

Parallel
Computing

Prof. Marco Bertini

Distributed
memory:

message passing

Distributed memory systems
• From a programmer’s point of view, a distributed-memory

system consists of a collection of core-memory pairs
connected by a network, and the memory associated with a
core is directly accessible only to that core.

• Information is passed between nodes using the network

• No cache coherence and no need for special cache
coherency hardware

Parallel Computing Model
• In this context SPMD is the typical computing model

• Each process has its own exclusive address space. Typical 1
process per processor. The same code is executed by every
process.

• Only supports explicit parallelization

• Adds complexity to programming

• Encourages locality of data access

• The program running on one of the core-memory pairs needs to
communicate with other SPMDs

• we need a method to let processes communicate

Message passing programming
• Program is a set of named processes

• Process has thread of control and local memory with local address space

• Processes communicate via explicit data transfers

• Messages between source and destination, where source and  
destination are named processors P0...Pn (or compute nodes)

• Logically shared data is explicitly partitioned over local memories

• Communication with send/recv via standard message passing libraries, such
as MPI and its many “open” variants

• Each node has a network interface

• Communication and synchronization via network

• Message latency and bandwidth is dependent on network topology and
routing algorithms

Message passing programming

• Programming model vs. machine models

MPI
• The Message-Passing Interface (MPI) is a standardization of a

message-passing library interface specification.

• MPI defines the syntax and semantics of library routines for
standard communication patterns

• It’s a library, with bindings for C and Fortran. C++ library from Boost.
Java versions are also available.

• Many open source and public implementations

• you need to make no code changes when moving your code
between implementations (thanks to the standardized API)

• Supports static (# processes specified before execution - MPI-1) and
dynamic (processes created during execution - MPI-2) process
creation

MPI
• The Message-Passing Interface (MPI) is a standardization of a

message-passing library interface specification.

• MPI defines the syntax and semantics of library routines for
standard communication patterns

• It’s a library, with bindings for C and Fortran. C++ library from Boost.
Java versions are also available.

• Many open source and public implementations

• you need to make no code changes when moving your code
between implementations (thanks to the standardized API)

• Supports static (# processes specified before execution - MPI-1) and
dynamic (processes created during execution - MPI-2) process
creation

Open MPI has Java bindings.

Open source implementations

• Two important open source implementations are:

• MPICH - http://www.mpich.org

• Open MPI - https://www.open-mpi.org/

• They both support the latest MPI standard: MPI-3.1

http://www.mpich.org
https://www.open-mpi.org/

MPI: how does it work
• The same program is launched for execution independently on a

collection of cores

• Each core executes the program. To support portability, MPI
programs should be written for an arbitrary number of processes.
The actual number of processes used for a specific program
execution is set when starting the program.

• What differentiates processes is their rank: processes with different
ranks do different things (“branching based on the process rank”)

• Process 0 is often treated as “master”

• Communications between process may be “point-to-point” (pairwise),
where only two communicating processes are involved, or they may
be “collective”, where all of the processes are involved.

Explicit parallelism

• All parallelism is explicit: the programmer is
responsible for correctly identifying parallelism and
implementing parallel algorithms using MPI
constructs.

MPI communications

• Communicators let you specify groups of processes that can intercommunicate

• Default is MPI_COMM_WORLD. Can create groups and hierarchies of processes.

MPI communications

• Communicators let you specify groups of processes that can intercommunicate

• Default is MPI_COMM_WORLD. Can create groups and hierarchies of processes.

For two different communicators, the same process can have two different ranks: so the
meaning of a “rank” is only defined when you specify the communicator

MPI_Comm_create
• We can create other communicators with: 
 
int MPI_Comm_create(MPI_Comm comm,
MPI_Group group, MPI_Comm *newcomm);

• Input Parameters 
comm - communicator (handle) 
group - subset of the family of processes making
up the comm (handle)

• Output Parameter 
comm_out - new communicator (handle)

Minimal set of MPI routines
• Example of MPI C routines

• MPI_Init - Initializes MPI.

• MPI_Finalize - Terminates MPI.

• MPI_Comm_size - Determines the number of processes.

• MPI_Comm_rank - Determines the label of calling process.

• MPI_Send - Sends a message.

• MPI_Recv - Receives a message.

• MPI_Probe - Test for message (returns Status object).  

Minimal set of MPI routines
• Example of MPI C routines

• MPI_Init - Initializes MPI.

• MPI_Finalize - Terminates MPI.

• MPI_Comm_size - Determines the number of processes.

• MPI_Comm_rank - Determines the label of calling process.

• MPI_Send - Sends a message.

• MPI_Recv - Receives a message.

• MPI_Probe - Test for message (returns Status object).  

#include "mpi.h"
#include <iostream>
int main(int argc, char **argv) {
 int my_rank, n;
 char hostname[128];

 MPI_Init(&argc,&argv); // Has to be called first, and once
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 MPI_Comm_size(MPI_COMM_WORLD, &n);
 gethostname(hostname, 128);
 if (my_rank == 0) { /* master */
 printf("I am the master: %s\n", hostname);
 }
 else { /* worker */  
 printf("I am a worker: %s (rank=%d/%d)\n", hostname, my_rank, n-1);
 }
 MPI_Finalize(); // has to be called, and once
 return 0;  
 }

Minimal set of MPI routines
• Example of MPI C routines

• MPI_Init - Initializes MPI.

