

Parallel
Computing

Prof. Marco Bertini

Introduction

Parallelism vs. Concurrency

• A system is said to be concurrent if it can support
two or more actions in progress at the same time.

• A system is said to be parallel if it can support two
or more actions executing at the same time.

• The key concept and difference between these
definitions is the phrase “in progress”.

Parallelism vs. Concurrency
• A concurrent application will have two or more

threads in progress at some time. E.g. two threads
that are being swapped in and out by the operating
system on a single core processor. These threads
will be “in progress”—each in the midst of its
execution—at the same time.

• A parallel application will have two or more
threads executing simultaneously if the computation
platform has multiple cores available. E.g. two or
more threads could each be assigned a separate
core and would be running simultaneously.

Parallelism vs. Concurrency
• Parallelism ⊆ Concurrency

• A concurrent program becomes parallel if there are
enough cores to execute its multiple threads or
processes.

• Concurrent programming: composition of
independently executing processes.

• Parallel programming: programming as the
simultaneous execution of (possibly related)
computations.

Parallelism vs. Concurrency
• Concurrency is about dealing with lots of things at

once.

• Parallelism is about doing lots of things at once.

• These are not the same thing, but they are related.

• Concurrency is about structure, Parallelism is
about execution.

• Concurrency provides a way to structure a solution
to solve a problem that may (but not necessarily) be
parallelizable.

Parallelism vs. Concurrency
• During this lecture I have to deal with concurrent things:

advancing the slides checking that the projector works,
delivering the lecture and perhaps breaking to answer a
question that arises from the lecture.

• I’m doing only one of these things at a certain time.

• If I’m helped by one or two assistants that check the
projector and answer the questions while I’m lecturing then
the process will become concurrent and parallel.

• If the assistants and I perform a different task
independently, e.g. changing the slides without caring if I’m
talking about something different, then the process is
parallel.

Parallelism vs. Concurrency
• During this lecture I have to deal with concurrent things:

advancing the slides checking that the projector works,
delivering the lecture and perhaps breaking to answer a
question that arises from the lecture.

• I’m doing only one of these things at a certain time.

• If I’m helped by one or two assistants that check the
projector and answer the questions while I’m lecturing then
the process will become concurrent and parallel.

• If the assistants and I perform a different task
independently, e.g. changing the slides without caring if I’m
talking about something different, then the process is
parallel.

A concurrent program has multiple
logical threads of control. These

threads may or may not run in parallel.

A parallel program potentially runs more
quickly than a sequential program by

executing different parts of the
computation simultaneously (in parallel).
It may or may not have more than one

logical thread of control.

Sequential algorithm
• Most of today’s algorithms are sequential: they

specify a sequence of steps in which each step
consists of a single operation.

• It has worked so far because of the free
performance improvement provided by CPUs
and their increase in clock and their pipelining…

• … but this free ride is over. Chip manufacturers
are not working on improving clock speed.

Parallel algorithm
• A parallel algorithm is designed to execute multiple

operations at the same step

• The parallelism in an algorithm can yield improved
performance on many different kinds of computers.

• For example, on a parallel computer, the operations
in a parallel algorithm can be performed
simultaneously by different processors or cores.

• Even on a single-processor computer the parallelism
in an algorithm can be exploited by using multiple
functional units, pipelined functional units, or
pipelined memory systems.

Concurrent algorithm

• A concurrent algorithm is an algorithm structured so
that it is possible to execute its steps
independently.

• A concurrent algorithm can be executed serially.

• There is need of some communication to
coordinate the independent executions.

Concurrent algorithm

• A concurrent algorithm is an algorithm structured so
that it is possible to execute its steps
independently.

• A concurrent algorithm can be executed serially.

• There is need of some communication to
coordinate the independent executions.

Since multicore CPUs are now available everywhere we will
talk about parallel execution of concurrent code.

