

Parallel
Computing

Prof. Marco Bertini

Design models
for parallel
programs

Reorganizing computations

• Task decomposition: computations are a set of
independent tasks that threads can execute in any
order.

• Data decomposition: the application processes a
large collection of data and can compute every
element of the data independently.

Task decomposition
• Tasks must be assigned to threads for execution.

• We can allocate tasks to threads in two different ways:
static scheduling or dynamic scheduling.

• static scheduling: the division of labor is known at
the outset of the computation and doesn’t change
during the computation.

• dynamic scheduling: assign tasks to threads as the
computation proceeds. The goal is to try to balance
the load as evenly as possible between threads.  
Different methods to do this, but they all require a set
of many more tasks than threads.

Decomposition criteria
• There should be at least as many tasks as there will be threads. 

Goal: avoid idle threads (or cores) during the execution of the
application

• The amount of computation within each task (granularity) must
be large enough to offset the overhead that will be needed to
manage the tasks and the threads.  
Goal: avoid to write an algorithm that is worse than the
sequential version

time

Data decomposition
• We may identify that execution of a serial program is dominated by a

sequence od operations on all elements of one or more large data
structures.  
If these are independent we can divide the data assigning portions
(chunks) to different tasks.

• Key problems:

• How to divide the data into chunks? Consider shape and
granularity…

• How to ensure that the tasks for each chunk have access to all
data required for computations? A thread may need data
contained in different thread…

• How are the data chunks assigned to threads? 

Data decomposition
• We may identify that execution of a serial program is dominated by a

sequence od operations on all elements of one or more large data
structures.  
If these are independent we can divide the data assigning portions
(chunks) to different tasks.

• Key problems:

• How to divide the data into chunks? Consider shape and
granularity…

• How to ensure that the tasks for each chunk have access to all
data required for computations? A thread may need data
contained in different thread…

• How are the data chunks assigned to threads? 

Data decomposition
• We may identify that execution of a serial program is dominated by a

sequence od operations on all elements of one or more large data
structures.  
If these are independent we can divide the data assigning portions
(chunks) to different tasks.

• Key problems:

• How to divide the data into chunks? Consider shape and
granularity…

• How to ensure that the tasks for each chunk have access to all
data required for computations? A thread may need data
contained in different thread…

• How are the data chunks assigned to threads? 

Data decomposition
• We may identify that execution of a serial program is dominated by a

sequence od operations on all elements of one or more large data
structures.  
If these are independent we can divide the data assigning portions
(chunks) to different tasks.

• Key problems:

• How to divide the data into chunks? Consider shape and
granularity…

• How to ensure that the tasks for each chunk have access to all
data required for computations? A thread may need data
contained in different thread…

• How are the data chunks assigned to threads? 

Tasks that are associated with the data chunks can be assigned to threads
statically or dynamically. The latter is more complex (coordination) and

requires (many) more tasks than threads.

Ensure that the amount of computation that goes along with that chunk is
sufficient to warrant breaking out that data as a separate chunk.

Chunk shape
• The shape of a chunk determines what the neighboring

chunks are and how any exchange of data will be
handled during the course of the chunk’s computations.  
Reducing the size of the overall border reduces the
amount of exchange data required for updating local
data elements; reducing the total number of chunks
that share a border with a given chunk will make the
exchange operation less complicated to code and
execute.

• A good rule of thumb is to try to maximize the volume-
to-surface ratio. The volume defines the granularity of
the computations, and the surface is the border of
chunks that require an exchange of data.

Chunk shape
• The shape of a chunk determines what the neighboring

chunks are and how any exchange of data will be
handled during the course of the chunk’s computations.  
Reducing the size of the overall border reduces the
amount of exchange data required for updating local
data elements; reducing the total number of chunks
that share a border with a given chunk will make the
exchange operation less complicated to code and
execute.

• A good rule of thumb is to try to maximize the volume-
to-surface ratio. The volume defines the granularity of
the computations, and the surface is the border of
chunks that require an exchange of data.

Decomposition example:  

Data Distributions for Arrays
• Let us consider a set of processes P = {P1,..., Pp}

• 1 dimensional arrays

• Blockwise distribution: cuts an array v of n
elements into p blocks with ⎡n/p⎤ consecutive
elements each.

