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Parallelism vs. Concurrency

• A system is said to be concurrent if it can support 
two or more actions in progress at the same time.  

• A system is said to be parallel if it can support two 
or more actions executing at the same time.  

• The key concept and difference between these 
definitions is the phrase “in progress”.



         

      
         

      

Parallelism vs. Concurrency
• A concurrent application will have two or more 

threads in progress at some time. E.g. two threads 
that are being swapped in and out by the operating 
system on a single core processor. These threads 
will be “in progress”—each in the midst of its 
execution—at the same time.  

• A parallel application will have two or more 
threads executing simultaneously if the computation 
platform has multiple cores available. E.g. two or 
more threads could each be assigned a separate 
core and would be running simultaneously. 



         

      
         

      

Parallelism vs. Concurrency
• Parallelism  ⊆ Concurrency 

• A concurrent program becomes parallel if there are 
enough cores to execute its multiple threads or 
processes. 

• Concurrent programming: composition of 
independently executing processes. 

• Parallel programming: programming as the 
simultaneous execution of (possibly related) 
computations.



         

      
         

      

Parallelism vs. Concurrency
• Concurrency is about dealing with lots of things at 

once. 

• Parallelism is about doing lots of things at once. 

• These are not the same thing, but they are related. 

• Concurrency is about structure, Parallelism is 
about execution. 

• Concurrency provides a way to structure a solution 
to solve a problem that may (but not necessarily) be 
parallelizable.



         

      
         

      

Parallelism vs. Concurrency
• During this lecture I have to deal with concurrent things: 

advancing the slides checking that the projector works, 
delivering the lecture and perhaps breaking to answer a 
question that arises from the lecture. 

• I’m doing only one of these things at a certain time. 

• If I’m helped by one or two assistants that check the 
projector and answer the questions while I’m lecturing then 
the process will become concurrent and parallel. 

• If the assistants and I perform a different task 
independently, e.g. changing the slides without caring if I’m 
talking about something different, then the process is 
parallel.



         

      
         

      

Parallelism vs. Concurrency
• During this lecture I have to deal with concurrent things: 

advancing the slides checking that the projector works, 
delivering the lecture and perhaps breaking to answer a 
question that arises from the lecture. 

• I’m doing only one of these things at a certain time. 

• If I’m helped by one or two assistants that check the 
projector and answer the questions while I’m lecturing then 
the process will become concurrent and parallel. 

• If the assistants and I perform a different task 
independently, e.g. changing the slides without caring if I’m 
talking about something different, then the process is 
parallel.

A concurrent program has multiple 
logical threads of control. These 

threads may or may not run in parallel.  

A parallel program potentially runs more 
quickly than a sequential program by 

executing different parts of the 
computation simultaneously (in parallel). 
It may or may not have more than one 

logical thread of control.  



         

      
         

      

Sequential algorithm
• Most of today’s algorithms are sequential: they 

specify a sequence of steps in which each step 
consists of a single operation. 

• It has worked so far because of the free 
performance improvement provided by CPUs 
and their increase in clock and their pipelining… 

• … but this free ride is over. Chip manufacturers 
are not working on improving clock speed.



         

      
         

      

Parallel algorithm
• A parallel algorithm is designed to execute multiple 

operations at the same step 

• The parallelism in an algorithm can yield improved 
performance on many different kinds of computers.  

• For example, on a parallel computer, the operations 
in a parallel algorithm can be performed 
simultaneously by different processors or cores.  

• Even on a single-processor computer the parallelism 
in an algorithm can be exploited by using multiple 
functional units, pipelined functional units, or 
pipelined memory systems.



         

      
         

      

Concurrent algorithm

• A concurrent algorithm is an algorithm structured so 
that it is possible to execute its steps 
independently. 

• A concurrent algorithm can be executed serially. 

• There is need of some communication to 
coordinate the independent executions.



         

      
         

      

Concurrent algorithm

• A concurrent algorithm is an algorithm structured so 
that it is possible to execute its steps 
independently. 