• MPI_Finalize - Terminates MPI.

• MPI_Comm_size - Determines the number of processes.

• MPI_Comm_rank - Determines the label of calling process.

• MPI_Send - Sends a message.

• MPI_Recv - Receives a message.

• MPI_Probe - Test for message (returns Status object).  

#include "mpi.h"
#include <iostream>
int main(int argc, char **argv) {
 int my_rank, n;
 char hostname[128];

 MPI_Init(&argc,&argv); // Has to be called first, and once
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 MPI_Comm_size(MPI_COMM_WORLD, &n);
 gethostname(hostname, 128);
 if (my_rank == 0) { /* master */
 printf("I am the master: %s\n", hostname);
 }
 else { /* worker */  
 printf("I am a worker: %s (rank=%d/%d)\n", hostname, my_rank, n-1);
 }
 MPI_Finalize(); // has to be called, and once
 return 0;  
 }

Run the program with the appropriate MPI command, e.g. using 4 instances:

mpiexec -np 4 ./openmpi_hello_world

I am a worker: hostname.local (rank=3/3)
I am a worker: hostname.local (rank=1/3)
I am a worker: hostname.local (rank=2/3)
I am the master: hostname.local  
 
mpiexec –host h1,h2,h3,h4 –np 16 ./test
• Runs the first four processes on h1, the next four on h2, etc.
mpiexec -hostfile nodeconfig -npernode 16 ~/test
• Runs 16 processes per node, using the nodes listed in nodeconfig file

Minimal set of MPI routines
• Example of MPI C routines

• MPI_Init - Initializes MPI.

• MPI_Finalize - Terminates MPI.

• MPI_Comm_size - Determines the number of processes.

• MPI_Comm_rank - Determines the label of calling process.

• MPI_Send - Sends a message.

• MPI_Recv - Receives a message.

• MPI_Probe - Test for message (returns Status object).  

#include "mpi.h"
#include <iostream>
int main(int argc, char **argv) {
 int my_rank, n;
 char hostname[128];

 MPI_Init(&argc,&argv); // Has to be called first, and once
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
 MPI_Comm_size(MPI_COMM_WORLD, &n);
 gethostname(hostname, 128);
 if (my_rank == 0) { /* master */
 printf("I am the master: %s\n", hostname);
 }
 else { /* worker */  
 printf("I am a worker: %s (rank=%d/%d)\n", hostname, my_rank, n-1);
 }
 MPI_Finalize(); // has to be called, and once
 return 0;  
 }

Run the program with the appropriate MPI command, e.g. using 4 instances:

mpiexec -np 4 ./openmpi_hello_world

I am a worker: hostname.local (rank=3/3)
I am a worker: hostname.local (rank=1/3)
I am a worker: hostname.local (rank=2/3)
I am the master: hostname.local  
 
mpiexec –host h1,h2,h3,h4 –np 16 ./test
• Runs the first four processes on h1, the next four on h2, etc.
mpiexec -hostfile nodeconfig -npernode 16 ~/test
• Runs 16 processes per node, using the nodes listed in nodeconfig file

 • In general, starting an MPI program is dependent on the
implementation of MPI you are using, and might require various scripts,

program arguments, and/or environment variables.  

 • mpiexec <args> is part of MPI-2, as a recommendation, but not
a requirement, for implementors.

• Compilation is often carried on using a driver like mpicc that manages all
the -L, -l, and -I parameters

Types of MPI operations
• Blocking operation: an MPI communication operation is

blocking, if return of control to the calling process indicates
that all resources, such as buffers, specified in the call can
be reused, e.g., for other operations. In particular, all state
transitions initiated by a blocking operation are completed
before control returns to the calling process.

• Non-blocking operation: an MPI communication operation
is non-blocking, if the corresponding call may return before
all effects of the operation are completed and before the
resources used by the call can be reused. Thus, a call of a
non-blocking operation only starts the operation. The
operation itself is completed not before all state transitions
caused are completed and the resources specified can be
reused.

Types of MPI operations
• Blocking operation: an MPI communication operation is

blocking, if return of control to the calling process indicates
that all resources, such as buffers, specified in the call can
be reused, e.g., for other operations. In particular, all state
transitions initiated by a blocking operation are completed
before control returns to the calling process.

• Non-blocking operation: an MPI communication operation
is non-blocking, if the corresponding call may return before
all effects of the operation are completed and before the
resources used by the call can be reused. Thus, a call of a
non-blocking operation only starts the operation. The
operation itself is completed not before all state transitions
caused are completed and the resources specified can be
reused.

The terms blocking and non-blocking describe the behavior
of operations from the local view of the executing process,
without taking the effects on other processes into account.

Types of MPI operations
• Synchronous communication: the communication

operation between sender and receiver does not
complete before both processes have started their
communication operation. The completion of a
synchronous send indicates not only that the send
buffer can be reused, but also that the receiving
process has started the execution of the
corresponding receive operation.

• Asynchronous communication: using
asynchronous communication, the sender can
execute its communication operation without any
coordination with the receiving process.

