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Distributed memory systems
• From a programmer’s point of view, a distributed-memory 

system consists of a collection of core-memory pairs 
connected by a network, and the memory associated with a 
core is directly accessible only to that core.  

• Information is passed between nodes using the network  

• No cache coherence and no need for special cache 
coherency hardware 



         

      
         

      

Parallel Computing Model
• In this context SPMD is the typical computing model 

• Each process has its own exclusive address space. Typical 1 
process per processor. The same code is executed by every 
process. 

• Only supports explicit parallelization  

• Adds complexity to programming  

• Encourages locality of data access  

• The program running on one of the core-memory pairs needs to 
communicate with other SPMDs 

• we need a method to let processes communicate



         

      
         

      

Message passing programming
• Program is a set of named processes  

• Process has thread of control and local memory with local address space  

• Processes communicate via explicit data transfers  

• Messages between source and destination, where source and  
destination are named processors P0...Pn (or compute nodes)  

• Logically shared data is explicitly partitioned over local memories  

• Communication with send/recv via standard message passing libraries, such 
as MPI and its many “open” variants 

• Each node has a network interface  

• Communication and synchronization via network  

• Message latency and bandwidth is dependent on network topology and 
routing algorithms 



         

      
         

      

Message passing programming

• Programming model vs. machine models



         

      
         

      

MPI
• The Message-Passing Interface (MPI) is a standardization of a 

message-passing library interface specification.  

• MPI defines the syntax and semantics of library routines for 
standard communication patterns  

• It’s a library, with bindings for C and Fortran. C++ library from Boost. 
Java versions are also available. 

• Many open source and public implementations 

• you need to make no code changes when moving your code 
between implementations (thanks to the standardized API) 

• Supports static (# processes specified before execution - MPI-1) and 
dynamic (processes created during execution - MPI-2) process 
creation



         

      
         

      

MPI
• The Message-Passing Interface (MPI) is a standardization of a 

message-passing library interface specification.  

• MPI defines the syntax and semantics of library routines for 
standard communication patterns  

• It’s a library, with bindings for C and Fortran. C++ library from Boost. 
Java versions are also available. 

• Many open source and public implementations 

• you need to make no code changes when moving your code 
between implementations (thanks to the standardized API) 

• Supports static (# processes specified before execution - MPI-1) and 
dynamic (processes created during execution - MPI-2) process 
creation

Open MPI has Java bindings.



         

      
         

      

Open source implementations

• Two important open source implementations are: 

• MPICH - http://www.mpich.org 

• Open MPI - https://www.open-mpi.org/ 

• They both support the latest MPI standard: MPI-3.1

http://www.mpich.org
https://www.open-mpi.org/


         

      
         

      

MPI: how does it work
• The same program is launched for execution independently on a 

collection of cores  

• Each core executes the program. To support portability, MPI 
programs should be written for an arbitrary number of processes. 
The actual number of processes used for a specific program 
execution is set when starting the program.   

• What differentiates processes is their rank: processes with different 
ranks do different things (“branching based on the process rank”) 

• Process 0 is often treated as “master” 

• Communications between process may be “point-to-point” (pairwise), 
where only two communicating processes are involved, or they may 
be “collective”, where all of the processes are involved. 



         

      
         

      

Explicit parallelism

• All parallelism is explicit: the programmer is 
responsible for correctly identifying parallelism and 
implementing parallel algorithms using MPI 
constructs.



         

      
         

      

MPI communications

• Communicators let you specify groups of processes that can intercommunicate  

• Default is MPI_COMM_WORLD. Can create groups and hierarchies of processes.



         

      
         

      

MPI communications

• Communicators let you specify groups of processes that can intercommunicate  

• Default is MPI_COMM_WORLD. Can create groups and hierarchies of processes.

For two different communicators, the same process can have two different ranks: so the 
meaning of a “rank” is only defined when you specify the communicator 



         

      
         

      

MPI_Comm_create 
• We can create other communicators with: 
 
int MPI_Comm_create(MPI_Comm comm, 
MPI_Group group, MPI_Comm *newcomm);  

• Input Parameters 
comm - communicator (handle) 
group - subset of the family of processes making 
up the comm (handle)  

• Output Parameter 
comm_out - new communicator (handle) 



         

      
         

      

Minimal set of MPI routines
• Example of MPI C routines 

• MPI_Init - Initializes MPI. 

• MPI_Finalize - Terminates MPI. 

• MPI_Comm_size - Determines the number of processes. 

• MPI_Comm_rank - Determines the label of calling process. 

• MPI_Send - Sends a message. 

• MPI_Recv - Receives a message. 

• MPI_Probe - Test for message (returns Status object).  



         

      
         

      

Minimal set of MPI routines
• Example of MPI C routines 

• MPI_Init - Initializes MPI. 

• MPI_Finalize - Terminates MPI. 

• MPI_Comm_size - Determines the number of processes. 

• MPI_Comm_rank - Determines the label of calling process. 

• MPI_Send - Sends a message. 

• MPI_Recv - Receives a message. 

• MPI_Probe - Test for message (returns Status object).  