• Cyclic distribution: assigns elements to processes
in round-robin way, so that vi is assigned to P(i-1)mod

p+1

• Block-cyclic: combination of the two

Decomposition example:  

Data Distributions for Arrays
• Let us consider a set of processes P = {P1,..., Pp}

• 1 dimensional arrays

• Blockwise distribution: cuts an array v of n
elements into p blocks with ⎡n/p⎤ consecutive
elements each.

• Cyclic distribution: assigns elements to processes
in round-robin way, so that vi is assigned to P(i-1)mod

p+1

• Block-cyclic: combination of the two

Decomposition example:  

Data Distributions for Arrays

• For two-dimensional arrays, combinations of
blockwise and cyclic distributions in only one or
both dimensions are used.

• For the distribution in one dimension, columns or
rows are distributed in a block- wise, cyclic, or
block–cyclic way. The blockwise columnwise (or
rowwise) distribution builds p blocks of contiguous
columns (or rows) of equal size and assigns block i
to processor Pi , i = 1, . . . , p.

Decomposition example:  

Data Distributions for Arrays

• For two-dimensional arrays, combinations of
blockwise and cyclic distributions in only one or
both dimensions are used.

• For the distribution in one dimension, columns or
rows are distributed in a block- wise, cyclic, or
block–cyclic way. The blockwise columnwise (or
rowwise) distribution builds p blocks of contiguous
columns (or rows) of equal size and assigns block i
to processor Pi , i = 1, . . . , p.

Decomposition example:  

Data Distributions for Arrays

• A distribution of array elements of a two-
dimensional array of size n1×n2 in both dimensions
uses checkerboard distributions which distinguish
between blockwise cyclic and block–cyclic
checkerboard patterns.

• The processors are arranged in a virtual mesh of
size p1·p2 = p where p1 is the number of rows and
p2 is the number of columns in the mesh.  
Array elements (k,l) are mapped to processors  
Pi,j , i = 1, . . . , p1, j = 1, . . . , p2.

Decomposition example:  

Data Distributions for Arrays

• A distribution of array elements of a two-
dimensional array of size n1×n2 in both dimensions
uses checkerboard distributions which distinguish
between blockwise cyclic and block–cyclic
checkerboard patterns.

• The processors are arranged in a virtual mesh of
size p1·p2 = p where p1 is the number of rows and
p2 is the number of columns in the mesh.  
Array elements (k,l) are mapped to processors  
Pi,j , i = 1, . . . , p1, j = 1, . . . , p2.

Important
properties

Safety and Liveness
• The correctness (i.e. specification and verification of what a given

program actually does) of parallel programs, by their very nature, is
more complex than that of their sequential counterparts.

• A modern computer is asynchronous: activities can be halted or
delayed without warning by interrupts, preemption, cache misses,
failures, and other events. Parallel computing multiplies all this.

• We are interested in two properties:

• Safety Properties

• Nothing bad happens ever

• Liveness Properties

• Something good happens eventually

Example
• If two processes need to use a common resource,

and this resource can be used only by one process
at a certain time, we need a protocol that allows to
have these properties:

• Mutual exclusion: i.e. both processes never use
the resource at the same time. 
This is a safety property.

• No deadlock: i.e. if one or both the processes want
the resource then one gets it. 
This is a liveness property.

Example
• If two processes need to use a common resource,

and this resource can be used only by one process
at a certain time, we need a protocol that allows to
have these properties:

• Mutual exclusion: i.e. both processes never use
the resource at the same time. 
This is a safety property.

• No deadlock: i.e. if one or both the processes want
the resource then one gets it. 
This is a liveness property.

Deadlock is used to denote that if processes are stuck then no amount
of retry (backoff) will help, while livelock means backoff can help

Other properties

• Starvation freedom: i.e. if one of the processes
wants the resource will it get it eventually ?

• Waiting: what happens if a processes is waiting for
the other to release the resource, but the process
controlling it fails to do so for some reason ? 
This is an example of fault-tolerance. 
A mutual exclusion problem implies waiting.

Communication properties
• Two kinds of communication occur naturally in concurrent

systems:

• Transient communication requires both parties to
participate at the same time. (like speaking) 

• Persistent communication allows the sender and receiver
to participate at different times. (like writing)

• A protocol capable of achieving mutual exclusion needs
persistent communication.