Types of MPI operations
• Synchronous communication: the communication

operation between sender and receiver does not
complete before both processes have started their
communication operation. The completion of a
synchronous send indicates not only that the send
buffer can be reused, but also that the receiving
process has started the execution of the
corresponding receive operation.

• Asynchronous communication: using
asynchronous communication, the sender can
execute its communication operation without any
coordination with the receiving process.

These types of operations consider the effect of
communication operations from a global viewpoint.

Data communication
• Data communication in MPI is like email exchange

• One process sends a copy of the data to another process (or a group of processes), and the
other process receives it

• Communication requires the following information:

• Sender has to know:

• Whom to send the data to (receiver’s process rank)

• What kind of data to send (100 integers or 200 characters, etc)

• A user-defined “tag” for the message (think of it as an email subject; allows the receiver to
understand what type of data is being received)

• Receiver “might” have to know:

• Who is sending the data (OK if the receiver does not know; in this case anyone can send)

• What kind of data is being received (partial information is OK: I might receive up to 1000
integers)

• What the user-defined “tag” of the message is (OK if the receiver does not know)

Tags: why ?
• Messages are sent with an accompanying user-

defined integer tag, to assist the receiving process
in identifying the message.

• For example, if an application is expecting two
types of messages from a peer, tags can help
distinguish these two types.

• Messages can be screened at the receiving end by
specifying a specific tag.

• MPI_ANY_TAG is a special “wild-card” tag that can
be used by the receiver to match any tag.

MPI_Send(&buf, count, datatype, dest, tag, comm)

MPI Point-to-point Send Format

Address of send
buffer with data

items to send

data type of each item
MPI_Datatype

rank of destination
process (int)

message tag
(int)

communicator
MPI_Comm

MPI_Send(&buf, count, datatype, dest, tag, comm)

MPI Point-to-point Send Format

Address of send
buffer with data

items to send

data type of each item
MPI_Datatype

rank of destination
process (int)

message tag
(int)

communicator
MPI_Comm

MPI_CHAR, MPI_FLOAT, … can create datatypes.

MPI_Send(&buf, count, datatype, dest, tag, comm)

MPI Point-to-point Send Format

Address of send
buffer with data

items to send

data type of each item
MPI_Datatype

rank of destination
process (int)

message tag
(int)

communicator
MPI_Comm

MPI_CHAR, MPI_FLOAT, … can create datatypes.

Can be used by the
programmer to differentiate the

semantic meaning of a
message, e.g. data to be

printed vs. to be processed…

MPI_Send(&buf, count, datatype, dest, tag, comm)

MPI Point-to-point Send Format

Address of send
buffer with data

items to send

data type of each item
MPI_Datatype

rank of destination
process (int)

message tag
(int)

communicator
MPI_Comm

MPI_CHAR, MPI_FLOAT, … can create datatypes.

Can be used by the
programmer to differentiate the

semantic meaning of a
message, e.g. data to be

printed vs. to be processed…

This is a blocking
operation

MPI Point-to-point Recv Format

MPI_Recv(&buf, count, datatype, src, tag, comm, &status)

Address of buffer
to collect data

Max # items to receive

data type of each item
MPI_Datatype

rank of source process
(int)

message tag
(int)

communicator
MPI_Comm

status after
operation (int)

MPI Point-to-point Recv Format

MPI_Recv(&buf, count, datatype, src, tag, comm, &status)

Address of buffer
to collect data

Max # items to receive

data type of each item
MPI_Datatype

rank of source process
(int)

message tag
(int)

communicator
MPI_Comm

status after
operation (int)

a special constant MPI_ANY_SOURCE
means that any source process can send

MPI Point-to-point Recv Format

MPI_Recv(&buf, count, datatype, src, tag, comm, &status)

Address of buffer
to collect data

Max # items to receive

data type of each item
MPI_Datatype

rank of source process
(int)

message tag
(int)

communicator
MPI_Comm

status after
operation (int)

a special constant MPI_ANY_SOURCE
means that any source process can send

MPI_ANY_TAG accepts any tag

MPI Point-to-point Recv Format

MPI_Recv(&buf, count, datatype, src, tag, comm, &status)

Address of buffer
to collect data

Max # items to receive

data type of each item
MPI_Datatype

rank of source process
(int)

message tag
(int)

communicator
MPI_Comm

status after
operation (int)

a special constant MPI_ANY_SOURCE
means that any source process can send

MPI_ANY_TAG accepts any tagThis is a blocking
operation

MPI Point-to-point Recv Format

MPI_Recv(&buf, count, datatype, src, tag, comm, &status)

Address of buffer
to collect data

Max # items to receive

data type of each item
MPI_Datatype

rank of source process
(int)

message tag
(int)

communicator
MPI_Comm

status after
operation (int)

a special constant MPI_ANY_SOURCE
means that any source process can send

MPI_ANY_TAG accepts any tag

// waiting for all the messages from comm_sz sources in no specific order
for (i = 1; i < comm_sz; i++) {  
 MPI_Recv(result, result_sz, result_type, MPI_ANY_SOURCE,  
 result_tag, comm, MPI_STATUS_IGNORE);  
 Process_result(result);
}