#include "mpi.h"
#include <iostream>
int main(int argc, char **argv) {
  int my_rank, n;
  char hostname[128];

  MPI_Init(&argc,&argv); // Has to be called first, and once 
  MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
  MPI_Comm_size(MPI_COMM_WORLD, &n);
  gethostname(hostname, 128);
  if (my_rank == 0) { /* master */
    printf("I am the master: %s\n", hostname);
  }
  else { /* worker */  
    printf("I am a worker: %s (rank=%d/%d)\n", hostname, my_rank, n-1); 
  } 
  MPI_Finalize(); // has to be called, and once
  return 0;  
 } 



         

      
         

      

Minimal set of MPI routines
• Example of MPI C routines 

• MPI_Init - Initializes MPI. 

• MPI_Finalize - Terminates MPI. 

• MPI_Comm_size - Determines the number of processes. 

• MPI_Comm_rank - Determines the label of calling process. 

• MPI_Send - Sends a message. 

• MPI_Recv - Receives a message. 

• MPI_Probe - Test for message (returns Status object).  

#include "mpi.h"
#include <iostream>
int main(int argc, char **argv) {
  int my_rank, n;
  char hostname[128];

  MPI_Init(&argc,&argv); // Has to be called first, and once 
  MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
  MPI_Comm_size(MPI_COMM_WORLD, &n);
  gethostname(hostname, 128);
  if (my_rank == 0) { /* master */
    printf("I am the master: %s\n", hostname);
  }
  else { /* worker */  
    printf("I am a worker: %s (rank=%d/%d)\n", hostname, my_rank, n-1); 
  } 
  MPI_Finalize(); // has to be called, and once
  return 0;  
 } 

Run the program with the appropriate MPI command, e.g. using 4 instances: 

mpiexec -np 4 ./openmpi_hello_world

I am a worker: hostname.local (rank=3/3) 
I am a worker: hostname.local (rank=1/3) 
I am a worker: hostname.local (rank=2/3) 
I am the master: hostname.local  
 
mpiexec –host h1,h2,h3,h4 –np 16 ./test  
• Runs the first four processes on h1, the next four on h2, etc.  
mpiexec -hostfile nodeconfig -npernode 16 ~/test 
• Runs 16 processes per node, using the nodes listed in nodeconfig file
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    printf("I am the master: %s\n", hostname);
  }
  else { /* worker */  
    printf("I am a worker: %s (rank=%d/%d)\n", hostname, my_rank, n-1); 
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  MPI_Finalize(); // has to be called, and once
  return 0;  
 } 

Run the program with the appropriate MPI command, e.g. using 4 instances: 

mpiexec -np 4 ./openmpi_hello_world

I am a worker: hostname.local (rank=3/3) 
I am a worker: hostname.local (rank=1/3) 
I am a worker: hostname.local (rank=2/3) 
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• Runs the first four processes on h1, the next four on h2, etc.  
mpiexec -hostfile nodeconfig -npernode 16 ~/test 
• Runs 16 processes per node, using the nodes listed in nodeconfig file

 • In general, starting an MPI program is dependent on the 
implementation of MPI you are using, and might require various scripts, 

program arguments, and/or environment variables.  

 • mpiexec <args> is part of MPI-2, as a recommendation, but not 
a requirement, for implementors.  

• Compilation is often carried on using a driver like mpicc that manages all 
the -L, -l, and -I parameters



         

      
         

      

Types of MPI operations
• Blocking operation: an MPI communication operation is 

blocking, if return of control to the calling process indicates 
that all resources, such as buffers, specified in the call can 
be reused, e.g., for other operations. In particular, all state 
transitions initiated by a blocking operation are completed 
before control returns to the calling process.  

• Non-blocking operation: an MPI communication operation 
is non-blocking, if the corresponding call may return before 
all effects of the operation are completed and before the 
resources used by the call can be reused. Thus, a call of a 
non-blocking operation only starts the operation. The 
operation itself is completed not before all state transitions 
caused are completed and the resources specified can be 
reused. 



         

      
         

      

Types of MPI operations
• Blocking operation: an MPI communication operation is 

blocking, if return of control to the calling process indicates 
that all resources, such as buffers, specified in the call can 
be reused, e.g., for other operations. In particular, all state 
transitions initiated by a blocking operation are completed 
before control returns to the calling process.  

• Non-blocking operation: an MPI communication operation 
is non-blocking, if the corresponding call may return before 
all effects of the operation are completed and before the 
resources used by the call can be reused. Thus, a call of a 
non-blocking operation only starts the operation. The 
operation itself is completed not before all state transitions 
caused are completed and the resources specified can be 
reused. 

The terms blocking and non-blocking describe the behavior
of operations from the local view of the executing process,
without taking the effects on other processes into account.



         

      
         

      

Types of MPI operations
• Synchronous communication: the communication 

operation between sender and receiver does not 
complete before both processes have started their 
communication operation. The completion of a 
synchronous send indicates not only that the send 
buffer can be reused, but also that the receiving 
process has started the execution of the 
corresponding receive operation.  

• Asynchronous communication: using 
asynchronous communication, the sender can 
execute its communication operation without any 
coordination with the receiving process. 



         

      
         

      

Types of MPI operations
• Synchronous communication: the communication 

operation between sender and receiver does not 
complete before both processes have started their 
communication operation. The completion of a 
synchronous send indicates not only that the send 
buffer can be reused, but also that the receiving 
process has started the execution of the 
corresponding receive operation.  

• Asynchronous communication: using 
asynchronous communication, the sender can 
execute its communication operation without any 
coordination with the receiving process. 

