes available in the 
batch views, we switch from the speed layer that’s currently serving queries 
to its counterpart with more recent data.  

• The now-idle speed layer then clears its database and starts building a new 
set of views from scratch, starting at the point where the new batch run 
started. 



         

      
         

      

Ping pong schema
• Pros: 

• No need to identify which data to delete from the 
speed layer’s database; 

• Performance and reliability: each iteration of the 
speed layer starts from a clean database  

• Cons: 

• Need to maintain two copies of speed layer’s data 
and double occupation of computational 
resources.



         

      
         

      

Synchronous approach
• In this approach, clients communicate directly with 

the database and block while it’s processing each 
update.  

• … but blocking leads to loss of performance if new 
data is added vey fast



         

      
         

      

Asynchronous approach
• In this approach clients add updates to a queue (e.g. implemented with Apache 

Kafka) as they arrive and without blocking. A stream processor then handles these 
updates in turn and performs the database update.  

• Using a queue decouples clients from database updates: 

• it is more complex to coordinate updates with other actions; 

• no blocking by clients, leading to greater throughput; 

• no timeouts or dropped updates: what can not be processed fast enough (e.g. 
during a spike) is just added to the queue; 

• natural exploitation of parallelism.



         

      

         

      

Apache 
Storm



         

      
         

      

Apache Storm
• Apache Storm is a free and open source distributed 

realtime computation system.  

• Storm aims to do for real-time processing what 
Hadoop has for batch processing — to make it easy to 
distribute computation across multiple machines in 
order to improve both performance and fault tolerance.  

• Storm has two modes of operation: local mode and 
remote mode. In local mode, you can develop and 
test topologies completely in process on your local 
machine. In remote mode, you submit topologies for 
execution on a cluster of machines.



         

      
         

      

Spout, bolt and topology
• A Storm system processes streams of named tuples. A stream is 

an unbounded sequence of tuples. 

• By default, tuples can contain integers, longs, shorts, bytes, 
strings, doubles, floats, booleans, and byte arrays. You can 
also define your own serializers so that custom types can be 
used natively within tuples. 

• Tuples are created by spouts and processed by bolts, which can 
create tuples in turn. Spouts and bolts are connected by streams 
to form a topology.  

• Note: a spout is a tube, pipe, or hole out of which a liquid flows 

• The logic for a realtime application is packaged into a Storm 
topology. A Storm topology is analogous to a MapReduce job.



         

      
         

      

Topology
• Can be even DAGs: bolts can consume multiple 

streams, and a single stream can be consumed by 
multiple bolts.  



         

      
         

      

Workers and parallelism
• Not only do spouts and bolts run in parallel with each other, but they are also 

internally parallel — each is implemented as a set of workers.  

• The workers of each node of the pipeline can send tuples to any of the workers in 
their downstream node.  

• Workers are distributed — if we’re running on a four-node cluster, for example, 
then our spout’s workers might be on nodes 1, 2, and 3; the first bolt’s workers 
might be on nodes 2 and 4 (e.g. two on node 2, one on node 4); and so on. 

• We just need to specify our topology, and the Storm runtime allocates workers to 
nodes and makes sure that tuples are routed appropriately. 



         

      
         

      

Workers and fault tolerance
• A large part of the reason for distributing a single spout or bolt’s 

workers across multiple machines is fault tolerance.  
If one of the machines in our cluster fails, our topology can continue 
to operate by routing tuples to the machines that are still operating.  

• Storm keeps track of the dependencies between tuples. 
If a particular tuple’s processing isn’t completed, Storm fails and 
retries the spout tuple(s) upon which it depends.  

• This means that, by default, Storm provides an “at least once” 
processing guarantee. Applications need to be aware of the fact 
that tuples might be retried and continue to function correctly if they 
are.  

• The Trident API of Storm provides also an “exactly once” 
semantics for processing.