This is a blocking
operation

Send/receive example
 int source; /* rank of sender */  
 int dest; /* rank of receiver */  
 int tag = 0; /* tag for messages */  
 char message[100]; /* storage for message */  
 MPI_Status status; /* return status for receive */  
 
 
 MPI_Init(&argc, &argv); // start MPI library  
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); // Find out process rank  
 MPI_Comm_size(MPI_COMM_WORLD, &p); // Find out number of processes  
 
 if (my_rank != 0) {  
 /* Create message */  
 sprintf(message, "Greetings from process %d!", my_rank);  
 dest = 0;  
 /* Use strlen+1 so that '\0' gets transmitted */  
 MPI_Send(message, strlen(message) + 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);  
 }  
 else { /* my_rank == 0 */  
 for (source = 1; source < p; source++) {  
 MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);  
 printf("Master program received msg: %s\n", message);  
 }  
 }

 MPI_Finalize(); // Shut down MPI

Send/receive example
 int source; /* rank of sender */  
 int dest; /* rank of receiver */  
 int tag = 0; /* tag for messages */  
 char message[100]; /* storage for message */  
 MPI_Status status; /* return status for receive */  
 
 
 MPI_Init(&argc, &argv); // start MPI library  
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); // Find out process rank  
 MPI_Comm_size(MPI_COMM_WORLD, &p); // Find out number of processes  
 
 if (my_rank != 0) {  
 /* Create message */  
 sprintf(message, "Greetings from process %d!", my_rank);  
 dest = 0;  
 /* Use strlen+1 so that '\0' gets transmitted */  
 MPI_Send(message, strlen(message) + 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);  
 }  
 else { /* my_rank == 0 */  
 for (source = 1; source < p; source++) {  
 MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);  
 printf("Master program received msg: %s\n", message);  
 }  
 }

 MPI_Finalize(); // Shut down MPI

tells the MPI system to do all of the necessary setup, like
allocating buffers for communications, assign ranks to

processes, etc. No other MPI functions should be called before.

Send/receive example
 int source; /* rank of sender */  
 int dest; /* rank of receiver */  
 int tag = 0; /* tag for messages */  
 char message[100]; /* storage for message */  
 MPI_Status status; /* return status for receive */  
 
 
 MPI_Init(&argc, &argv); // start MPI library  
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); // Find out process rank  
 MPI_Comm_size(MPI_COMM_WORLD, &p); // Find out number of processes  
 
 if (my_rank != 0) {  
 /* Create message */  
 sprintf(message, "Greetings from process %d!", my_rank);  
 dest = 0;  
 /* Use strlen+1 so that '\0' gets transmitted */  
 MPI_Send(message, strlen(message) + 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);  
 }  
 else { /* my_rank == 0 */  
 for (source = 1; source < p; source++) {  
 MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);  
 printf("Master program received msg: %s\n", message);  
 }  
 }

 MPI_Finalize(); // Shut down MPI

tells the MPI system to do all of the necessary setup, like
allocating buffers for communications, assign ranks to

processes, etc. No other MPI functions should be called before.

Frees resources. No MPI functions should be called after.

Send/receive example
 int source; /* rank of sender */  
 int dest; /* rank of receiver */  
 int tag = 0; /* tag for messages */  
 char message[100]; /* storage for message */  
 MPI_Status status; /* return status for receive */  
 
 
 MPI_Init(&argc, &argv); // start MPI library  
 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); // Find out process rank  
 MPI_Comm_size(MPI_COMM_WORLD, &p); // Find out number of processes  
 
 if (my_rank != 0) {  
 /* Create message */  
 sprintf(message, "Greetings from process %d!", my_rank);  
 dest = 0;  
 /* Use strlen+1 so that '\0' gets transmitted */  
 MPI_Send(message, strlen(message) + 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);  
 }  
 else { /* my_rank == 0 */  
 for (source = 1; source < p; source++) {  
 MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);  
 printf("Master program received msg: %s\n", message);  
 }  
 }

 MPI_Finalize(); // Shut down MPI

tells the MPI system to do all of the necessary setup, like
allocating buffers for communications, assign ranks to

processes, etc. No other MPI functions should be called before.

Frees resources. No MPI functions should be called after.

If the type of the message is the same and the size of the receiving buffer is >= of the
sending buffer then the message can be successfully received

Message status
• A receiver can receive a message without knowing:

• the amount of data in the message

• the sender of the message (is using MPI_ANY_SOURCE)

• the tag of the message (if using MPI_ANY_TAG).

• Using a MPI_Status status_variable to get the status of a
received message is possible to obtain
status_variable.MPI_SOURCE and status_variable.MPI_TAG.

• To get message size use: MPI_Get_count(&status_variable,
recv_type, &count) to store in the int count variable the size of
the message.

• status_variable.MPI_ERROR contains an error code.

Communication
• Internally a message transfer in MPI is usually

performed in three steps:

1. The message is assembled by adding a header with
information on the sending process, the receiving
process, the tag, and the communicator used.

2. The message is sent via the network from the
sending process to the receiving process.

3. At the receiving side, the data entries of the
message are copied from the system buffer into the
receive buffer specified by MPI_Recv().

Communication
• Both MPI_Send() and MPI_Recv() are blocking, asynchronous operations.