These types of operations consider the effect of
communication operations from a global viewpoint.



         

      
         

      

Data communication
• Data communication in MPI is like email exchange 

• One process sends a copy of the data to another process (or a group of processes), and the 
other process receives it 

• Communication requires the following information:  

• Sender has to know:  

•  Whom to send the data to (receiver’s process rank)  

• What kind of data to send (100 integers or 200 characters, etc)  

• A user-defined “tag” for the message (think of it as an email subject; allows the receiver to 
understand what type of data is being received)  

• Receiver “might” have to know:  

• Who is sending the data (OK if the receiver does not know; in this case anyone can send)  

• What kind of data is being received (partial information is OK: I might receive up to 1000 
integers)  

• What the user-defined “tag” of the message is (OK if the receiver does not know)



         

      
         

      

Tags: why ?
• Messages are sent with an accompanying user-

defined integer tag, to assist the receiving process 
in identifying the message. 

• For example, if an application is expecting two 
types of messages from a peer, tags can help 
distinguish these two types. 

• Messages can be screened at the receiving end by 
specifying a specific tag. 

• MPI_ANY_TAG is a special “wild-card” tag that can 
be used by the receiver to match any tag.



         

      
         

      

MPI_Send(&buf, count, datatype, dest, tag, comm)

MPI Point-to-point Send Format 

Address of send 
buffer with data

# items to send

data type of each item 
MPI_Datatype

rank of destination 
process (int)

message tag 
(int)

communicator 
MPI_Comm



         

      
         

      

MPI_Send(&buf, count, datatype, dest, tag, comm)

MPI Point-to-point Send Format 

Address of send 
buffer with data

# items to send

data type of each item 
MPI_Datatype

rank of destination 
process (int)

message tag 
(int)

communicator 
MPI_Comm

MPI_CHAR, MPI_FLOAT, … can create datatypes.



         

      
         

      

MPI_Send(&buf, count, datatype, dest, tag, comm)

MPI Point-to-point Send Format 

Address of send 
buffer with data

# items to send

data type of each item 
MPI_Datatype

rank of destination 
process (int)

message tag 
(int)

communicator 
MPI_Comm

MPI_CHAR, MPI_FLOAT, … can create datatypes.

Can be used by the 
programmer to differentiate the 

semantic meaning of a 
message, e.g. data to be 

printed vs. to be processed…



         

      
         

      

MPI_Send(&buf, count, datatype, dest, tag, comm)

MPI Point-to-point Send Format 

Address of send 
buffer with data

# items to send

data type of each item 
MPI_Datatype

rank of destination 
process (int)

message tag 
(int)

communicator 
MPI_Comm

MPI_CHAR, MPI_FLOAT, … can create datatypes.

Can be used by the 
programmer to differentiate the 

semantic meaning of a 
message, e.g. data to be 

printed vs. to be processed…

This is a blocking 
operation



         

      
         

      

MPI Point-to-point Recv Format 

MPI_Recv(&buf, count, datatype, src, tag, comm, &status)

Address of buffer 
to collect data

Max # items to receive

data type of each item 
MPI_Datatype

rank of source process 
(int)

message tag 
(int)

communicator 
MPI_Comm

status after 
operation (int)



         

      
         

      

MPI Point-to-point Recv Format 

MPI_Recv(&buf, count, datatype, src, tag, comm, &status)

Address of buffer 
to collect data

Max # items to receive

data type of each item 
MPI_Datatype

rank of source process 
(int)

message tag 
(int)

communicator 
MPI_Comm

status after 
operation (int)

a special constant MPI_ANY_SOURCE  
means that any source process can send



         

      
         

      

MPI Point-to-point Recv Format 

MPI_Recv(&buf, count, datatype, src, tag, comm, &status)

Address of buffer 
to collect data

Max # items to receive

data type of each item 
MPI_Datatype

rank of source process 
(int)

message tag 
(int)

communicator 
MPI_Comm

status after 
operation (int)

a special constant MPI_ANY_SOURCE  
means that any source process can send

MPI_ANY_TAG accepts any tag



         

      
         

      

MPI Point-to-point Recv Format 

MPI_Recv(&buf, count, datatype, src, tag, comm, &status)

Address of buffer 
to collect data

Max # items to receive

data type of each item 
MPI_Datatype

rank of source process 
(int)

message tag 
(int)

communicator 
MPI_Comm

status after 
operation (int)

a special constant MPI_ANY_SOURCE  
means that any source process can send

MPI_ANY_TAG accepts any tagThis is a blocking 
operation



         

      
         

      

MPI Point-to-point Recv Format 

MPI_Recv(&buf, count, datatype, src, tag, comm, &status)

Address of buffer 
to collect data

Max # items to receive

data type of each item 
MPI_Datatype

rank of source process 
(int)

message tag 
(int)

communicator 
MPI_Comm

status after 
operation (int)

a special constant MPI_ANY_SOURCE  
means that any source process can send

MPI_ANY_TAG accepts any tag

// waiting for all the messages from comm_sz sources in no specific order
for (i = 1; i < comm_sz; i++) {  
  MPI_Recv(result, result_sz, result_type, MPI_ANY_SOURCE,  
              result_tag, comm, MPI_STATUS_IGNORE);  
  Process_result(result); 
}

This is a blocking 
operation



         

      
         

      