We will use the term “parallelization” when dealing with
translation of serial code to concurrent (but this should be

“concurrentization”)

Motivations
• It is not always obvious that a parallel algorithm has

benefits, unless we want to do things ...

• faster: doing the same amount of work in less
time

• bigger: doing more work in the same amount of
time

• Both are good outcomes of program parallelization:
they improve the results of the program.

CPUs…

• The clock speed of a processor cannot be
increased without overheating

But…

• More and more processors can fit in the same
space

• Multicores are everywhere

…and all the rest
• Grid computing: collection of computer resources

from multiple locations to reach a common goal.

• Cluster computing: loosely or tightly connected
computers that work together so that, in many
respects, they can be viewed as a single system.

• Cloud computing: a model for enabling ubiquitous
network access to a shared pool of configurable
computing resources.

…and all the rest
• Grid computing: collection of computer resources

from multiple locations to reach a common goal.

• Cluster computing: loosely or tightly connected
computers that work together so that, in many
respects, they can be viewed as a single system.

• Cloud computing: a model for enabling ubiquitous
network access to a shared pool of configurable
computing resources.

Grids are a form of distributed computing whereby a “super virtual computer” is composed
of many networked loosely coupled computers acting together to perform large tasks.

…and all the rest
• Grid computing: collection of computer resources

from multiple locations to reach a common goal.

• Cluster computing: loosely or tightly connected
computers that work together so that, in many
respects, they can be viewed as a single system.

• Cloud computing: a model for enabling ubiquitous
network access to a shared pool of configurable
computing resources.

The components of a cluster are usually connected to each other through LAN, with each
node (computer used as a server) running its own instance of an operating system.

Grids are a form of distributed computing whereby a “super virtual computer” is composed
of many networked loosely coupled computers acting together to perform large tasks.

…and all the rest
• Grid computing: collection of computer resources

from multiple locations to reach a common goal.

• Cluster computing: loosely or tightly connected
computers that work together so that, in many
respects, they can be viewed as a single system.

• Cloud computing: a model for enabling ubiquitous
network access to a shared pool of configurable
computing resources.

The components of a cluster are usually connected to each other through LAN, with each
node (computer used as a server) running its own instance of an operating system.

Grids are a form of distributed computing whereby a “super virtual computer” is composed
of many networked loosely coupled computers acting together to perform large tasks.

Cloud computing and storage solutions provide users and enterprises with various
capabilities to store and process their data in third-party data centers.[2] It relies on

sharing of resources to achieve coherence and economies of scale, similar to a utility (like
the electricity grid) over a network.

Parallel vs. Distributed
• Parallel computing: provide performance.

• In terms of processing power or memory;

• To solve a single problem;

• Typically: frequent, reliable interaction, fine grained, low
overhead, short execution time.

• Distributed computing: provide convenience.

• In terms of availability, reliability and accessibility from many
different locations;

• Typically: interactions infrequent, with heavier weight and
assumed to be unreliable, coarse grained, much overhead and
long uptime.

Parallel vs. Distributed
• Parallel computing: provide performance.

• In terms of processing power or memory;

• To solve a single problem;

• Typically: frequent, reliable interaction, fine grained, low
overhead, short execution time.

• Distributed computing: provide convenience.

• In terms of availability, reliability and accessibility from many
different locations;

• Typically: interactions infrequent, with heavier weight and
assumed to be unreliable, coarse grained, much overhead and
long uptime.

We will not deal with distributed computing, in
this course.

Power consumption
• The power consumption of a CPU has become increasingly important.

• Energy is more suited to compare 2 CPUs (a faster one may consume
more power but for much less time, resulting in less energy
consumption…)

• In a CPU most of the energy is consumed switching transistor states.
This so called dynamic energy is proportional to the square of the

voltage V and frequency f: P ∝ f V2

• The voltage required to operate the CPU at given frequency is, roughly

proportional to the frequency (P ∝ f3).