• A concurrent algorithm can be executed serially. 

• There is need of some communication to 
coordinate the independent executions.

Since multicore CPUs are now available everywhere we will 
talk about parallel execution of concurrent code. 

We will use the term “parallelization” when dealing with 
translation of serial code to concurrent (but this should be 

“concurrentization”)



         

      
         

      

Motivations
• It is not always obvious that a parallel algorithm has 

benefits, unless we want to do things ...  

• faster: doing the same amount of work in less 
time 

• bigger: doing more work in the same amount of 
time  

• Both are good outcomes of program parallelization: 
they improve the results of the program.



         

      
         

      

CPUs…

• The clock speed of a processor cannot be 
increased without overheating  

But… 

• More and more processors can fit in the same 
space  

• Multicores are everywhere



         

      
         

      

…and all the rest
• Grid computing: collection of computer resources 

from multiple locations to reach a common goal. 

•  Cluster computing: loosely or tightly connected 
computers that work together so that, in many 
respects, they can be viewed as a single system.  

• Cloud computing: a model for enabling ubiquitous 
network access to a shared pool of configurable 
computing resources.
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computers that work together so that, in many 
respects, they can be viewed as a single system.  

• Cloud computing: a model for enabling ubiquitous 
network access to a shared pool of configurable 
computing resources.

Grids are a form of distributed computing whereby a “super virtual computer” is composed 
of many networked loosely coupled computers acting together to perform large tasks.
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respects, they can be viewed as a single system.  
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network access to a shared pool of configurable 
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Grids are a form of distributed computing whereby a “super virtual computer” is composed 
of many networked loosely coupled computers acting together to perform large tasks.



         

      
         

      

…and all the rest
• Grid computing: collection of computer resources 

from multiple locations to reach a common goal. 

•  Cluster computing: loosely or tightly connected 
computers that work together so that, in many 
respects, they can be viewed as a single system.  

• Cloud computing: a model for enabling ubiquitous 
network access to a shared pool of configurable 
computing resources.

The components of a cluster are usually connected to each other through LAN, with each 
node (computer used as a server) running its own instance of an operating system.

Grids are a form of distributed computing whereby a “super virtual computer” is composed 
of many networked loosely coupled computers acting together to perform large tasks.

Cloud computing and storage solutions provide users and enterprises with various 
capabilities to store and process their data in third-party data centers.[2] It relies on 

sharing of resources to achieve coherence and economies of scale, similar to a utility (like 
the electricity grid) over a network.



         

      
         

      

Parallel vs. Distributed
• Parallel computing: provide performance.  

• In terms of processing power or memory;  

• To solve a single problem;  

• Typically: frequent, reliable interaction, fine grained, low 
overhead, short execution time.  

• Distributed computing: provide convenience. 

• In terms of availability, reliability and accessibility from many 
different locations;  

• Typically: interactions infrequent, with heavier weight and 
assumed to be unreliable, coarse grained, much overhead and 
long uptime. 



         

      
         

      

Parallel vs. Distributed
• Parallel computing: provide performance.  

• In terms of processing power or memory;  

• To solve a single problem;  

• Typically: frequent, reliable interaction, fine grained, low 
overhead, short execution time.  

• Distributed computing: provide convenience. 

• In terms of availability, reliability and accessibility from many 
different locations;  

• Typically: interactions infrequent, with heavier weight and 
assumed to be unreliable, coarse grained, much overhead and 
long uptime. 

We will not deal with distributed computing, in 
this course.



         

      
         

      

Power consumption
• The power consumption of a CPU has become increasingly important.  

• Energy is more suited to compare 2 CPUs (a faster one may consume 
more power but for much less time, resulting in less energy 
consumption…) 

• In a CPU most of the energy is consumed switching transistor states. 
This so called dynamic energy is proportional to the square of the 

voltage V and frequency f: P ∝ f V2 

• The voltage required to operate the CPU at given frequency is, roughly 

proportional to the frequency (P ∝ f3). 