Send/receive example
    int source; /* rank of sender */  
    int dest; /* rank of receiver */  
    int tag = 0; /* tag for messages */  
    char message[100]; /* storage for message */  
    MPI_Status status; /* return status for receive */  
 
 
    MPI_Init(&argc, &argv); // start MPI library  
    MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); // Find out process rank  
    MPI_Comm_size(MPI_COMM_WORLD, &p); // Find out number of processes  
 
    if (my_rank != 0) {  
        /* Create message */  
        sprintf(message, "Greetings from process %d!", my_rank);  
        dest = 0;  
        /* Use strlen+1 so that '\0' gets transmitted */  
        MPI_Send(message, strlen(message) + 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);  
    }  
    else { /* my_rank == 0 */  
        for (source = 1; source < p; source++) {  
            MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);  
            printf("Master program received msg: %s\n", message);  
        }  
    }

    MPI_Finalize(); // Shut down MPI



         

      
         

      

Send/receive example
    int source; /* rank of sender */  
    int dest; /* rank of receiver */  
    int tag = 0; /* tag for messages */  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    MPI_Status status; /* return status for receive */  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            MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);  
            printf("Master program received msg: %s\n", message);  
        }  
    }

    MPI_Finalize(); // Shut down MPI

tells the MPI system to do all of the necessary setup, like 
allocating buffers for communications, assign ranks to 

processes, etc. No other MPI functions should be called before.



         

      
         

      

Send/receive example
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            printf("Master program received msg: %s\n", message);  
        }  
    }

    MPI_Finalize(); // Shut down MPI

tells the MPI system to do all of the necessary setup, like 
allocating buffers for communications, assign ranks to 

processes, etc. No other MPI functions should be called before.

Frees resources. No MPI functions should be called after.



         

      
         

      

Send/receive example
    int source; /* rank of sender */  
    int dest; /* rank of receiver */  
    int tag = 0; /* tag for messages */  
    char message[100]; /* storage for message */  
    MPI_Status status; /* return status for receive */  
 
 
    MPI_Init(&argc, &argv); // start MPI library  
    MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); // Find out process rank  
    MPI_Comm_size(MPI_COMM_WORLD, &p); // Find out number of processes  
 
    if (my_rank != 0) {  
        /* Create message */  
        sprintf(message, "Greetings from process %d!", my_rank);  
        dest = 0;  
        /* Use strlen+1 so that '\0' gets transmitted */  
        MPI_Send(message, strlen(message) + 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);  
    }  
    else { /* my_rank == 0 */  
        for (source = 1; source < p; source++) {  
            MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);  
            printf("Master program received msg: %s\n", message);  
        }  
    }

    MPI_Finalize(); // Shut down MPI

tells the MPI system to do all of the necessary setup, like 
allocating buffers for communications, assign ranks to 

processes, etc. No other MPI functions should be called before.

Frees resources. No MPI functions should be called after.

If the type of the message is the same and the size of the receiving buffer is >= of the 
sending buffer then the message can be successfully received



         

      
         

      

Message status
• A receiver can receive a message without knowing: 

• the amount of data in the message 

• the sender of the message (is using MPI_ANY_SOURCE) 

• the tag of the message (if using MPI_ANY_TAG).  

• Using a MPI_Status status_variable to get the status of a 
received message is possible to obtain 
status_variable.MPI_SOURCE and status_variable.MPI_TAG. 

•  To get message size use: MPI_Get_count(&status_variable, 
recv_type, &count) to store in the int count variable the size of 
the message. 

• status_variable.MPI_ERROR contains an error code. 



         

      
         

      

Communication
• Internally a message transfer in MPI is usually 

performed in three steps:  

1. The message is assembled by adding a header with 
information on the sending process, the receiving 
process, the tag, and the communicator used.  

2. The message is sent via the network from the 
sending process to the receiving process.  

3. At the receiving side, the data entries of the 
message are copied from the system buffer into the 
receive buffer specified by MPI_Recv(). 



         

      
         

      

Communication
• Both MPI_Send() and MPI_Recv() are blocking, asynchronous operations.  

• This means that an MPI_Recv() operation can also be started when the corresponding 
MPI_Send() operation has not yet been started. The process executing the 
MPI_Recv() operation is blocked until the specified receive buffer contains the data 
elements sent.  

• Regarding sending it may depends on the size of the message and the MPI 
implementation:  

• If the message is sent directly from the send buffer specified without using an internal 
system buffer, then the MPI_Send() operation is blocked until the entire message 
has been copied into a receive buffer at the receiving side.  

• If the message is first copied into an internal system buffer of the runtime system, the 
sender can continue its operations as soon as the copy operation into the system 
buffer is completed.  

• When using MPI_Send, when the function returns, we don’t actually know whether the 
message has been transmitted. We only know that the storage we used for the message, 
the send buffer, is available for reuse by our program. 



         

      
         

      

Communication
• Both MPI_Send() and MPI_Recv() are blocking, asynchronous operations.  

• This means that an MPI_Recv() operation can also be started when the corresponding 
MPI_Send() operation has not yet been started. The process executing the 
MPI_Recv() operation is blocked until the specified receive buffer contains the data 
elements sent.  

• Regarding sending it may depends on the size of the message and the MPI 
implementation:  

• If the message is sent directly from the send buffer specified without using an internal 
system buffer, then the MPI_Send() operation is blocked until the entire message 
has been copied into a receive buffer at the receiving side.  