• By increasing the frequency, same amount of work can be finished in

shorter time (roughly speaking, inversely to the frequency): E ∝ f2

Physical limitations
• As noted by Intel CTO in 2004: “ [without

revolutionary new technologies…] increased power
requirements of newer chips will lead to CPUs that
are hotter than the surface of the sun by 2010.”

• Parallelism can be used to conserve energy

time

Physical limitations
• Transistors are getting smaller (somehow the Moore’s law

is still valid), but they are not getting faster.

• Reducing the gate size in planar MOSFET transistors
leads to “leakage”. There’s need of new geometries (e.g.
FinFET).

• Signalling rates on chip are limited by the resistance and
capacitance of the wires connecting the transistors. The
smaller they get the thinner the wires (thus higher
resistance) and the higher the capacitance.

• The time delay for a wire depends on what is called the
“RC time constant”, which is the resistance multiplied by
the capacitance.

Physical limitations
• Transistors are getting smaller (somehow the Moore’s law

is still valid), but they are not getting faster.

• Reducing the gate size in planar MOSFET transistors
leads to “leakage”. There’s need of new geometries (e.g.
FinFET).

• Signalling rates on chip are limited by the resistance and
capacitance of the wires connecting the transistors. The
smaller they get the thinner the wires (thus higher
resistance) and the higher the capacitance.

• The time delay for a wire depends on what is called the
“RC time constant”, which is the resistance multiplied by
the capacitance.

It is much more convenient to add
cores, rather than increasing speed

Physical limitations
• Suppose we have to calculate in one second

for (i = 0; i < ONE_TRILLION; i++)  
 z[i] = x[i] + y[i];

• Then we have to perform 3x1012 memory moves per second

• If data travels at the speed of light (3x108 m/s) between the CPU and
memory and r is the average distance between the CPU and memory,
then r must satisfy

• 3×1012 r = 3×108 m/s × 1 s which gives r = 10-4 meters

• To fit the data into a square so that the average distance from the CPU
in the middle is r, then the length of each (square) memory cell will be

• 2×10-4 m / (√3×106) = 10-10 m which is the size of a relatively small
atom!

Important factors
• Important considerations in parallel computing

• Physical limitations: the speed of light, CPU heat
dissipation

• Scalability: allows data to be subdivided over CPUs to
obtain a better match between algorithms and resources
to increase performance

• Memory: allow aggregate memory bandwidth to be
increased together with processing power at a
reasonable cost

• Economic factors: cheaper components can be used to
achieve comparable levels of aggregate performance

Sometimes parallel is bad
• Bad parallel programs can be worse than their

sequential counterparts:

• Slower: because of communication overhead

• Scalability: some parallel algorithms are only
faster when the problem size is very large

• Understand the problem and use common sense!

• Moreover: not all problems are amenable to
parallelism

Types of
parallelism

Bit-Level Parallelism
• It is a form of parallel computing based on

increasing processor word size.

• If an 8-bit computer wants to add two 32-bit
numbers, it has to do it as a sequence of 8-bit
operations. By contrast, a 32-bit computer can do it
in one step, handling each of the 4 bytes within the
32-bit numbers in parallel.

• Though, it’s unlikely that we’ll have 128-bit
computers soon.

Instruction-Level Parallelism
• Modern CPUs are highly parallel, using techniques like

pipelining, out-of-order execution, and speculative execution.

• Pipelining: execution of multiple instructions can  
be partially overlapped.

• O-o-O execution: instructions execute in any order that
does not violate data dependencies. Its benefit grows as
the pipeline gets deeper (and speed difference between
CPU and RAM/Cache increases).

• Speculative execution: used to reduce cost of conditional
branch instructions in pipelined CPUs. Instructions are
scheduled ahead of the determination of the need of their
execution. It may use branch prediction.

Instruction-Level Parallelism
• Modern CPUs are highly parallel, using techniques like

pipelining, out-of-order execution, and speculative execution.