• This means that an MPI_Recv() operation can also be started when the corresponding
MPI_Send() operation has not yet been started. The process executing the
MPI_Recv() operation is blocked until the specified receive buffer contains the data
elements sent.

• Regarding sending it may depends on the size of the message and the MPI
implementation:

• If the message is sent directly from the send buffer specified without using an internal
system buffer, then the MPI_Send() operation is blocked until the entire message
has been copied into a receive buffer at the receiving side.

• If the message is first copied into an internal system buffer of the runtime system, the
sender can continue its operations as soon as the copy operation into the system
buffer is completed.

• When using MPI_Send, when the function returns, we don’t actually know whether the
message has been transmitted. We only know that the storage we used for the message,
the send buffer, is available for reuse by our program.

Communication
• Both MPI_Send() and MPI_Recv() are blocking, asynchronous operations.

• This means that an MPI_Recv() operation can also be started when the corresponding
MPI_Send() operation has not yet been started. The process executing the
MPI_Recv() operation is blocked until the specified receive buffer contains the data
elements sent.

• Regarding sending it may depends on the size of the message and the MPI
implementation:

• If the message is sent directly from the send buffer specified without using an internal
system buffer, then the MPI_Send() operation is blocked until the entire message
has been copied into a receive buffer at the receiving side.

• If the message is first copied into an internal system buffer of the runtime system, the
sender can continue its operations as soon as the copy operation into the system
buffer is completed.

• When using MPI_Send, when the function returns, we don’t actually know whether the
message has been transmitted. We only know that the storage we used for the message,
the send buffer, is available for reuse by our program.

Many implementations of MPI set a threshold at which the system switches from buffering to
blocking. That is, messages that are relatively small will be buffered by MPI_Send, but for

larger messages, it will block.

Delivery order
• An important property to be fulfilled by any MPI

library is that messages are delivered in the order
in which they have been sent (nonovertaking).

• If a sender sends two messages one after another
to the same receiver and both messages fit to the
first MPI_Recv() called by the receiver, the MPI
runtime system ensures that the first message sent
will always be received first.

• However, there is no restriction on the arrival of
messages sent from different processes.

Delivery order
• An important property to be fulfilled by any MPI

library is that messages are delivered in the order
in which they have been sent (nonovertaking).

• If a sender sends two messages one after another
to the same receiver and both messages fit to the
first MPI_Recv() called by the receiver, the MPI
runtime system ensures that the first message sent
will always be received first.

• However, there is no restriction on the arrival of
messages sent from different processes.
This is essentially because MPI can’t impose performance on a network…

Problems
• Note that the semantics of MPI_Recv suggests a potential

pitfall in MPI programming: if a process tries to receive a
message and there’s no matching send, then the process
will block forever.

• Similarly, if a call to MPI_Send blocks and there’s no
matching receive, then the sending process can hang.

• We need to be very careful when we’re coding that there
are no mistakes in our calls to MPI_Send and MPI_Recv.  
For example, if the tags don’t match, or if the rank of the
destination process is the same as the rank of the source
process, the receive won’t match the send, and either a
process will hang, or the receive may match another send.

Deadlock
MPI_Comm_rank (comm, &my_rank);

if (my_rank == 0) {

 MPI_Recv(recvbuf, count, MPI_INT, 1, tag, comm, &status);

 MPI_Send(sendbuf, count, MPI_INT, 1, tag, comm);

} else if (my_rank == 1) {

 MPI_Recv(recvbuf, count, MPI_INT, 0, tag, comm, &status);

 MPI_Send(sendbuf, count, MPI_INT, 0, tag, comm);

}

Deadlock
MPI_Comm_rank (comm, &my_rank);

if (my_rank == 0) {

 MPI_Recv(recvbuf, count, MPI_INT, 1, tag, comm, &status);

 MPI_Send(sendbuf, count, MPI_INT, 1, tag, comm);

} else if (my_rank == 1) {

 MPI_Recv(recvbuf, count, MPI_INT, 0, tag, comm, &status);

 MPI_Send(sendbuf, count, MPI_INT, 0, tag, comm);

}
Both processes 0 and 1 execute an MPI_Recv() operation before an MPI_Send()

operation. This leads to a deadlock because of mutual waiting

Deadlock
/* program fragment for which the occurrence of a deadlock

 depends on the implementation */

MPI_Comm_rank (comm, &my_rank);

if (my_rank == 0) {

 MPI_Send(sendbuf, count, MPI_INT, 1, tag, comm);

 MPI_Recv(recvbuf, count, MPI_INT, 1, tag, comm, &status);

} else if (my_rank == 1) {

 MPI_Send(sendbuf, count, MPI_INT, 0, tag, comm);

 MPI_Recv(recvbuf, count, MPI_INT, 0, tag, comm, &status);

}

/* program fragment that does not cause a deadlock */

MPI_Comm_rank (comm, &my_rank);
 
if (my_rank == 0) {

 MPI_Send(sendbuf, count, MPI_INT, 1, tag, comm);
 MPI_Recv(recvbuf, count, MPI_INT, 1, tag, comm, &status);

} else if (my_rank == 1) {

 MPI_Recv(recvbuf, count, MPI_INT, 0, tag, comm, &status);
 MPI_Send(sendbuf, count, MPI_INT, 0, tag, comm);

}

Secure program
• An MPI program is called secure if the correctness

of the program does not depend on assumptions
about specific properties of the MPI runtime
system, like the existence of system buffers or the
size of system buffers.