• If the message is first copied into an internal system buffer of the runtime system, the 
sender can continue its operations as soon as the copy operation into the system 
buffer is completed.  

• When using MPI_Send, when the function returns, we don’t actually know whether the 
message has been transmitted. We only know that the storage we used for the message, 
the send buffer, is available for reuse by our program. 

Many implementations of MPI set a threshold at which the system switches from buffering to 
blocking. That is, messages that are relatively small will be buffered by MPI_Send, but for 

larger messages, it will block. 



         

      
         

      

Delivery order
• An important property to be fulfilled by any MPI 

library is that messages are delivered in the order 
in which they have been sent (nonovertaking).  

• If a sender sends two messages one after another 
to the same receiver and both messages fit to the 
first MPI_Recv() called by the receiver, the MPI 
runtime system ensures that the first message sent 
will always be received first.  

• However, there is no restriction on the arrival of 
messages sent from different processes. 



         

      
         

      

Delivery order
• An important property to be fulfilled by any MPI 

library is that messages are delivered in the order 
in which they have been sent (nonovertaking).  

• If a sender sends two messages one after another 
to the same receiver and both messages fit to the 
first MPI_Recv() called by the receiver, the MPI 
runtime system ensures that the first message sent 
will always be received first.  

• However, there is no restriction on the arrival of 
messages sent from different processes. 
This is essentially because MPI can’t impose performance on a network…



         

      
         

      

Problems
• Note that the semantics of MPI_Recv suggests a potential 

pitfall in MPI programming: if a process tries to receive a 
message and there’s no matching send, then the process 
will block forever. 

• Similarly, if a call to MPI_Send blocks and there’s no 
matching receive, then the sending process can hang.  

• We need to be very careful when we’re coding that there 
are no mistakes in our calls to MPI_Send and MPI_Recv.  
For example, if the tags don’t match, or if the rank of the 
destination process is the same as the rank of the source 
process, the receive won’t match the send, and either a 
process will hang, or the receive may match another send. 



         

      
         

      

Deadlock
MPI_Comm_rank (comm, &my_rank);

if (my_rank == 0) { 

  MPI_Recv(recvbuf, count, MPI_INT, 1, tag, comm, &status); 

  MPI_Send(sendbuf, count, MPI_INT, 1, tag, comm); 

} else if (my_rank == 1) { 

  MPI_Recv(recvbuf, count, MPI_INT, 0, tag, comm, &status); 

  MPI_Send(sendbuf, count, MPI_INT, 0, tag, comm); 

} 



         

      
         

      

Deadlock
MPI_Comm_rank (comm, &my_rank);

if (my_rank == 0) { 

  MPI_Recv(recvbuf, count, MPI_INT, 1, tag, comm, &status); 

  MPI_Send(sendbuf, count, MPI_INT, 1, tag, comm); 

} else if (my_rank == 1) { 

  MPI_Recv(recvbuf, count, MPI_INT, 0, tag, comm, &status); 

  MPI_Send(sendbuf, count, MPI_INT, 0, tag, comm); 

} 
Both processes 0 and 1 execute an MPI_Recv() operation before an MPI_Send() 

operation. This leads to a deadlock because of mutual waiting 



         

      
         

      

Deadlock
/* program fragment for which the occurrence of a deadlock

   depends on the implementation */

MPI_Comm_rank (comm, &my_rank); 

if (my_rank == 0) { 

  MPI_Send(sendbuf, count, MPI_INT, 1, tag, comm); 

  MPI_Recv(recvbuf, count, MPI_INT, 1, tag, comm, &status); 

} else if (my_rank == 1) { 

  MPI_Send(sendbuf, count, MPI_INT, 0, tag, comm); 

  MPI_Recv(recvbuf, count, MPI_INT, 0, tag, comm, &status); 

} 

/* program fragment that does not cause a deadlock */ 

MPI_Comm_rank (comm, &my_rank);
 
if (my_rank == 0) { 

  MPI_Send(sendbuf, count, MPI_INT, 1, tag, comm); 
  MPI_Recv(recvbuf, count, MPI_INT, 1, tag, comm, &status); 

} else if (my_rank == 1) { 

  MPI_Recv(recvbuf, count, MPI_INT, 0, tag, comm, &status); 
  MPI_Send(sendbuf, count, MPI_INT, 0, tag, comm); 

} 



         

      
         

      

Secure program
• An MPI program is called secure if the correctness 

of the program does not depend on assumptions 
about specific properties of the MPI runtime 
system, like the existence of system buffers or the 
size of system buffers.  

• If more than two processes exchange messages 
such that each process sends and receives a 
message, the program must exactly specify in 
which order the send and receive operations are to 
be executed to avoid deadlocks. 



         

      
         

      

• Using MPI_Sendrecv(), the programmer does not need to 
worry about the order of the send and receive operations. 
This function carries out a blocking send and a receive in a 
single call.  

• the function uses two disjoint, non-overlapping  buffers to 
send and receive messages. 

• What makes it especially useful is that the MPI 
implementation schedules the communications so that the 
program won’t hang or crash.  

• If it happens that the send and the receive buffers should 
be the same, MPI provides the alternative int 
MPI_Sendrecv_replace.



         

      
         

      

Non-blocking operations
• The use of blocking communication operations can lead to waiting times in 

which the blocked process does not perform useful work.  