• Pipelining: execution of multiple instructions can  
be partially overlapped.

• O-o-O execution: instructions execute in any order that
does not violate data dependencies. Its benefit grows as
the pipeline gets deeper (and speed difference between
CPU and RAM/Cache increases).

• Speculative execution: used to reduce cost of conditional
branch instructions in pipelined CPUs. Instructions are
scheduled ahead of the determination of the need of their
execution. It may use branch prediction.

On modern (multicore) CPUs instructions will not be
executed in the same order in which you write them

Instruction-Level Parallelism
• Modern CPUs are highly parallel, using techniques like

pipelining, out-of-order execution, and speculative execution.

• Pipelining: execution of multiple instructions can  
be partially overlapped.

• O-o-O execution: instructions execute in any order that
does not violate data dependencies. Its benefit grows as
the pipeline gets deeper (and speed difference between
CPU and RAM/Cache increases).

• Speculative execution: used to reduce cost of conditional
branch instructions in pipelined CPUs. Instructions are
scheduled ahead of the determination of the need of their
execution. It may use branch prediction.

On modern (multicore) CPUs instructions will not be
executed in the same order in which you write them

DIVD f6,f2,f4 ; slow… latency
ADDD f0,f6,f8 ; must wait for f6

SUBD f12,f8,f14 ; could be executed before DIVD or ADDD

Data Parallelism

• Also known as SIMD (Single Instruction, Multiple
Data)

• This architecture performs same operations on a
large quantity of data in parallel.

• Multimedia processing is a good candidate for
this type of architecture (i.e. GPUs).

Task-Level Parallelism
• There are two important variations, related to the

underlying memory model: shared vs. distributed.

• Shared memory multiprocessors: each CPU
accesses any memory location, IPC is done through
memory.

• Distributed memory system: each CPU has its own
local memory, IPC is done through a network.

• Shared memory systems are simpler but do not scale
after a certain number of processors: Distributed
systems are the way to go for fault-tolerant systems.

Shared memory system

• Natural extension of sequential computer: all memory can be
referenced (single address space). Hardware ensures
memory coherence.

• Good:

• Easier to use  
Through multi-threading

• Bad:

• Easier to create faulty programs 
Race conditions

• More difficult to debug  
Intertwining of threads is implicit

Distributed memory system

• Processors can only access their own memory and
communicate through messages.

• Requires the least hardware support.

• Easier to debug.

• Interactions happens in well-defined program parts

• The process is in control of its memory!

• Cumbersome communication protocol is needed

• Remote data cannot be accessed directly, only via
request.

Flynn's taxonomy

Data Streams

Single Multiple

Instruction
Streams

Single SISD  
e.g. Intel Pentium 4

SIMD  
SSE instructions of x86

Multiple MISD MIMD  
e.g. Intel Xeon Phi

Flynn's taxonomy

Data Streams

Single Multiple

Instruction
Streams

Single SISD  
e.g. Intel Pentium 4

SIMD  
SSE instructions of x86

Multiple MISD MIMD  
e.g. Intel Xeon Phi

• The taxonomy has been expanded with SPMD (single
program, multiple data).

• Tasks are split up and run simultaneously on multiple
processors with different input in order to obtain results
faster.

• SPMD could be considered a parallel program on a
MIMD computer.

Flynn's taxonomy
Data Streams

Single Multiple

Instruction
Streams

Single

Multiple

Parallel
architectures

RAM model
• Random Access Machine: is an abstract model for a

sequential computer

• It models a device with an instruction execution unit and
unbounded memory.

• Memory stores program instructions and data.

• Any memory location can be referenced in ‘unit’ time

• The instruction unit fetches and executes an instruction
every cycle and proceeds to the next instruction.

• Today’s computers depart from RAM, but function as if they
match this model.