• By increasing the frequency, same amount of work can be finished in 

shorter time (roughly speaking, inversely to the frequency): E ∝ f2



         

      
         

      

Physical limitations
• As noted by Intel CTO in 2004: “ [without 

revolutionary new technologies…] increased power 
requirements of newer chips will lead to CPUs that 
are hotter than the surface of the sun by 2010.” 

• Parallelism can be used to conserve energy

time



         

      
         

      

Physical limitations
• Transistors are getting smaller (somehow the Moore’s law 

is still valid), but they are not getting faster. 

• Reducing the gate size in planar MOSFET transistors 
leads to “leakage”. There’s need of new geometries (e.g. 
FinFET). 

• Signalling rates on chip are limited by the resistance and 
capacitance of the wires connecting the transistors. The 
smaller they get the thinner the wires (thus higher 
resistance) and the higher the capacitance. 

• The time delay for a wire depends on what is called the 
“RC time constant”, which is the resistance multiplied by 
the capacitance.



         

      
         

      

Physical limitations
• Transistors are getting smaller (somehow the Moore’s law 

is still valid), but they are not getting faster. 

• Reducing the gate size in planar MOSFET transistors 
leads to “leakage”. There’s need of new geometries (e.g. 
FinFET). 

• Signalling rates on chip are limited by the resistance and 
capacitance of the wires connecting the transistors. The 
smaller they get the thinner the wires (thus higher 
resistance) and the higher the capacitance. 

• The time delay for a wire depends on what is called the 
“RC time constant”, which is the resistance multiplied by 
the capacitance.

It is much more convenient to add 
cores, rather than increasing speed



         

      
         

      

Physical limitations
• Suppose we have to calculate in one second 

for (i = 0; i < ONE_TRILLION; i++)  
        z[i] = x[i] + y[i];

• Then we have to perform 3x1012 memory moves per second  

• If data travels at the speed of light (3x108 m/s) between the CPU and 
memory and r is the average distance between the CPU and memory, 
then r must satisfy  

• 3×1012 r = 3×108 m/s × 1 s which gives r = 10-4 meters  

• To fit the data into a square so that the average distance from the CPU 
in the middle is r, then the length of each (square) memory cell will be  

• 2×10-4 m / (√3×106) = 10-10 m which is the size of a relatively small 
atom! 



         

      
         

      

Important factors
• Important considerations in parallel computing  

• Physical limitations: the speed of light, CPU heat 
dissipation  

• Scalability: allows data to be subdivided over CPUs to 
obtain a better match between algorithms and resources 
to increase performance  

• Memory: allow aggregate memory bandwidth to be 
increased together with processing power at a 
reasonable cost  

• Economic factors: cheaper components can be used to 
achieve comparable levels of aggregate performance 



         

      
         

      

Sometimes parallel is bad
• Bad parallel programs can be worse than their 

sequential counterparts: 

• Slower: because of communication overhead 

• Scalability: some parallel algorithms are only 
faster when the problem size is very large  

• Understand the problem and use common sense!  

• Moreover: not all problems are amenable to 
parallelism 



         

      

         

      

Types of 
parallelism



         

      
         

      

Bit-Level Parallelism 
• It is a form of parallel computing based on 

increasing processor word size. 

• If an 8-bit computer wants to add two 32-bit 
numbers, it has to do it as a sequence of 8-bit 
operations. By contrast, a 32-bit computer can do it 
in one step, handling each of the 4 bytes within the 
32-bit numbers in parallel.  

• Though, it’s unlikely that we’ll have 128-bit 
computers soon.



         

      
         

      

Instruction-Level Parallelism 
• Modern CPUs are highly parallel, using techniques like 

pipelining, out-of-order execution, and speculative execution.  

• Pipelining: execution of multiple instructions can  
be partially overlapped. 

• O-o-O execution: instructions execute in any order that 
does not violate data dependencies. Its benefit grows as 
the pipeline gets deeper (and speed difference between 
CPU and RAM/Cache increases). 