• A non-blocking send operation initiates the sending of a message and returns 
control to the sending process as soon as possible. Upon return, the send 
operation has been started, but the send buffer specified cannot be reused 
safely, i.e., the transfer into an internal system buffer may still be in progress.  
A separate completion operation is provided to test whether the send operation 
has been completed locally.  

• MPI_Isend has the same interface, adding an opaque structure 
MPI_Request *request that can be used for the identification of a specific 
communication operation.  

• Similarly MPI_Irecv, initiates the receiving of a message and returns control 
to the receiving process as soon as possible. Upon return, the receive 
operation has been started and the runtime system has been informed that the 
receive buffer specified is ready to receive data. But the return of the call does 
not indicate that the receive buffer already contains the data 



         

      
         

      

Blocking vs. Non-blocking Communication 
• MPI_Send/MPI_Recv are blocking communication calls  

• Return of the routine implies completion  

• When these calls return the memory locations used in the message 
transfer can be safely accessed for reuse  

• For “send” completion implies variable sent can be reused/modified  

• Modifications will not affect data intended for the receiver  

• For “receive” variable received can be read  

• MPI_ISend/MPI_IRecv are non-blocking variants  

• Routine returns immediately – completion has to be separately tested for  

• These are primarily used to overlap computation and communication to 
improve performance 



         

      
         

      

Blocking Send-Receive Diagram 



         

      
         

      

Completion and waiting
• int MPI_Test (MPI Request *request, int *flag, 
MPI_Status *status)  

• test for the completion of a non-blocking communication operation.  

• The call returns flag = 1 (true), if the communication operation 
identified by request has been completed. Otherwise, flag = 0. The 
parameter status contains information on the message received, as 
seen before. 

• int MPI_Wait (MPI_Request *request, MPI_Status 
*status)  

• can be used to wait for the completion of a non-blocking communication 
operation. When calling this function, the calling process is blocked until 
the operation identified by request has been completed. 



         

      
         

      

Multiple Completions 
• It is sometimes desirable to wait on multiple requests: 

• MPI_Waitall(count, array_of_requests,  
            array_of_statuses) 

• MPI_Waitany(count, array_of_requests,  
            &index, &status)

• MPI_Waitsome(count, array_of_requests,  
   array_of_indices, array_of_statuses)

• There are corresponding versions of test for each of 
these 



         

      
         

      

Non-Blocking Send-Receive Diagram 



         

      
         

      

Example: non-Blocking communication example 
int main(int argc, char ** argv) {

  // ...snip...

  if (rank == 0) { 

    for (i=0; i< 100; i++) {

      /* Compute each data element and send it out */ 

      data[i] = compute(i);

      MPI_ISend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &request[i]);

    }

    MPI_Waitall(100, request, MPI_STATUSES_IGNORE) 

  } else { 

    for (i = 0; i < 100; i++)

      MPI_Recv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

  } 

  // ...snip...

}



         

      
         

      

Probe to receive
• Check for existence of data to receive, without actually receiving them   

• The user can then decide how to receive them, based on the 
information returned by the probe (basically, the information returned 
by status)  

• In particular, the user may allocate memory for the receive buffer, 
according to the length of the probed message  

• Blocking Probe, wait till match  
int MPI_Probe(int source, int tag, MPI_Comm comm, 
MPI_Status *status);  

• Non Blocking Probe, flag true if ready 
int MPI_Iprobe(int source,int tag,MPI_Comm comm,int 
*flag,MPI_Status *status); 



         

      
         

      

Synchronous mode
• In the standard mode, a send operation can be completed even if 

the corresponding receive operation has not yet been started (if 
system buffers are used).  

• In contrast, in synchronous mode, a send operation will be 
completed not before the corresponding receive operation has been 
started and the receiving process has started to receive the data 
sent: MPI_Ssend() (blocking) and MPI_Issend() (non blocking) 

• The execution of a send and receive operation in synchronous mode 
leads to a form of synchronization between the sending and the 
receiving processes:  

• the return of a send operation in synchronous mode indicates that 
the receiver has started to store the message in its local receive 
buffer. 



         

      
         

      

Buffered mode
• In buffered mode, the local execution and termination of a send 

operation is not influenced by non-local events as is the case for the 
synchronous mode and can be the case for standard mode if no or too 
small system buffers are used.  

• Control is returned to the calling process even if the corresponding 
receive operation has not yet been started.  

• If the corresponding receive operation has not yet been started, the 
runtime system must buffer the outgoing message. 

• The send buffer (provided by user to runtime system) can be reused 
immediately after control returns, even if a non-blocking send is used.  

• Blocking: MPI_Bsend() - same parameters as MPI_Send() with the 
same meaning. Non-blocking send operation in buffered mode is 
performed by calling MPI_Ibsend(), which has the same parameters 
as MPI_Isend() 



         

      
         

      

Buffered mode
• In buffered mode, the local execution and termination of a send 

operation is not influenced by non-local events as is the case for the 
synchronous mode and can be the case for standard mode if no or too 
small system buffers are used.  

• Control is returned to the calling process even if the corresponding 
receive operation has not yet been started.  

• If the corresponding receive operation has not yet been started, the 
runtime system must buffer the outgoing message. 

• The send buffer (provided by user to runtime system) can be reused 
immediately after control returns, even if a non-blocking send is used.  