• An interrupt is persistent communication: a process interrupts
another setting a bit, the interrupted process will periodically
check it, act and then reset the bit.

Communication properties
• Two kinds of communication occur naturally in concurrent

systems:

• Transient communication requires both parties to
participate at the same time. (like speaking) 

• Persistent communication allows the sender and receiver
to participate at different times. (like writing)

• A protocol capable of achieving mutual exclusion needs
persistent communication.

• An interrupt is persistent communication: a process interrupts
another setting a bit, the interrupted process will periodically
check it, act and then reset the bit.

An interrupt still is not enough to solve mutual exclusion, though.

Rules of thumbs for
designing parallel

(multithreaded)
applications

Identify Truly Independent Computations

• It’s obvious, but remind that you can’t execute
anything concurrently unless the operations that
would be executed can be run independently of
each other.

• Check the dependencies (e.g. data or loop)

Examples of dependencies
• Recurrences: relations within loops feed information forward from one

iteration to the next.

for (i = 1; i < N; i++)  
 a[i] = a[i-1] + b[i];

• Induction variables: variables that are incremented on each trip
through a loop, without having a one-to-one relation with loop iterator.

i1 = 4;  
i2 = 0;  
for (k = 1; k < N; k++) {  
 B[i1++] = function1(k,q,r);  
 i2 += k;  
 A[i2] = function2(k,r,q);  
}

Examples of dependencies
• Recurrences: relations within loops feed information forward from one

iteration to the next.

for (i = 1; i < N; i++)  
 a[i] = a[i-1] + b[i];

• Induction variables: variables that are incremented on each trip
through a loop, without having a one-to-one relation with loop iterator.

i1 = 4;  
i2 = 0;  
for (k = 1; k < N; k++) {  
 B[i1++] = function1(k,q,r);  
 i2 += k;  
 A[i2] = function2(k,r,q);  
}

Even if function1() and
function2() are independent,

there’s no way to transform this code
for concurrency without transforming
the array index increment expression

with a calculation based only on k

Examples of dependencies
• Reduction: takes a collection (e.g. array) of data and

reduces it to a single scalar through some
combination. If the operation is associative and
commutative it can be eliminated. 
 
sum = 0;  
big = c[0]; 
for (i = 0; i < N; i++) {  
 sum += c[i];  
 big = (c[i] > big ? c[i] : big); // maximum element 
}

Examples of dependencies
• Reduction: takes a collection (e.g. array) of data and

reduces it to a single scalar through some
combination. If the operation is associative and
commutative it can be eliminated. 
 
sum = 0;  
big = c[0]; 
for (i = 0; i < N; i++) {  
 sum += c[i];  
 big = (c[i] > big ? c[i] : big); // maximum element 
}

In this case we have to compute sum and max so there’s a solution:

1. divide the loop iterations among the threads to be used and simply compute partial
results (sum and big in the preceding example) in local storage.

2. combine each partial result into a global result, taking care to synchronize access to
the shared variables.

Examples of dependencies
• Loop-Carried Dependance: occurs when results of some

previous iteration are used in the current iteration.
Recurrence is a special case of a loop-carried dependence
where the backward reference is the immediate previous
iteration. 
 
Dividing such loop iterations into tasks presents the problem
of requiring extra synchronization to ensure that the backward
references have been computed before they are used in
computation of the current iteration.

for (k = 5; k < N; k++) {  
 b[k] = DoSomething(k);  
 a[k] = b[k-5] + MoreStuff(k);  
}

Examples of dependencies

Sometimes loop-carried dependance is not
immediately visible, e.g. hidden by a variable: 
 
wrap = a[0] * b[0];  
for (i = 1; i < N; i++) {  
 c[i] = wrap; 
 wrap = a[i] * b[i]; 
 d[i] = 2 * wrap; 
}

Examples of dependencies

Sometimes loop-carried dependance is not
immediately visible, e.g. hidden by a variable: 
 
wrap = a[0] * b[0];  
for (i = 1; i < N; i++) {  
 c[i] = wrap; 
 wrap = a[i] * b[i]; 
 d[i] = 2 * wrap; 
}

Luckily this case can be solved:  
 
for (i = 1; i < N; i++) {
 wrap = a[i-1] * b[i-1];
 c[i] = wrap;
 wrap = a[i] * b[i];
 d[i] = 2 * wrap;
}

Implement Concurrency at the  

Highest Level Possible
• Identify the hotspots in the code, then examine if it’s

possible to parallelize the higher level.