         

      
         

      

Example: Storm topology
• Let us suppose we want to integrate a speed layer that counts 

the daily contributions to Wikipedia. We need a topology similar 
to: 

• Note: actually a real topology is like the following since we do 
not have access to Wikipedia real time data: 



         

      
         

      

Create a Spout
public class RandomContributorSpout extends BaseRichSpout {  
  private static final Random rand = new Random();  
  private static final DateTimeFormatter isoFormat = ISODateTimeFormat.dateTimeNoMillis();  
 
  private SpoutOutputCollector collector;  
  private int contributionId = 10000; 

  public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {  
    this.collector = collector;  
  }

  public void declareOutputFields(OutputFieldsDeclarer declarer) {  
    declarer.declare(new Fields("line"));  
  }

  public void nextTuple() {  
    Utils.sleep(rand.nextInt(100));  
    ++contributionId;  
    String line = isoFormat.print(DateTime.now()) + " " + contributionId + " " +  
      rand.nextInt(10000) + " " + "dummyusername";  
    collector.emit(new Values(line));  
  }

}



         

      
         

      

Create a Spout
public class RandomContributorSpout extends BaseRichSpout {  
  private static final Random rand = new Random();  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  }

  public void declareOutputFields(OutputFieldsDeclarer declarer) {  
    declarer.declare(new Fields("line"));  
  }

  public void nextTuple() {  
    Utils.sleep(rand.nextInt(100));  
    ++contributionId;  
    String line = isoFormat.print(DateTime.now()) + " " + contributionId + " " +  
      rand.nextInt(10000) + " " + "dummyusername";  
    collector.emit(new Values(line));  
  }

}

create a spout by deriving 
from BaseRichSpout 



         

      
         

      

Create a Spout
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Create a Spout
public class RandomContributorSpout extends BaseRichSpout {  
  private static final Random rand = new Random();  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    String line = isoFormat.print(DateTime.now()) + " " + contributionId + " " +  
      rand.nextInt(10000) + " " + "dummyusername";  
    collector.emit(new Values(line));  
  }

}

Storm calls open() method during initialization. 
we simply keep a record of the SpoutOutputCollector, 

which is where we’ll send our output. 
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Create a Spout
public class RandomContributorSpout extends BaseRichSpout {  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    String line = isoFormat.print(DateTime.now()) + " " + contributionId + " " +  
      rand.nextInt(10000) + " " + "dummyusername";  
    collector.emit(new Values(line));  
  }

}

Storm also calls declareOutputFields() method during initialization 
to find out how the tuples generated by this spout are structured.  

in this case, the tuples have a single field called line. 
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Create a Spout
public class RandomContributorSpout extends BaseRichSpout {  
  private static final Random rand = new Random();  
  private static final DateTimeFormatter isoFormat = ISODateTimeFormat.dateTimeNoMillis();  
 
  private SpoutOutputCollector collector;  
  private int contributionId = 10000; 

  public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {  
    this.collector = collector;  
  }

  public void declareOutputFields(OutputFieldsDeclarer declarer) {  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      rand.nextInt(10000) + " " + "dummyusername";  
    collector.emit(new Values(line));  
  }

}

The method that does most of the work is nextTuple().  
It uses the collector to emit the created tuples. 



         

      
         

      

Create a Bolt
class ContributionParser extends BaseBasicBolt {  
 
  public void declareOutputFields(OutputFieldsDeclarer declarer) {  
    declarer.declare(new Fields("timestamp",  
                                "id",  
                                "contributorId",  
                                "username"  
                          )  
                     );  
  }

  public void execute(Tuple tuple, BasicOutputCollector collector) {  
    Contribution contribution = new Contribution(tuple.getString(0));  
    collector.emit( new Values(contribution.timestamp,  
                               contribution.id,  
                               contribution.contributorId,  
                               contribution.username  
                         )  
                  );

  }

}



         

      
         

      

Create a Bolt
class ContributionParser extends BaseBasicBolt {  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    collector.emit( new Values(contribution.timestamp,  
                               contribution.id,  
                               contribution.contributorId,  
                               contribution.username  
                         )  
                  );

  }

}

we’re creating a bolt by deriving from BaseBasicBolt 
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                         )  
                  );

  }

}

we implement declareOutputFields() to let Storm know how our output tuples are 
structured — in this case they have four fields.
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Create a Bolt
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  }

}The method that does most of the work is execute(). In this case, it uses Contributor 
(should be the same of the batch layer) to parse the log line into its components and then 

calls contributor.emit() to output the tuple. 