PRAM model
• Parallel Random Access Machine: abstract model for

parallel computer

• It models a device with an unspecified number of instruction
execution units and global memory of unbounded size that
is uniformly accessible to all processors

• It fails by misrepresenting memory behavior.

• Impossible to realize the unit-time single memory image
when multiple exec. units access the same location

• Bad memory modeling leads to wrong evaluation of
algorithms: PRAM’s performance predictions are not
observed in real computers !

CTA model
• Candidate Type Architecture: abstract model for

parallel computer

• Explicitly separates two types of memory
references: inexpensive local references and
expensive non-local references

P0 P1 P2 Pn

PC

Interconnection network

Processor

Memory

NIC

Px

2 node degree

Memory Latency λ
• Memory Latency = delay required to make a memory

reference. Non local memory latency is indicated with
λ.

• Relative to processor’s local memory latency, ≈ unit
time ≈ one word per instruction

• Variable, due to cache mechanisms etc.

• λ has values 2-5 orders of magnitude larger than local
memory reference

• Sometimes it is better to recalculate globals locally (e.g.
random number)

Metrics for
performance

evaluation

• An application may operate on values organized as streams or as
single data values.

• A stream is a possibly infinite sequence of values with the same
type (e.g. matrices of known size representing images)

• Service time is the inverse of processing bandwidth, or average
throughput of the stream.

• Completion time is the mean time needed to complete the
computation on all the stream elements.

• Latency is defined as the mean time to process one stream
element.

• When dealing with single data values completion time is meaningful,
while service time is not meaningful.

Sequential module: service time, bandwidth,

completion time
• Let us consider a single sequential module 𝛴 operating on a

stream

• 𝛴 implements k operations, each one with mean service time ti
and occurrence probability pi

• service time (mean) of 𝛴 is t = ∑i=1,k pi ti

• completion time (mean) if the stream has length m is tc = m t

• processing bandwidth (throughput) is the average number
of operations executed by 𝛴 in the time unit: B = 1 / t

• latency is the mean time needed to process one stream
element. Since 𝛴 is sequential then latency coincides with
service time.

Parallel module: parallelism degree, latency,

bandwidth, completion time
• Let us consider a parallel transformation of 𝛴 into a parallel version 𝛴

n
 of n

modules

• the parallelism degree of 𝛴
n
 is n, independently from the effective capability of

all modules to work in parallel at any time

• parallelization consists in transforming 𝛴
1
 into a 𝛴

n
 that is functionally

equivalent

• latency is the mean time needed by 𝛴
n
 to process a single stream element

• service time t
n
 is the average time interval between the beginning of the

executions on two consecutive stream elements.

• processing bandwidth is the average number of operations per time unit  
B

n
 = 1 / t

n

• completion time tc
n
 is the average time to complete the execution of all stream

elements. For m ≫ n the relation with service time is tc
n
≅m t

n

Parallel module: parallelism degree, latency,

bandwidth, completion time
• Let us consider a parallel transformation of 𝛴 into a parallel version 𝛴

n
 of n

modules

• the parallelism degree of 𝛴
n
 is n, independently from the effective capability of

all modules to work in parallel at any time

• parallelization consists in transforming 𝛴
1
 into a 𝛴

n
 that is functionally

equivalent

• latency is the mean time needed by 𝛴
n
 to process a single stream element

• service time t
n
 is the average time interval between the beginning of the

executions on two consecutive stream elements.

• processing bandwidth is the average number of operations per time unit  
B

n
 = 1 / t

n

• completion time tc
n
 is the average time to complete the execution of all stream

elements. For m ≫ n the relation with service time is tc
n
≅m t

n

While for a sequential system latency and service time are equal,
in parallel they differ: the service time measures the average time

interval after which 𝛴n can accept a new input stream element
without waiting for the output result of the previous element, i.e.

without waiting the latency time.

Depending on the parallelism paradigm used latency may increase
w.r.t. sequential approach. The important parameter is serve time,

since it impacts on the completion time.