• This allows to parallelize with a larger granularity

• E.g.: we may identify that the hotspot of a video
coding application is related to coding macroblocks,
but perhaps the application is required to encode
many videos, so it’s better to parallelize at the video
processing level

• The objective of this rule is to find the highest level
where concurrency can be implemented so that your
hotspot of code will be executed concurrently.

Plan Early for Scalability to Take Advantage of

Increasing Numbers of Cores

• Designing and implementing concurrency by data
decomposition methods will give you more scalable
solutions.

• Task decomposition solutions will suffer from the
fact that the number of independent functions or
code segments in an application is likely limited
and fixed during execution.  
After each independent task has a thread and core
to execute on, increasing the number of threads to
take advantage of more cores will not increase
performance of the application.

Use of Thread-Safe Libraries Wherever Possible

• Check that the library you use is thread-safe. It may
contain some shared variable that causes data
races.

• A library function is thread-safe if it can be called by
different threads concurrently, without performing
additional operations to avoid race conditions.

Use the Right Threading Model
• There are different libraries and APIs to implement multi-

threaded programs. Use the correct one for the task, i.e. do
not go low-level and reinvent the wheel if it’s not necessary.

• E.g. in C++ you can use:

• Pthreads

• C++11 threads

• OpenMP

• Intel TBB

• Cilk++

Never Assume a Particular Order of Execution

• Execution order of threads is nondeterministic and
controlled by the OS scheduler:

• no reliable way to predict their execution order

• this is the motivation of the risk of data races

• Don’t try to enforce a particular order of execution
unless it is absolutely necessary.  
Recognize those times when it is absolutely
necessary, and implement some form of
synchronization to coordinate the execution order of
threads relative to each other.

Never Assume a Particular Order of Execution

• Execution order of threads is nondeterministic and
controlled by the OS scheduler:

• no reliable way to predict their execution order

• this is the motivation of the risk of data races

• Don’t try to enforce a particular order of execution
unless it is absolutely necessary.  
Recognize those times when it is absolutely
necessary, and implement some form of
synchronization to coordinate the execution order of
threads relative to each other.

Data races are a direct result of this scheduling nondeterminism.
Do not assume that one thread will write a value into a shared variable before another thread

will read that value.

Use Thread-Local Storage Whenever Possible or

Associate Locks to Specific Data
• Synchronization is overhead: do not use it except to

guarantee the correct answers are produced from
the parallel execution.

• Use temporary work variables allocated locally to
each thread.

• Use thread-local storage (TLS) APIs to enable
persistence of data local to threads (similar to the
concept of static variables in C functions).

• If the above two options are not viable then use
shared and synchronized data.

Dare to Change the Algorithm for a Better  

Chance of Concurrency

• Some algorithm with higher complexity may be
more amenable to parallelization than other
algorithms with better complexity.

• E.g. simple O(n3) matrix multiplication is easily
parallelizable, while optimized algorithms like
Strassen and Coppersmith-Winograd may be
unpractical.

Design patterns
for parallel

programming

Loop level parallelism
• Many programs are expressed using iterative

constructs:

• Assign loop iteration to units of execution (i.e.
threads and processes)

• Especially good when code cannot be massively
restructured

for(i=0; i<12; i++) {

i = 0
i = 1
i = 2
i = 3

i = 4
i = 5
i = 6
i = 7

i = 8
i = 9

i = 10
i = 11

}

Task parallelism
• Task parallelism focuses on distributing tasks – concretely

performed by processes or threads – across different
parallel computing nodes.

• Can be applied to shared and distributed memory
systems.

• In a multi-processor/multi-core system, task parallelism
is achieved when each processor executes a different
thread (or process) on the same or different data.  
The threads may execute the same or different code.  
In the general case, different execution threads
communicate with one another as they work.
Communication usually takes place by passing data from
one thread to the next as part of a workflow.

Fork-Join parallelism
• A main process/thread forks some number of

processes/threads that then continue in parallel to
accomplish some portion of the overall work.