• Speculative execution: used to reduce cost of conditional 
branch instructions in pipelined CPUs. Instructions are 
scheduled ahead of the determination of the need of their 
execution. It may use branch prediction.
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Instruction-Level Parallelism 
• Modern CPUs are highly parallel, using techniques like 

pipelining, out-of-order execution, and speculative execution.  

• Pipelining: execution of multiple instructions can  
be partially overlapped. 

• O-o-O execution: instructions execute in any order that 
does not violate data dependencies. Its benefit grows as 
the pipeline gets deeper (and speed difference between 
CPU and RAM/Cache increases). 

• Speculative execution: used to reduce cost of conditional 
branch instructions in pipelined CPUs. Instructions are 
scheduled ahead of the determination of the need of their 
execution. It may use branch prediction.

On modern (multicore) CPUs instructions will not be 
executed in the same order in which you write them 

DIVD f6,f2,f4 ; slow… latency  
ADDD f0,f6,f8 ; must wait for f6 

SUBD f12,f8,f14 ; could be executed before DIVD or ADDD



         

      
         

      

Data Parallelism 

• Also known as SIMD (Single Instruction, Multiple 
Data) 

• This architecture performs same operations on a 
large quantity of data in parallel. 

• Multimedia processing is a good candidate for 
this type of architecture (i.e. GPUs).



         

      
         

      

Task-Level Parallelism 
• There are two important variations, related to the 

underlying memory model: shared vs. distributed. 

• Shared memory multiprocessors: each CPU 
accesses any memory location, IPC is done through 
memory. 

• Distributed memory system: each CPU has its own 
local memory, IPC is done through a network. 

• Shared memory systems are simpler but do not scale 
after a certain number of processors: Distributed 
systems are the way to go for fault-tolerant systems.



         

      
         

      

Shared memory system



         

      
         

      

• Natural extension of sequential computer: all memory can be 
referenced (single address space). Hardware ensures 
memory coherence.  

• Good: 

• Easier to use  
Through multi-threading 

• Bad: 

• Easier to create faulty programs 
Race conditions 

• More difficult to debug  
Intertwining of threads is implicit 



         

      
         

      

Distributed memory system



         

      
         

      

• Processors can only access their own memory and 
communicate through messages.  

• Requires the least hardware support.  

• Easier to debug.  

• Interactions happens in well-defined program parts  

• The process is in control of its memory!  

• Cumbersome communication protocol is needed  

•  Remote data cannot be accessed directly, only via 
request. 



         

      
         

      

Flynn's taxonomy

Data Streams

Single Multiple

Instruction 
Streams

Single SISD  
e.g. Intel Pentium 4

SIMD  
SSE instructions of x86

Multiple MISD MIMD  
e.g. Intel Xeon Phi



         

      
         

      

Flynn's taxonomy

Data Streams

Single Multiple

Instruction 
Streams

Single SISD  
e.g. Intel Pentium 4

SIMD  
SSE instructions of x86

Multiple MISD MIMD  
e.g. Intel Xeon Phi

• The taxonomy has been expanded with SPMD (single 
program, multiple data).  

• Tasks are split up and run simultaneously on multiple 
processors with different input in order to obtain results 
faster.  

• SPMD could be considered a parallel program on a 
MIMD computer.



         

      
         

      

Flynn's taxonomy
Data Streams

Single Multiple

Instruction 
Streams

Single

Multiple



         

      

         

      

Parallel 
architectures



         

      
         

      

RAM model
• Random Access Machine: is an abstract model for a 

sequential computer 

• It models a device with an instruction execution unit and 
unbounded memory.  

• Memory stores program instructions and data.  

• Any memory location can be referenced in ‘unit’ time  

• The instruction unit fetches and executes an instruction 
every cycle and proceeds to the next instruction.  

• Today’s computers depart from RAM, but function as if they 
match this model. 



         

      
         

      

PRAM model
• Parallel Random Access Machine: abstract model for 

parallel computer 

• It models a device with an unspecified number of instruction 
execution units and global memory of unbounded size that 
is uniformly accessible to all processors  

• It fails by misrepresenting memory behavior.  