• Blocking: MPI_Bsend() - same parameters as MPI_Send() with the 
same meaning. Non-blocking send operation in buffered mode is 
performed by calling MPI_Ibsend(), which has the same parameters 
as MPI_Isend() 

Before sending attach the user provided buffer with  
MPI_Buffer_attach(void *buf, int size)  

 
Message may remain in the buffer until a matching receive is posted.  
MPI_Buffer_Detach() will block until all messages are received 



         

      
         

      

Point-to-point communication modes

Communication mode Advantages Disadvantages

Synchronous

Safest, and therefore most 
portable  

SEND/RECV order not critical  
Amount of buffer space 

irrelevant  

Can incur substantial 
synchronization overhead  

Buffered

Decouples SEND from RECV 
No sync overhead on SEND 

Order of SEND/RECV irrelevant 
Programmer can control size of 

buffer space  

Additional system overhead 
incurred by copy to buffer 

Standard Good for many cases 
Either uses an internal buffer or 

buffered: may lead to 
unexpected deadlock



         

      
         

      

Collective Communication 
• A communication operation is called collective or 

global if all or a subset of the processes of a parallel 
program are involved.  

• All processes in a communicator are involved, 
and all must make the same call at the same 
time. For use on a subset, you need to create 
another communicator. 

• All datatypes and counts must be the same in all 
of the calls that match (i.e. on all processes)  

• Often simplify distribution of data to workers.



         

      
         

      

Types of collective communication

• Global Synchronization (barrier synchronization)  

• Global Communication (broadcast, scatter, gather, 
etc.)  

• Global Operations (sum, global maximum, etc.)  

• All collective operations are blocking 



         

      
         

      

Barrier synchronization
• A node invoking the barrier routine will be blocked 

until all the nodes within the group (communicator) 
have invoked it  

• MPI_Barrier(MPI_Comm comm)

• Almost never required in a parallel program  

• Occasionally useful in measuring performance 
and load balancing. Eliminate once debugging is 
finished. 



         

      
         

      

Broadcast
• MPI_Bcast is called by both the sender (called the root 

process) and the processes that are to receive the 
broadcast  

• MPI_Bcast is not a “multi-send”  

• “root” argument is the rank of the sender; this tells MPI 
which process originates the broadcast and which 
receive  



         

      
         

      

Broadcast
• MPI_Bcast is called by both the sender (called the root 

process) and the processes that are to receive the 
broadcast  

• MPI_Bcast is not a “multi-send”  

• “root” argument is the rank of the sender; this tells MPI 
which process originates the broadcast and which 
receive  

MPI_Bcast(void* buffer,
              int count,
              MPI_Datatype datatype,
              int root,
              MPI_Comm comm)

E.g.: 
float A[N][N], Ap[N/P][N], b[N], c[N], cp[N/P];
//...
root = 0;
MPI_Bcast(b, N, MPI_Float, root, MPI_COMM_WORLD);



         

      
         

      

Gather
• Each process sends content of send buffer to the root 

process  

• Root receives and stores in rank order  

• int MPI_Gather (void *sendbuf, int 
sendcount, MPI_Datatype sendtype,  
void *recvbuf, int recvcount, MPI_Datatype 
recvtype, int root, MPI_Comm comm); 



         

      
         

      

Scatter
• Inverse of MPI_Gather  

• Data elements on root listed in rank order – each processor gets 
corresponding data chunk after call to scatter  

• int MPI_Scatter (void *sendbuf, int sendcount, 
MPI_Datatype sendtype, void *recvbuf, int recvcount, 
MPI_Datatype recvtype, int root, MPI_Comm comm);  

• All arguments are significant on root, while on other processes only 
recvbuf, recvcount, recvtype, root, and comm are significant 



         

      
         

      

Scatter
• Inverse of MPI_Gather  

• Data elements on root listed in rank order – each processor gets 
corresponding data chunk after call to scatter  

• int MPI_Scatter (void *sendbuf, int sendcount, 
MPI_Datatype sendtype, void *recvbuf, int recvcount, 
MPI_Datatype recvtype, int root, MPI_Comm comm);  

• All arguments are significant on root, while on other processes only 
recvbuf, recvcount, recvtype, root, and comm are significant 



         

      
         

      

Scatter and gather

• Gather: you automatically create a serial array from 
a distributed one  

• Scatter: you automatically create a distributed array 
from a serial one  

• Can be used to distribute workload and collect 
results



         

      
         

      

Variations
• There are AllXXXX and XXXv variations of gather 

• All versions deliver results to all participating 
processes.  

• v versions allow the chunks to have different sizes 
(also for scatter).  

• Alltoall (with v variation) distributes load 
between all processes



         

      
         

      

Variations
• There are AllXXXX and XXXv variations of gather 

• All versions deliver results to all participating 
processes.  

• v versions allow the chunks to have different sizes 
(also for scatter).  