• If more than two processes exchange messages
such that each process sends and receives a
message, the program must exactly specify in
which order the send and receive operations are to
be executed to avoid deadlocks.

• Using MPI_Sendrecv(), the programmer does not need to
worry about the order of the send and receive operations.
This function carries out a blocking send and a receive in a
single call.

• the function uses two disjoint, non-overlapping buffers to
send and receive messages.

• What makes it especially useful is that the MPI
implementation schedules the communications so that the
program won’t hang or crash.

• If it happens that the send and the receive buffers should
be the same, MPI provides the alternative int
MPI_Sendrecv_replace.

Non-blocking operations
• The use of blocking communication operations can lead to waiting times in

which the blocked process does not perform useful work.

• A non-blocking send operation initiates the sending of a message and returns
control to the sending process as soon as possible. Upon return, the send
operation has been started, but the send buffer specified cannot be reused
safely, i.e., the transfer into an internal system buffer may still be in progress.  
A separate completion operation is provided to test whether the send operation
has been completed locally.

• MPI_Isend has the same interface, adding an opaque structure
MPI_Request *request that can be used for the identification of a specific
communication operation.

• Similarly MPI_Irecv, initiates the receiving of a message and returns control
to the receiving process as soon as possible. Upon return, the receive
operation has been started and the runtime system has been informed that the
receive buffer specified is ready to receive data. But the return of the call does
not indicate that the receive buffer already contains the data

Blocking vs. Non-blocking Communication
• MPI_Send/MPI_Recv are blocking communication calls

• Return of the routine implies completion

• When these calls return the memory locations used in the message
transfer can be safely accessed for reuse

• For “send” completion implies variable sent can be reused/modified

• Modifications will not affect data intended for the receiver

• For “receive” variable received can be read

• MPI_ISend/MPI_IRecv are non-blocking variants

• Routine returns immediately – completion has to be separately tested for

• These are primarily used to overlap computation and communication to
improve performance

Blocking Send-Receive Diagram

Completion and waiting
• int MPI_Test (MPI Request *request, int *flag,
MPI_Status *status)

• test for the completion of a non-blocking communication operation.

• The call returns flag = 1 (true), if the communication operation
identified by request has been completed. Otherwise, flag = 0. The
parameter status contains information on the message received, as
seen before.

• int MPI_Wait (MPI_Request *request, MPI_Status
*status)

• can be used to wait for the completion of a non-blocking communication
operation. When calling this function, the calling process is blocked until
the operation identified by request has been completed.

Multiple Completions
• It is sometimes desirable to wait on multiple requests:

• MPI_Waitall(count, array_of_requests,  
 array_of_statuses)

• MPI_Waitany(count, array_of_requests,  
 &index, &status)

• MPI_Waitsome(count, array_of_requests,  
 array_of_indices, array_of_statuses)

• There are corresponding versions of test for each of
these

Non-Blocking Send-Receive Diagram

Example: non-Blocking communication example
int main(int argc, char ** argv) {

 // ...snip...

 if (rank == 0) {

 for (i=0; i< 100; i++) {

 /* Compute each data element and send it out */

 data[i] = compute(i);

 MPI_ISend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &request[i]);

 }

 MPI_Waitall(100, request, MPI_STATUSES_IGNORE)

 } else {

 for (i = 0; i < 100; i++)

 MPI_Recv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 }

 // ...snip...

}

Probe to receive
• Check for existence of data to receive, without actually receiving them

• The user can then decide how to receive them, based on the
information returned by the probe (basically, the information returned
by status)

• In particular, the user may allocate memory for the receive buffer,
according to the length of the probed message

• Blocking Probe, wait till match  
int MPI_Probe(int source, int tag, MPI_Comm comm,
MPI_Status *status);

• Non Blocking Probe, flag true if ready 
int MPI_Iprobe(int source,int tag,MPI_Comm comm,int
*flag,MPI_Status *status);

Synchronous mode
• In the standard mode, a send operation can be completed even if

the corresponding receive operation has not yet been started (if
system buffers are used).

• In contrast, in synchronous mode, a send operation will be
completed not before the corresponding receive operation has been
started and the receiving process has started to receive the data
sent: MPI_Ssend() (blocking) and MPI_Issend() (non blocking)

• The execution of a send and receive operation in synchronous mode
leads to a form of synchronization between the sending and the
receiving processes:

• the return of a send operation in synchronous mode indicates that
the receiver has started to store the message in its local receive
buffer.

Buffered mode
• In buffered mode, the local execution and termination of a send

operation is not influenced by non-local events as is the case for the
synchronous mode and can be the case for standard mode if no or too
small system buffers are used.

• Control is returned to the calling process even if the corresponding
receive operation has not yet been started.

• If the corresponding receive operation has not yet been started, the
runtime system must buffer the outgoing message.

• The send buffer (provided by user to runtime system) can be reused
immediately after control returns, even if a non-blocking send is used.