         

      
         

      

Create another Bolt
class ContributionRecord extends BaseBasicBolt {

  private static final HashMap<Integer, HashSet<Long>> timestamps =  
                   new HashMap<Integer, HashSet<Long>>();

  public void declareOutputFields(OutputFieldsDeclarer declarer) {  
  }

  public void execute(Tuple tuple, BasicOutputCollector collector) {  
    addTimestamp(tuple.getInteger(2), tuple.getLong(0));  
  }

  private void addTimestamp(int contributorId, long timestamp) {  
    HashSet<Long> contributorTimestamps = timestamps.get(contributorId);  
    if (contributorTimestamps == null) {  
      contributorTimestamps = new HashSet<Long>();  
      timestamps.put(contributorId, contributorTimestamps);  
    }  
    contributorTimestamps.add(timestamp);  
  }

}
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      timestamps.put(contributorId, contributorTimestamps);  
    }  
    contributorTimestamps.add(timestamp);  
  }

}

This final Bolt simply maintains an in-memory database in the hash table.  
It could also connect to a better DB to stop the results.
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    }  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  }

}

In this case we’re not generating any output, so declareOutputFields() is empty.
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                   new HashMap<Integer, HashSet<Long>>();

  public void declareOutputFields(OutputFieldsDeclarer declarer) {  
  }

  public void execute(Tuple tuple, BasicOutputCollector collector) {  
    addTimestamp(tuple.getInteger(2), tuple.getLong(0));  
  }

  private void addTimestamp(int contributorId, long timestamp) {  
    HashSet<Long> contributorTimestamps = timestamps.get(contributorId);  
    if (contributorTimestamps == null) {  
      contributorTimestamps = new HashSet<Long>();  
      timestamps.put(contributorId, contributorTimestamps);  
    }  
    contributorTimestamps.add(timestamp);  
  }

}

execute() method simply extracts the relevant fields from its input tuple and passes them to 
addTimestamp(), which simply stores them in the in-memory DB.



         

      
         

      

Create the Topology
public class WikiContributorsTopology {

  public static void main(String[] args) throws Exception {

    TopologyBuilder builder = new TopologyBuilder(); 

    builder.setSpout("contribution_spout", new RandomContributorSpout(), 4); 

    builder.setBolt("contribution_parser", new ContributionParser(), 4).  
            shuffleGrouping(“contribution_spout");

    builder.setBolt("contribution_recorder", new ContributionRecord(), 4).  
            fieldsGrouping("contribution_parser", new Fields("contributorId"));

    LocalCluster cluster = new LocalCluster();  
    Config conf = new Config();  
    cluster.submitTopology("wiki-contributors", conf, builder.createTopology()); 

    Thread.sleep(10000);

    cluster.shutdown(); 

  }

}



         

      
         

      

Create the Topology
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    builder.setSpout("contribution_spout", new RandomContributorSpout(), 4); 
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    builder.setBolt("contribution_recorder", new ContributionRecord(), 4).  
            fieldsGrouping("contribution_parser", new Fields("contributorId"));

    LocalCluster cluster = new LocalCluster();  
    Config conf = new Config();  
    cluster.submitTopology("wiki-contributors", conf, builder.createTopology()); 

    Thread.sleep(10000);

    cluster.shutdown(); 

  }

}

Create a TopologyBuilder



         

      
         

      