• Impossible to realize the unit-time single memory image 
when multiple exec. units access the same location 

• Bad memory modeling leads to wrong evaluation of 
algorithms: PRAM’s performance predictions are not 
observed in real computers !



         

      
         

      

CTA model
• Candidate Type Architecture: abstract model for 

parallel computer 

• Explicitly separates two types of memory 
references: inexpensive local references and 
expensive non-local references

P0 P1 P2 Pn

PC

Interconnection network

Processor

Memory

NIC

Px

2 node degree



         

      
         

      

Memory Latency λ 
• Memory Latency = delay required to make a memory 

reference. Non local memory latency is indicated with 
λ. 

• Relative to processor’s local memory latency, ≈ unit 
time ≈ one word per instruction  

• Variable, due to cache mechanisms etc.  

• λ has values 2-5 orders of magnitude larger than local 
memory reference 

• Sometimes it is better to recalculate globals locally (e.g. 
random number) 



         

      

         

      

Metrics for 
performance 

evaluation



         

      
         

      

• An application may operate on values organized as streams or as 
single data values. 

• A stream is a possibly infinite sequence of values with the same 
type (e.g. matrices of known size representing images) 

• Service time is the inverse of processing bandwidth, or average 
throughput of the stream. 

• Completion time is the mean time needed to complete the 
computation on all the stream elements. 

• Latency is defined as the mean time to process one stream 
element. 

• When dealing with single data values completion time is meaningful, 
while service time is not meaningful.



         

      
         

      
Sequential module: service time, bandwidth, 

completion time
• Let us consider a single sequential module 𝛴 operating on a 

stream 

• 𝛴 implements k operations, each one with mean service time ti 
and occurrence probability pi 

• service time (mean) of 𝛴 is t = ∑i=1,k pi ti 

• completion time (mean) if the stream has length m is tc = m t 

• processing bandwidth (throughput) is the average number 
of operations executed by 𝛴 in the time unit: B = 1 / t 

• latency is the mean time needed to process one stream 
element. Since 𝛴 is sequential then latency coincides with 
service time.



         

      
         

      
Parallel module: parallelism degree, latency, 

bandwidth, completion time
• Let us consider a parallel transformation of 𝛴 into a parallel version 𝛴

n
 of n 

modules 

• the parallelism degree of 𝛴
n
 is n, independently from the effective capability of 

all modules to work in parallel at any time 

• parallelization consists in transforming 𝛴
1
 into a 𝛴

n
 that is functionally 

equivalent 

• latency is the mean time needed by 𝛴
n
 to process a single stream element 

• service time t
n
 is the average time interval between the beginning of the 

executions on two consecutive stream elements. 

• processing bandwidth is the average number of operations per time unit  
B

n
 = 1 / t

n 

• completion time tc
n
 is the average time to complete the execution of all stream 

elements. For m ≫ n the relation with service time is tc
n 
≅m t

n



         

      
         

      
Parallel module: parallelism degree, latency, 

bandwidth, completion time
• Let us consider a parallel transformation of 𝛴 into a parallel version 𝛴

n
 of n 

modules 

• the parallelism degree of 𝛴
n
 is n, independently from the effective capability of 

all modules to work in parallel at any time 

• parallelization consists in transforming 𝛴
1
 into a 𝛴

n
 that is functionally 

equivalent 

• latency is the mean time needed by 𝛴
n
 to process a single stream element 

• service time t
n
 is the average time interval between the beginning of the 

executions on two consecutive stream elements. 

• processing bandwidth is the average number of operations per time unit  
B

n
 = 1 / t

n 

• completion time tc
n
 is the average time to complete the execution of all stream 

elements. For m ≫ n the relation with service time is tc
n 
≅m t

n

While for a sequential system latency and service time are equal, 
in parallel they differ: the service time measures the average time 

interval after which 𝛴n can accept a new input stream element 
without waiting for the output result of the previous element, i.e. 

without waiting the latency time. 