• Blocking: MPI_Bsend() - same parameters as MPI_Send() with the
same meaning. Non-blocking send operation in buffered mode is
performed by calling MPI_Ibsend(), which has the same parameters
as MPI_Isend()

Buffered mode
• In buffered mode, the local execution and termination of a send

operation is not influenced by non-local events as is the case for the
synchronous mode and can be the case for standard mode if no or too
small system buffers are used.

• Control is returned to the calling process even if the corresponding
receive operation has not yet been started.

• If the corresponding receive operation has not yet been started, the
runtime system must buffer the outgoing message.

• The send buffer (provided by user to runtime system) can be reused
immediately after control returns, even if a non-blocking send is used.

• Blocking: MPI_Bsend() - same parameters as MPI_Send() with the
same meaning. Non-blocking send operation in buffered mode is
performed by calling MPI_Ibsend(), which has the same parameters
as MPI_Isend()

Before sending attach the user provided buffer with  
MPI_Buffer_attach(void *buf, int size)  

 
Message may remain in the buffer until a matching receive is posted.  
MPI_Buffer_Detach() will block until all messages are received

Point-to-point communication modes

Communication mode Advantages Disadvantages

Synchronous

Safest, and therefore most
portable  

SEND/RECV order not critical  
Amount of buffer space

irrelevant

Can incur substantial
synchronization overhead

Buffered

Decouples SEND from RECV 
No sync overhead on SEND 

Order of SEND/RECV irrelevant
Programmer can control size of

buffer space

Additional system overhead
incurred by copy to buffer

Standard Good for many cases
Either uses an internal buffer or

buffered: may lead to
unexpected deadlock

Collective Communication
• A communication operation is called collective or

global if all or a subset of the processes of a parallel
program are involved.

• All processes in a communicator are involved,
and all must make the same call at the same
time. For use on a subset, you need to create
another communicator.

• All datatypes and counts must be the same in all
of the calls that match (i.e. on all processes)

• Often simplify distribution of data to workers.

Types of collective communication

• Global Synchronization (barrier synchronization)

• Global Communication (broadcast, scatter, gather,
etc.)

• Global Operations (sum, global maximum, etc.)

• All collective operations are blocking

Barrier synchronization
• A node invoking the barrier routine will be blocked

until all the nodes within the group (communicator)
have invoked it

• MPI_Barrier(MPI_Comm comm)

• Almost never required in a parallel program

• Occasionally useful in measuring performance
and load balancing. Eliminate once debugging is
finished. 

Broadcast
• MPI_Bcast is called by both the sender (called the root

process) and the processes that are to receive the
broadcast

• MPI_Bcast is not a “multi-send”

• “root” argument is the rank of the sender; this tells MPI
which process originates the broadcast and which
receive  

Broadcast
• MPI_Bcast is called by both the sender (called the root

process) and the processes that are to receive the
broadcast

• MPI_Bcast is not a “multi-send”

• “root” argument is the rank of the sender; this tells MPI
which process originates the broadcast and which
receive  

MPI_Bcast(void* buffer,
 int count,
 MPI_Datatype datatype,
 int root,
 MPI_Comm comm)

E.g.:
float A[N][N], Ap[N/P][N], b[N], c[N], cp[N/P];
//...
root = 0;
MPI_Bcast(b, N, MPI_Float, root, MPI_COMM_WORLD);

Gather
• Each process sends content of send buffer to the root

process

• Root receives and stores in rank order

• int MPI_Gather (void *sendbuf, int
sendcount, MPI_Datatype sendtype,  
void *recvbuf, int recvcount, MPI_Datatype
recvtype, int root, MPI_Comm comm);

Scatter
• Inverse of MPI_Gather

• Data elements on root listed in rank order – each processor gets
corresponding data chunk after call to scatter

• int MPI_Scatter (void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm);

• All arguments are significant on root, while on other processes only
recvbuf, recvcount, recvtype, root, and comm are significant

Scatter
• Inverse of MPI_Gather

• Data elements on root listed in rank order – each processor gets
corresponding data chunk after call to scatter

• int MPI_Scatter (void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm);

• All arguments are significant on root, while on other processes only
recvbuf, recvcount, recvtype, root, and comm are significant

Scatter and gather

• Gather: you automatically create a serial array from
a distributed one

• Scatter: you automatically create a distributed array
from a serial one

• Can be used to distribute workload and collect
results

Variations
• There are AllXXXX and XXXv variations of gather

• All versions deliver results to all participating
processes.

• v versions allow the chunks to have different sizes
(also for scatter).

• Alltoall (with v variation) distributes load
between all processes

Variations
• There are AllXXXX and XXXv variations of gather

• All versions deliver results to all participating
processes.

• v versions allow the chunks to have different sizes
(also for scatter).