For example pipelining (as in the CPU) typically increases latency
(because of the overhead in managing the pipeline stages) but a

larger number of instructions per second are executed.

Scalability
• Scalability provides a measure of the relative

speed of the n-parallel computation w.r.t the same
computation with parallelism equal to 1:

• S𝛴n = Bn / B1 = t1 / tn

• It’s hard to measure it because numerator and
denominator should be evaluated in the same
conditions. Sometimes t1 is evaluated using ts, i.e.
the corresponding sequential algorithm… but even
if t1≅ ts there is need to use the same parallel
architecture used to execute tn, and still there may
be side effects of the architecture on the evaluation.

Speedup
• If it’s not possible to guarantee that the same

computational and architectural conditions can be
applied consistently for scalability evaluations, then
we use a weaker concept, called speedup:

• SP = ts / tP

• where P is the number of processors, ts is the
completion time of the sequential algorithm and tp
is the completion time of the parallel algorithm

Speedup
• If it’s not possible to guarantee that the same

computational and architectural conditions can be
applied consistently for scalability evaluations, then
we use a weaker concept, called speedup:

• SP = ts / tP

• where P is the number of processors, ts is the
completion time of the sequential algorithm and tp
is the completion time of the parallel algorithm

• The speedup is perfect to ideal if SP = P
• The speedup is linear if SP ≅ P
• The speedup is superlinear if, for some P, SP > P

Superlinear speedup
• Cache effects: when data is partitioned and

distributed over P processors, then the individual
data items are (much) smaller and may fit entirely
in the data cache of each processor

• For an algorithm with linear speedup, the extra
reduction in cache misses may lead to superlinear
speedup

• This is also one of the motivations for with
scalability is harder to evaluate than speedup

Speedup limitations

• Several factors can limit the speedup

• Processors may be idle

• Extra computations are performed in the parallel
version

• Communication and synchronization overhead

Relative speedup
• The relative speedup is defined as S1

P =t1 /tP  

where t1 is the execution time of the parallel
algorithm on one processor

• Similarly, Sk
P = tk / tP is the relative speedup with

respect to k processors, where k < P

• The relative speedup Sk
P is used when k is the

smallest number of processors on which the
problem will run

Speedup: example
• Search in parallel by partitioning the search space

into P chunks

• SP = ((x × ts/P) + Δt) / Δt

• Worst case for sequential search (item in last chunk): 
SP→∞ as Δt tends to zero

• Best case for sequential search (item in first chunk):
SP = 1

Δt

solution found

Δt

solution found

ts

ts / P

x ts / P

Parallel search Sequential search

Speedup types
1. Ideal, linear speedup  

2. Increasing, sub-linear speedup  

3. Speedup with an optimal
number of processors  

4. No speedup  

5. Super-linear speedup

Efficiency
• the efficiency of an algorithm using P processors is  
 
EP = SP / P

• Efficiency estimates how well-utilized the processors are
in solving the problem, compared to how much effort is
lost in idling and communication/synchronization  

• Ideal (or perfect) speedup means 100% efficiency EP = 1  

• Many difficult-to-parallelize algorithms have efficiency  
that approaches zero as P increases

Amdahl’s Law
• In 1967, Gene Amdahl pointed out that every

algorithm consists of a part that can be done in
parallel and a part that cannot be, usually due to
things such as data dependencies.

• I.e. there’s a limited amount of parallelism in a
computer program: once it has been exploited
there’s no additional benefit in adding more
parallelism: a program can never run more quickly
than its sequential part.