Depending on the parallelism paradigm used latency may increase 
w.r.t. sequential approach. The important parameter is serve time, 

since it impacts on the completion time.  

For example pipelining (as in the CPU) typically increases latency 
(because of the overhead in managing the pipeline stages) but a 

larger number of instructions per second are executed.



         

      
         

      

Scalability
• Scalability provides a measure of the relative 

speed of the n-parallel computation w.r.t the same 
computation with parallelism equal to 1: 

• S𝛴n = Bn / B1 = t1 / tn 

• It’s hard to measure it because numerator and 
denominator should be evaluated in the same 
conditions. Sometimes t1 is evaluated using ts, i.e. 
the corresponding sequential algorithm… but even 
if t1≅ ts there is need to use the same parallel 
architecture used to execute tn, and still there may 
be side effects of the architecture on the evaluation.



         

      
         

      

Speedup
• If it’s not possible to guarantee that the same 

computational and architectural conditions can be 
applied consistently for scalability evaluations, then 
we use a weaker concept, called speedup: 

• SP = ts / tP 

• where P is the number of processors, ts is the 
completion time of the sequential algorithm and tp 
is the completion time of the parallel algorithm



         

      
         

      

Speedup
• If it’s not possible to guarantee that the same 

computational and architectural conditions can be 
applied consistently for scalability evaluations, then 
we use a weaker concept, called speedup: 

• SP = ts / tP 

• where P is the number of processors, ts is the 
completion time of the sequential algorithm and tp 
is the completion time of the parallel algorithm

• The speedup is perfect to ideal if SP = P 
• The speedup is linear if SP ≅ P 
• The speedup is superlinear if, for some P, SP > P  



         

      
         

      

Superlinear speedup
• Cache effects: when data is partitioned and 

distributed over P processors, then the individual 
data items are (much) smaller and may fit entirely 
in the data cache of each processor  

• For an algorithm with linear speedup, the extra 
reduction in cache misses may lead to superlinear 
speedup  

• This is also one of the motivations for with 
scalability is harder to evaluate than speedup



         

      
         

      

Speedup limitations

• Several factors can limit the speedup  

• Processors may be idle  

• Extra computations are performed in the parallel 
version  

• Communication and synchronization overhead 



         

      
         

      

Relative speedup
• The relative speedup is defined as S1

P =t1 /tP  

where t1 is the execution time of the parallel 
algorithm on one processor  

• Similarly, Sk
P = tk / tP is the relative speedup with 

respect to k processors, where k < P 

• The relative speedup Sk
P is used when k is the 

smallest number of processors on which the 
problem will run



         

      
         

      

Speedup: example
• Search in parallel by partitioning the search space 

into P chunks  

• SP = ( (x × ts/P) + Δt ) / Δt  

• Worst case for sequential search (item in last chunk): 
SP→∞ as Δt tends to zero  

• Best case for sequential search (item in first chunk): 
SP = 1 

Δt

solution found

Δt

solution found

ts

ts / P

x ts / P

Parallel search Sequential search



         

      
         

      

Speedup types
1. Ideal, linear speedup  

2. Increasing, sub-linear speedup  

3. Speedup with an optimal 
number of processors  

4. No speedup  

5. Super-linear speedup 



         

      
         

      

Efficiency
• the efficiency of an algorithm using P processors is  
 
EP = SP / P 

• Efficiency estimates how well-utilized the processors are 
in solving the problem, compared to how much effort is 
lost in idling and communication/synchronization  

• Ideal (or perfect) speedup means 100% efficiency EP = 1  

• Many difficult-to-parallelize algorithms have efficiency  
that approaches zero as P increases 



         

      
         

      

Amdahl’s Law
• In 1967, Gene Amdahl pointed out that every 

algorithm consists of a part that can be done in 
parallel and a part that cannot be, usually due to 
things such as data dependencies.  