• Parent tasks creates new task (fork) then waits until
all they complete (join) before continuing on with
the computation

Parallel region

fork join

Pipelining
• Special form of coordination of different threads in

which data elements are forwarded from thread to
thread to perform different processing steps.

• can be considered as a special form of functional
decomposition where the pipeline threads
process the computations of an application
algorithm one after another.  
A parallel execution is obtained by partitioning
the data into a stream of data elements which
flow through the pipeline stages one after
another.

SPMD
• Single program, multiple data

• All units of execution execute the same program in
parallel, but each has its own set of data.

• Initialize

• Obtain a unique identifier

• Run the same program on each processor

• Distribute data/tasks based on ID

• Finalize
Mostly used in distributed memory systems, rather than

shared memory…  
…but it’s still applicable, either using processes or threads

Master-worker
• A master process or thread set up a pool of worker

processes of threads and a bag of tasks (often
managed with a queue).

• The workers execute concurrently, with each worker
repeatedly removing a tasks from the bag of the tasks.

• Workers request a new task as they finish their
assigned work: load is automatically balanced between
a collection of workers.

• Appropriate for “embarrassingly parallel problems”

• Other names: producer-consumer, master-slave

Master-worker
• A master process or thread set up a pool of worker

processes of threads and a bag of tasks (often
managed with a queue).

• The workers execute concurrently, with each worker
repeatedly removing a tasks from the bag of the tasks.

• Workers request a new task as they finish their
assigned work: load is automatically balanced between
a collection of workers.

• Appropriate for “embarrassingly parallel problems”

• Other names: producer-consumer, master-slave
Remind: an “embarrassingly parallel problem”, is one for which little or no effort is
required to separate the problem into a number of parallel tasks. This is often the

case where there exists no dependency (or communication) between those
parallel tasks.

Master-worker

Worker 1

Do work

Worker n

Do work

Master

Initiate computation
Set up problem

Create bag of tasks
Launch workers

…
…

Wait for workers
Collect results

Terminate computation

 . . .

Client-Server
• The client–server model is similar to the general MPMD

(multiple-program multiple-data) model.

• This model originally comes from distributed computing

• Parallelism can be used by computing requests from
different clients concurrently or even by using multiple
threads to compute a single request if this includes
enough work.

• There may be several server threads or the threads of
a parallel program may play the role of both clients and
servers, generating requests to other threads and
processing requests from other threads.

Client-server vs Master-slave

Master

Slave 1 Slave 2 Slave 3

controlcontrolcontrol

Server

Client 1 Client 2 Client 3

replyreplyreply

request requestrequest

Task pool
• A task pool is a data structure in which tasks to be performed

are stored and from which they can be retrieved for execution.  
A task comprises computations to be executed and a
specification of the data to which the computations should be
applied. The computations are often specified as a function
call.

• A fixed number of threads is used for the processing of the
tasks. The threads are created at program start by the main
thread and they are terminated not before all tasks have been
processed. For the threads, the task pool is a common data
structure which they can access to retrieve tasks for execution

• Access to the task pool must be synchronized to avoid race
conditions.

Producer-Consumer
• Producer threads produce data which are used as

input by consumer threads.

• Data is transferred from producers to consumers,
using a common data structure (e.g. a data buffer of
fixed length, accessible by both types of threads).
Producers store the data elements generated into
the buffer, consumers retrieve data elements from
the buffer for further processing

• Synchronization has to be used to ensure a correct
coordination between producer and consumer
threads.

Task pool vs. producer-consumer

Task pool data buffer

thread
1

thread
2

thread
3

thread
4

producer
1

producer
2

consumer
3

consumer
2

consumer
1store task

store task

store task

store task

retreive task

retreive task

retreive task

retreive task

store data
retreive

data

Work queue
• A FIFO, LIFO, priority order queue is typically used

in the producer-consumer paradigm

• Pay attention to the granularity of the data inserted
in the queue to avoid to pay an excessive overhead
needed to access the data in the queue.

• Using multiple queues reduces contention, but then
there is need to balance work among queues.

• A solution is to allow processes to perform work
stealing from other queues than that assigned to
them.

Information
exchange

Information exchange

• To control the coordination of the different parts of a
parallel program, information must be exchanged
between the executing processors.