Amdahl’s Law
• Let f be the fraction of the computation that is

sequential and cannot be divided into concurrent tasks  

P processors

f ts (1-f) ts

ts

tP
(1-f) ts / P

Single processor

Multiple processors

Amdahl’s Law
• Let f be the fraction of the computation that is

sequential and cannot be divided into concurrent tasks  

P processors

f ts (1-f) ts

ts

tP
(1-f) ts / P

Single processor

Multiple processors

(1-f) ts / P is an
underestimate: the

parallel code may require
more instructions than its
sequential counterpart

Amdahl’s Law

• Amdahl’s law states that the speedup given P
processors is  
SP = ts / (f × ts + (1-f)ts / P) = P / (1 + (P-1) f)

• As a consequence, the maximum speedup is
limited by SP → f-1 as P → ∞

• Even if 95% of a program is parallelisable, you will
never see a speed-up of more than 20 times.

Amdahl’s Law

• Amdahl’s law states that the speedup given P
processors is  
SP = ts / (f × ts + (1-f)ts / P) = P / (1 + (P-1) f)

• As a consequence, the maximum speedup is
limited by SP → f-1 as P → ∞

• Even if 95% of a program is parallelisable, you will
never see a speed-up of more than 20 times.

Amdahl’s Law

Amdahl’s Law
Amdahl's law only applies to cases where the

problem size is fixed. In practice, as more
computing resources become available, they
tend to get used on larger problems (larger

datasets), and the time spent in the
parallelizable part often grows much faster

than the inherently sequential work.

Scaling example
• Workload: sum of 10 scalars, and10×10 matrix sum

• Single processor: Time = (10+100)×tadd

• Speed up from 10 to 100 processors

• 10 processors: Time = 10×tadd + 100/10×tadd = 20×tadd  
Speedup = 110/20 = 5.5 (55% of potential)

• 100 processors: Time=10×tadd +100/100×tadd = 11×tadd  
Speedup = 110/11 = 10 (10% of potential)

• Assumes load can be balanced across processors

Scaling example - cont
• What if matrix size is 100×100?

• Single processor: Time = (10+10000)×tadd

• 10 processors: Time = 10×tadd + 10000/10×tadd =
1010×tadd  
Speedup = 10010/1010 = 9.9 (99% of potential)

• 100 processors: Time = 10×tadd + 10000/100×tadd
=110×tadd  
Speedup = 10010/110 = 91 (91% of potential)

• Assuming load balanced

Amdahl’s Law
• Amdahl’s Law describes a fact that applies to an

instance of a computation. Once we have fixed the
instance it considers the effects of increasing
parallelism.

• Most parallel computations fix the parallelism and
expand the size of the instance: in this case the
proportion of sequential code often diminishes as
larger instances are considered.

• Increasing the problem size may increase the
sequential portion negligibly, making a larger part of
the problem amenable to parallelism.

Scaling and Efficiency
• Suppose we have a program that can be parallelized,

but with a 20% overhead that can not be parallelized. If
the sequential computation time for the whole algorithm
is tS then the parallel computation time for P processors
is: 
 
tP = tS / P + 0.2 tS  
 
and the efficiency is 
 
EP = tP / tS / P  
 
Efficiency for 10 processors is 0.33 and for 100
processors is 0.047 !

Scaling and Efficiency
• Suppose we have a program that can be parallelized,

but with a 20% overhead that can not be parallelized. If
the sequential computation time for the whole algorithm
is tS then the parallel computation time for P processors
is: 
 
tP = tS / P + 0.2 tS  
 
and the efficiency is 
 
EP = tP / tS / P  
 
Efficiency for 10 processors is 0.33 and for 100
processors is 0.047 !

Marginal benefit of adding processors
decreases as the # of processors increases.

Solutions:
- reduce overhead
- use slower cores: the marginal benefit of

improving processors’ speed is minimal.
IBM BlueGene has thousands of CPUs but

with relatively limited clock rate.