• I.e. there’s a limited amount of parallelism in a 
computer program: once it has been exploited 
there’s no additional benefit in adding more 
parallelism: a program can never run more quickly 
than its sequential part. 



         

      
         

      

Amdahl’s Law
• Let f be the fraction of the computation that is 

sequential and cannot be divided into concurrent tasks  

P processors

f ts (1-f) ts

ts

tP
(1-f) ts / P

Single processor

Multiple processors



         

      
         

      

Amdahl’s Law
• Let f be the fraction of the computation that is 

sequential and cannot be divided into concurrent tasks  

P processors

f ts (1-f) ts

ts

tP
(1-f) ts / P

Single processor

Multiple processors

(1-f) ts / P is an 
underestimate: the 

parallel code may require 
more instructions than its 
sequential counterpart



         

      
         

      

Amdahl’s Law

• Amdahl’s law states that the speedup given P 
processors is  
SP = ts / ( f × ts + (1-f)ts / P ) = P / ( 1 + (P-1) f )  

• As a consequence, the maximum speedup is 
limited by SP → f-1 as P → ∞  

• Even if 95% of a program is parallelisable, you will 
never see a speed-up of more than 20 times. 
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Amdahl’s Law



         

      
         

      

Amdahl’s Law
Amdahl's law only applies to cases where the

problem size is fixed. In practice, as more
computing resources become available, they
tend to get used on larger problems (larger

datasets), and the time spent in the
parallelizable part often grows much faster

than the inherently sequential work.



         

      
         

      

Scaling example
• Workload: sum of 10 scalars, and10×10 matrix sum 

• Single processor: Time = (10+100)×tadd  

• Speed up from 10 to 100 processors 

• 10 processors: Time = 10×tadd + 100/10×tadd = 20×tadd  
Speedup = 110/20 = 5.5 (55% of potential)  

• 100 processors: Time=10×tadd +100/100×tadd = 11×tadd  
Speedup = 110/11 = 10 (10% of potential)  

• Assumes load can be balanced across processors 



         

      
         

      

Scaling example - cont
• What if matrix size is 100×100?  

• Single processor: Time = (10+10000)×tadd  

• 10 processors: Time = 10×tadd + 10000/10×tadd = 
1010×tadd  
Speedup = 10010/1010 = 9.9 (99% of potential)  

• 100 processors: Time = 10×tadd + 10000/100×tadd 
=110×tadd  
Speedup = 10010/110 = 91 (91% of potential)  

• Assuming load balanced 



         

      
         

      

Amdahl’s Law
• Amdahl’s Law describes a fact that applies to an 

instance of a computation. Once we have fixed the 
instance it considers the effects of increasing 
parallelism. 

• Most parallel computations fix the parallelism and 
expand the size of the instance: in this case the 
proportion of sequential code often diminishes as 
larger instances are considered.  

• Increasing the problem size may increase the 
sequential portion negligibly, making a larger part of 
the problem amenable to parallelism.



         

      
         

      

Scaling and Efficiency
• Suppose we have a program that can be parallelized, 

but with a 20% overhead that can not be parallelized. If 
the sequential computation time for the whole algorithm 
is tS then the parallel computation time for P processors 
is: 
 
tP = tS / P + 0.2 tS  
 
and the efficiency is 
 
EP = tP / tS / P  
 
Efficiency for 10 processors is 0.33 and for 100 
processors is 0.047 !



         

      
         

      

Scaling and Efficiency
• Suppose we have a program that can be parallelized, 

but with a 20% overhead that can not be parallelized. If 
the sequential computation time for the whole algorithm 
is tS then the parallel computation time for P processors 
is: 
 
tP = tS / P + 0.2 tS  
 
and the efficiency is 
 
EP = tP / tS / P  
 
Efficiency for 10 processors is 0.33 and for 100 
processors is 0.047 !

Marginal benefit of adding processors 
decreases as the # of processors increases. 

Solutions: 
- reduce overhead 
- use slower cores: the marginal benefit of 

improving processors’ speed is minimal. 
IBM BlueGene has thousands of CPUs but 

with relatively limited clock rate.  