• Alltoall (with v variation) distributes load 
between all processes



         

      
         

      

Reduction operations
• To perform a global reduce operation across all members of a group. d0 

o d1 o d2 o d3 o … o ds-2 o ds-1  

• di = data in process rank i  

• single variable, or  

• vector 

• o = associative operation  

• Example: 

• global sum or product  

• global maximum or minimum  

• global user-defined operation 



         

      
         

      

Reduction operations
• To perform a global reduce operation across all members of a group. d0 

o d1 o d2 o d3 o … o ds-2 o ds-1  

• di = data in process rank i  

• single variable, or  

• vector 

• o = associative operation  

• Example: 

• global sum or product  

• global maximum or minimum  

• global user-defined operation 

MPI_Reduce(void *sbuf,
           void *rbuf,
           int count,
           MPI_Datatype stype,
           MPI_Op op,
           int root,
           MPI_Comm comm)

Es.:
float abcd[4], sum[4];
// ...
MPI_Reduce(abcd, sum, 4, MPI_Float, MPI_SUM, root,
           MPI_COMM_WORLD);



         

      
         

      

Reduction operations
• To perform a global reduce operation across all members of a group. d0 

o d1 o d2 o d3 o … o ds-2 o ds-1  

• di = data in process rank i  

• single variable, or  

• vector 

• o = associative operation  

• Example: 

• global sum or product  

• global maximum or minimum  

• global user-defined operation 

MPI_Reduce(void *sbuf,
           void *rbuf,
           int count,
           MPI_Datatype stype,
           MPI_Op op,
           int root,
           MPI_Comm comm)

Es.:
float abcd[4], sum[4];
// ...
MPI_Reduce(abcd, sum, 4, MPI_Float, MPI_SUM, root,
           MPI_COMM_WORLD);

abcd[4] sum[4]



         

      
         

      

AllReduce variation

float abcd[4], sum[4];

// ...

MPI_AllReduce(abcd, sum, 4, MPI_Float, MPI_SUM, MPI_COMM_WORLD);

abcd[4] sum[4]



         

      
         

      

Reduce_scatter
MPI_Reduce_scatter(void *sbuf,  
                   void *rbuf,  
                   int *rcounts,  
                   MPI_Datatype stype,  
                   MPI_Op op,  
                   MPI_Comm comm)

• Same as Reduce followed by Scatter  

• Result vector of the reduction operation is scattered 
to the processes into the real result buffers 



         

      
         

      

Reduce_scatter
MPI_Reduce_scatter(void *sbuf,  
                   void *rbuf,  
                   int *rcounts,  
                   MPI_Datatype stype,  
                   MPI_Op op,  
                   MPI_Comm comm)

• Same as Reduce followed by Scatter  

• Result vector of the reduction operation is scattered 
to the processes into the real result buffers 



         

      
         

      

MPI Collective Routines 
• Many Routines: MPI_AllGather, MPI_AllGatherV, 

MPI_AllReduce, MPI_AllToAll, MPI_AllToAllV, 
MPI_BCast, MPI_Gather, MPI_GatherV, 
MPI_Reduce, MPI_ReduceScatter, MPI_Scan, 
MPI_Scatter, MPI_ScatterV  

• “All” versions deliver results to all participating 
processes 

• “V” versions (stands for vector) allow the hunks to 
have different sizes



         

      
         

      

MPI Built-in Collective Computation Operations 
• MPI_MAX 

• MPI_MIN 

• MPI_PROD 

• MPI_SUM 

• MPI_LAND 

• MPI_LOR 

• MPI_LXOR 

• MPI_BAND 

• MPI_BOR 

• MPI_BXOR 

• MPI_MAXLOC 

• MPI_MINLOC  

• Maximum  

• Minimum 

• Product 

• Sum 

• Logical and 

• Logical or 

• Logical exclusive or  

• Bitwise and 

• Bitwise or  

• Bitwise exclusive or  

• Maximum and location  

• Minimum and location 



         

      
         

      

User-Defined Reduction Operations 
• It’s possible to provide user-defined operations 

• should be associative, can be non-commutative  

• must perform the operation on two vectors:  
vecA o vecB 

• MPI_Op_create( MPI_User_function *func, 
int commute, MPI_Op *op);  
commute tells the MPI library whether func is 
commutative or not 

• MPI_Op_free( MPI_User_function *func);



         

      
         

      

User-Defined Reduction Operations 
• It’s possible to provide user-defined operations 

• should be associative, can be non-commutative  

• must perform the operation on two vectors:  
vecA o vecB 

• MPI_Op_create( MPI_User_function *func, 
int commute, MPI_Op *op);  
commute tells the MPI library whether func is 
commutative or not 

• MPI_Op_free( MPI_User_function *func);

void oneNorm(float *in, float *inout, int *len, MPI_Datatype *type)  {
  int i;
  for (i=0; i<*len; i++) {
    *inout = fabs(*in) + fabs(*inout); /* one-norm */

in++;
    inout++;
  }
}



         

      
         

      

Note on communications types
• Use collective communications over point-to-point 

• point-to-point is a bit like assembler 
programming: low-level, possibly very efficient 
and RISKY. 

• you are still risking deadlocks, though: 

• the participating processes should call the 
matching collective communication operations 
in the same order.  
Also when mixing point-to-point and collective 
communications



         

      
         

      

User’s datatypes
• MPI has no knowledge of C++ classes or structs 

• Must create own datatypes 

• if the struct is made with different types there’s 
an annoying process creating arrays  

• For C++ use Boost.MPI and Boost.Serialization: 
add serialization code to class then use 
Boost.MPI to send the messages.
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Lawrence Snyder, Pearson - Chapt. 7 
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Springer - Chapt. 5 

• An introduction to parallel programming, Peter S. 
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