Gustafson’s Law
Amdahl's law is based on a fixed workload or fixed problem size per processor, i.e. analyzes constant
problem size scaling  

Gustafson’s law defines the scaled speedup by keeping the parallel execution time constant (i.e. time-
constrained scaling) by adjusting P as the problem size N changes  
 
SP,N = P + (1-P)α(N)  
 
where α(N) is the non-parallelizable fraction of the normalized parallel time tP,N = 1 given problem size N  

To see this, let β(N) = 1- α(N) be the parallelizable fraction (overhead is ignored) 
 
 tP,N = α(N) + β(N) = 1

then, the scaled sequential time is  
 
ts,N = α(N) + P β(N)  

giving 
 
 SP,N = α(N) + P (1- α(N)) = P + (1-P)α(N)

If α(N) is small then the speedup is almost P

Gustafson’s Law

Scaling example

• Number of processors proportional to problem size

• 10 processors, 10 × 10 matrix:  
Time = 20×tadd

• 100 processors, 32 × 32 matrix: 
Time = 10×tadd + 1000/100×tadd = 20×tadd

Sources of performance loss
• Overhead: cost incurred in the parallel solution but not in the sequential solution (e.g.

set up processes and threads, tear down)

• Communication: major component of overhead.

• Synchronization

• Computation: extra-work required by parallel computation, like figuring out which
part of the data to process

• Memory: Memory hierarchy forms a barrier to performance when locality is poor

• Temporal locality  
Same memory location accessed frequently and repeatedly  
Poor temporal locality results from frequent access to fresh new memory
locations

• Spatial locality 
Consecutive (or “sufficiently near”) memory locations are accessed  
Poor spatial locality means that memory locations are accessed in a more
random pattern

Sources of performance loss

• Non-Parallelizable code

• According to Amdahl’s law efficient execution of the
non-parallel fraction f is extremely important

• We can reduce f by improving the sequential code
execution (e.g. algorithm initialization parts), I/O,
communication, and synchronization

Sources of performance loss

• Contention: competing for shared resources

• Idle time: often a consequence of synchronization
and communication issues

• bad load balance

Improving performance
• Address data dependences: i.e. ordering of

memory operations that must be preserved to
maintain correctness

• Flow dependance: read after write

• Anti dependance: write after read

• Output dependance: write after write

• Input dependance: read after read

Data dependences

1. sum = a+1;

2. first_term = sum * scale1;

3. sum = b+1;

4. second_term = sum * scale2;

Data dependences

1. sum = a+1;

2. first_term = sum * scale1;

3. sum = b+1;

4. second_term = sum * scale2;

Flow dependance

Data dependences

1. sum = a+1;

2. first_term = sum * scale1;

3. sum = b+1;

4. second_term = sum * scale2;

Flow dependance

Flow dependance

Data dependences

1. sum = a+1;

2. first_term = sum * scale1;

3. sum = b+1;

4. second_term = sum * scale2;

Flow dependance

Data dependences

1. sum = a+1;

2. first_term = sum * scale1;

3. sum = b+1;

4. second_term = sum * scale2;

Data dependences

1. sum = a+1;

2. first_term = sum * scale1;

3. sum = b+1;

4. second_term = sum * scale2;

Anti dependance

Example: iterative sum

sum=0;

for (int i=0;i<n;i++)

sum+=x[i];

• A shorter chain of flow  
dependences improves  
parallelization

Serial

Parallelized version

Improving performance
• Implement a correct granularity of parallelism

• Coarse: threads and processes infrequently depends
on data or events of other threads and processes.

• Fine: frequent interactions.

• Implement locality, either temporal or spatial

• from memory latency of CTA: locality rule - fast
programs maximize number of local memory
references

• operate on blocks of data

Credits
• These slides report material from:

• Rob Pike (Google)

• Guy E. Blelloch and Bruce M. Maggs (CMU)

• Prof R. Guerraoui (EPFL)

• Prof. Robert van Engelen (Florida State
University)

• Prof. Jan Lemeire (Vrjie Universiteit Brussel)

Books

• Principles of Parallel Programming, Calvin Lyn and
Lawrence Snyder, Pearson - Chapt. 1-3