         

      
         

      

Gustafson’s Law 
Amdahl's law is based on a fixed workload or fixed problem size per processor, i.e. analyzes constant 
problem size scaling  

Gustafson’s law defines the scaled speedup by keeping the parallel execution time constant (i.e. time-
constrained scaling) by adjusting P as the problem size N changes  
 
SP,N = P + (1-P)α(N)  
 
where α(N) is the non-parallelizable fraction of the normalized parallel time tP,N = 1 given problem size N  

To see this, let β(N) = 1- α(N) be the parallelizable fraction (overhead is ignored) 
 
 tP,N = α(N) + β(N) = 1 

then, the scaled sequential time is  
 
ts,N = α(N) + P β(N)  

giving 
 
 SP,N = α(N) + P (1- α(N)) = P + (1-P)α(N) 

If α(N)  is small then the speedup is almost P



         

      
         

      

Gustafson’s Law 



         

      
         

      

Scaling example

• Number of processors proportional to problem size 

• 10 processors, 10 × 10 matrix:  
Time = 20×tadd  

• 100 processors, 32 × 32 matrix: 
Time = 10×tadd + 1000/100×tadd = 20×tadd 



         

      
         

      

Sources of performance loss
• Overhead: cost incurred in the parallel solution but not in the sequential solution (e.g. 

set up processes and threads, tear down) 

• Communication: major component of overhead. 

• Synchronization 

• Computation: extra-work required by parallel computation, like figuring out which 
part of the data to process 

• Memory: Memory hierarchy forms a barrier to performance when locality is poor  

• Temporal locality  
Same memory location accessed frequently and repeatedly  
Poor temporal locality results from frequent access to fresh new memory 
locations  

• Spatial locality 
Consecutive (or “sufficiently near”) memory locations are  accessed  
Poor spatial locality means that memory locations are accessed in a more 
random pattern 



         

      
         

      

Sources of performance loss

• Non-Parallelizable code 

• According to Amdahl’s law efficient execution of the 
non-parallel fraction f is extremely important  

• We can reduce f by improving the sequential code 
execution (e.g. algorithm initialization parts), I/O, 
communication, and synchronization 



         

      
         

      

Sources of performance loss

• Contention: competing for shared resources 

• Idle time: often a consequence of synchronization 
and communication issues 

• bad load balance



         

      
         

      

Improving performance
• Address data dependences: i.e. ordering of 

memory operations that must be preserved to 
maintain correctness 

• Flow dependance: read after write 

• Anti dependance: write after read 

• Output dependance: write after write 

• Input dependance: read after read



         

      
         

      

Data dependences

1. sum = a+1;

2. first_term = sum * scale1;

3. sum = b+1;

4. second_term = sum * scale2;
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Data dependences

1. sum = a+1;

2. first_term = sum * scale1;

3. sum = b+1;

4. second_term = sum * scale2;

Anti dependance



         

      
         

      

Example: iterative sum

sum=0;

for (int i=0;i<n;i++) 

sum+=x[i]; 

• A shorter chain of flow  
dependences improves  
parallelization

Serial

Parallelized version



         

      
         

      

Improving performance
• Implement a correct granularity of parallelism 

• Coarse: threads and processes infrequently depends 
on data or events of other threads and processes. 

• Fine: frequent interactions. 

• Implement locality, either temporal or spatial 

• from memory latency of CTA: locality rule - fast 
programs maximize number of local memory 
references 

• operate on blocks of data



         

      
         

      

Credits
• These slides report material from: 

• Rob Pike (Google) 

• Guy E. Blelloch and Bruce M. Maggs (CMU) 

• Prof R. Guerraoui (EPFL) 

• Prof. Robert van Engelen (Florida State 
University) 

• Prof. Jan Lemeire (Vrjie Universiteit Brussel)



         

      
         

      

Books

• Principles of Parallel Programming, Calvin Lyn and 
Lawrence Snyder, Pearson - Chapt. 1-3