• Alltoall (with v variation) distributes load
between all processes

Reduction operations
• To perform a global reduce operation across all members of a group. d0

o d1 o d2 o d3 o … o ds-2 o ds-1

• di = data in process rank i

• single variable, or

• vector

• o = associative operation

• Example:

• global sum or product

• global maximum or minimum

• global user-defined operation

Reduction operations
• To perform a global reduce operation across all members of a group. d0

o d1 o d2 o d3 o … o ds-2 o ds-1

• di = data in process rank i

• single variable, or

• vector

• o = associative operation

• Example:

• global sum or product

• global maximum or minimum

• global user-defined operation

MPI_Reduce(void *sbuf,
 void *rbuf,
 int count,
 MPI_Datatype stype,
 MPI_Op op,
 int root,
 MPI_Comm comm)

Es.:
float abcd[4], sum[4];
// ...
MPI_Reduce(abcd, sum, 4, MPI_Float, MPI_SUM, root,
 MPI_COMM_WORLD);

Reduction operations
• To perform a global reduce operation across all members of a group. d0

o d1 o d2 o d3 o … o ds-2 o ds-1

• di = data in process rank i

• single variable, or

• vector

• o = associative operation

• Example:

• global sum or product

• global maximum or minimum

• global user-defined operation

MPI_Reduce(void *sbuf,
 void *rbuf,
 int count,
 MPI_Datatype stype,
 MPI_Op op,
 int root,
 MPI_Comm comm)

Es.:
float abcd[4], sum[4];
// ...
MPI_Reduce(abcd, sum, 4, MPI_Float, MPI_SUM, root,
 MPI_COMM_WORLD);

abcd[4] sum[4]

AllReduce variation

float abcd[4], sum[4];

// ...

MPI_AllReduce(abcd, sum, 4, MPI_Float, MPI_SUM, MPI_COMM_WORLD);

abcd[4] sum[4]

Reduce_scatter
MPI_Reduce_scatter(void *sbuf,  
 void *rbuf,  
 int *rcounts,  
 MPI_Datatype stype,  
 MPI_Op op,  
 MPI_Comm comm)

• Same as Reduce followed by Scatter

• Result vector of the reduction operation is scattered
to the processes into the real result buffers

Reduce_scatter
MPI_Reduce_scatter(void *sbuf,  
 void *rbuf,  
 int *rcounts,  
 MPI_Datatype stype,  
 MPI_Op op,  
 MPI_Comm comm)

• Same as Reduce followed by Scatter

• Result vector of the reduction operation is scattered
to the processes into the real result buffers

MPI Collective Routines
• Many Routines: MPI_AllGather, MPI_AllGatherV,

MPI_AllReduce, MPI_AllToAll, MPI_AllToAllV,
MPI_BCast, MPI_Gather, MPI_GatherV,
MPI_Reduce, MPI_ReduceScatter, MPI_Scan,
MPI_Scatter, MPI_ScatterV

• “All” versions deliver results to all participating
processes

• “V” versions (stands for vector) allow the hunks to
have different sizes

MPI Built-in Collective Computation Operations
• MPI_MAX

• MPI_MIN

• MPI_PROD

• MPI_SUM

• MPI_LAND

• MPI_LOR

• MPI_LXOR

• MPI_BAND

• MPI_BOR

• MPI_BXOR

• MPI_MAXLOC

• MPI_MINLOC

• Maximum

• Minimum

• Product

• Sum

• Logical and

• Logical or

• Logical exclusive or

• Bitwise and

• Bitwise or

• Bitwise exclusive or

• Maximum and location

• Minimum and location

User-Defined Reduction Operations
• It’s possible to provide user-defined operations

• should be associative, can be non-commutative

• must perform the operation on two vectors:  
vecA o vecB

• MPI_Op_create(MPI_User_function *func,
int commute, MPI_Op *op);  
commute tells the MPI library whether func is
commutative or not

• MPI_Op_free(MPI_User_function *func);

User-Defined Reduction Operations
• It’s possible to provide user-defined operations

• should be associative, can be non-commutative

• must perform the operation on two vectors:  
vecA o vecB

• MPI_Op_create(MPI_User_function *func,
int commute, MPI_Op *op);  
commute tells the MPI library whether func is
commutative or not

• MPI_Op_free(MPI_User_function *func);

void oneNorm(float *in, float *inout, int *len, MPI_Datatype *type) {
 int i;
 for (i=0; i<*len; i++) {
 *inout = fabs(*in) + fabs(*inout); /* one-norm */

in++;
 inout++;
 }
}

Note on communications types
• Use collective communications over point-to-point

• point-to-point is a bit like assembler
programming: low-level, possibly very efficient
and RISKY.

• you are still risking deadlocks, though:

• the participating processes should call the
matching collective communication operations
in the same order.  
Also when mixing point-to-point and collective
communications

User’s datatypes
• MPI has no knowledge of C++ classes or structs

• Must create own datatypes

• if the struct is made with different types there’s
an annoying process creating arrays

• For C++ use Boost.MPI and Boost.Serialization:
add serialization code to class then use
Boost.MPI to send the messages.

Credits
• These slides report material from:

• Prof. Robert van Engelen (Florida State
University)

• Prof. Jan Lemeire (Vrjie Universiteit Brussel)

• Prof. Dan Negrut (Univ. Wisconsin - Madison)

• William Gropp (Argonne National Lab.)

• Pavan Balaji and Torsten Hoefler, (ETH)

Books

• Principles of Parallel Programming, Calvin Lyn and
Lawrence Snyder, Pearson - Chapt. 7

• Parallel Programming for Multicore and Cluster
Systems, Thomas Dauber and Gudula Rünger,
Springer - Chapt. 5

• An introduction to parallel programming, Peter S.
Pacheco, Morgan Kaufman - Chapt. 3