Create the Topology
public class WikiContributorsTopology {
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Create the Topology
public class WikiContributorsTopology {

  public static void main(String[] args) throws Exception {

    TopologyBuilder builder = new TopologyBuilder(); 

    builder.setSpout("contribution_spout", new RandomContributorSpout(), 4); 

    builder.setBolt("contribution_parser", new ContributionParser(), 4).  
            shuffleGrouping(“contribution_spout");

    builder.setBolt("contribution_recorder", new ContributionRecord(), 4).  
            fieldsGrouping("contribution_parser", new Fields("contributorId"));

    LocalCluster cluster = new LocalCluster();  
    Config conf = new Config();  
    cluster.submitTopology("wiki-contributors", conf, builder.createTopology()); 

    Thread.sleep(10000);

    cluster.shutdown(); 

  }

}

Create and name the Spout. Suggest to use 4 workers.



         

      
         

      

Create the Topology
public class WikiContributorsTopology {

  public static void main(String[] args) throws Exception {
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Create the Topology
public class WikiContributorsTopology {

  public static void main(String[] args) throws Exception {

    TopologyBuilder builder = new TopologyBuilder(); 

    builder.setSpout("contribution_spout", new RandomContributorSpout(), 4); 

    builder.setBolt("contribution_parser", new ContributionParser(), 4).  
            shuffleGrouping(“contribution_spout");

    builder.setBolt("contribution_recorder", new ContributionRecord(), 4).  
            fieldsGrouping("contribution_parser", new Fields("contributorId"));

    LocalCluster cluster = new LocalCluster();  
    Config conf = new Config();  
    cluster.submitTopology("wiki-contributors", conf, builder.createTopology()); 

    Thread.sleep(10000);

    cluster.shutdown(); 

  }

}

Create and name a Bolt. Tell to get tuples from the named Spout.  
Will receive a randomly chosen tuple from Spout.



         

      
         

      

Create the Topology
public class WikiContributorsTopology {

  public static void main(String[] args) throws Exception {
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Create the Topology
public class WikiContributorsTopology {

  public static void main(String[] args) throws Exception {

    TopologyBuilder builder = new TopologyBuilder(); 

    builder.setSpout("contribution_spout", new RandomContributorSpout(), 4); 

    builder.setBolt("contribution_parser", new ContributionParser(), 4).  
            shuffleGrouping(“contribution_spout");

    builder.setBolt("contribution_recorder", new ContributionRecord(), 4).  
            fieldsGrouping("contribution_parser", new Fields("contributorId"));

    LocalCluster cluster = new LocalCluster();  
    Config conf = new Config();  
    cluster.submitTopology("wiki-contributors", conf, builder.createTopology()); 

    Thread.sleep(10000);

    cluster.shutdown(); 

  }

}

Create and name a Bolt. Tell to get tuples from the named Bolt.  
Require to get tuples based on a specific value for a set of fields (one field in this case).  
This guarantees that the same worker will get the timestamps of the same contributor.



         

      
         

      

Create the Topology
public class WikiContributorsTopology {

  public static void main(String[] args) throws Exception {

    TopologyBuilder builder = new TopologyBuilder(); 

    builder.setSpout("contribution_spout", new RandomContributorSpout(), 4); 

    builder.setBolt("contribution_parser", new ContributionParser(), 4).  
            shuffleGrouping(“contribution_spout");

    builder.setBolt("contribution_recorder", new ContributionRecord(), 4).  
            fieldsGrouping("contribution_parser", new Fields("contributorId"));

    LocalCluster cluster = new LocalCluster();  
    Config conf = new Config();  
    cluster.submitTopology("wiki-contributors", conf, builder.createTopology()); 

    Thread.sleep(10000);

    cluster.shutdown(); 

  }

}

Create and name a Bolt. Tell to get tuples from the named Bolt.  
Require to get tuples based on a specific value for a set of fields (one field in this case).  
This guarantees that the same worker will get the timestamps of the same contributor.

Create a Storm cluster, submit the topology and let it run for 10 seconds, then shut it down.
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• Seven Concurrency Models in Seven Weeks, Paul 
Butcher, Pragmatic Bookshelf - Chapt. 8 

• Big Data, Nathan Marz, Manning - Chapt. 1, 2, 6 