• The implementation depends changes if we are
dealing with shared or distributed memory
systems

Shared memory
• Each thread can access shared data in the global

memory. Such shared data can be stored in
shared variables which can be accessed as
normal variables.  
A thread may also have private data stored in
private variables, which cannot be accessed by
other threads.

• To coordinate access by different threads to the
same shared variable we need a sequentialization
mechanism.

Shared memory: race condition
• The term race condition describes the effect that the

result of a parallel execution of a program part by
multiple execution units depends on the order in which
the statements of the program part are executed by
the different units.

• This may lead to non-deterministic behavior, since,
depending on the execution order, different results are
possible, and the exact outcome cannot be predicted.

• We need mutual exclusion to allow the execution of
critical sections of code accessing the shared
variables, using lock mechanisms.

Distributed memory
• Exchange of data and information between the

processors is performed by communication
operations which are explicitly called by the
participating processors.

• The actual data exchange is realized by the transfer
of messages between the participating processors.
The corresponding programming models are
therefore called message-passing programming
models.

• There are point-to-point and global
communication operations.

Communication operations
• Single transfer: for a single transfer operation, a processor Pi

(sender) sends a message to processor Pj (receiver) with j!=i.  
For each send operation, there must be a corresponding
receive operation, and vice versa. Otherwise, deadlocks may
occur

• Single-broadcast: for a single-broadcast operation, a specific
processor Pi sends the same data block to all other processors.

• Single-accumulation: for a single-accumulation operation,
each processor provides a block of data with the same type and
size. By performing the operation, a given reduction operation is
applied element by element to the data blocks provided by the
processors, and the resulting accumulated data block of the
same length is collected at a specific root processor Pi

Communication operations

• Gather: for a gather operation, each processor
provides a data block, and the data blocks of all
processors are collected at a specific root
processor Pi . No reduction operation is applied.

• Scatter: for a scatter operation, a specific root
processor Pi provides a separate data block for
every other processor.

Communication operations
• Multi-broadcast: the effect of a multi-broadcast operation

is the same as the execution of several single-broadcast
operations, one for each processor. From the receiver’s
point of view, each processor receives a data block from
every other processor; there is no root processor.

• Multi-accumulation: the effect of a multi-accumulation
operation is that each processor executes a single-
accumulation operation

• Total exchange: for a total exchange operation, each
processor provides for each other processor a potentially
different data block. These data blocks are sent to their
intended receivers, i.e., each processor executes a scatter
operation.

Communication operations
• Multi-broadcast: the effect of a multi-broadcast operation

is the same as the execution of several single-broadcast
operations, one for each processor. From the receiver’s
point of view, each processor receives a data block from
every other processor; there is no root processor.

• Multi-accumulation: the effect of a multi-accumulation
operation is that each processor executes a single-
accumulation operation

• Total exchange: for a total exchange operation, each
processor provides for each other processor a potentially
different data block. These data blocks are sent to their
intended receivers, i.e., each processor executes a scatter
operation.

Communication operations
• Multi-broadcast: the effect of a multi-broadcast operation

is the same as the execution of several single-broadcast
operations, one for each processor. From the receiver’s
point of view, each processor receives a data block from
every other processor; there is no root processor.

• Multi-accumulation: the effect of a multi-accumulation
operation is that each processor executes a single-
accumulation operation

• Total exchange: for a total exchange operation, each
processor provides for each other processor a potentially
different data block. These data blocks are sent to their
intended receivers, i.e., each processor executes a scatter
operation.

Communication operations
• Multi-broadcast: the effect of a multi-broadcast operation

is the same as the execution of several single-broadcast
operations, one for each processor. From the receiver’s
point of view, each processor receives a data block from
every other processor; there is no root processor.

• Multi-accumulation: the effect of a multi-accumulation
operation is that each processor executes a single-
accumulation operation

• Total exchange: for a total exchange operation, each
processor provides for each other processor a potentially
different data block. These data blocks are sent to their
intended receivers, i.e., each processor executes a scatter
operation.

Credits

• These slides report material from:

• Prof. Robert van Engelen (Florida State
University)

• Prof. Jan Lemeire (Vrjie Universiteit Brussel)

Books
• The Art of Concurrency, Clay Breshears, O’Reilly -

Chapt. 2, 4

• Parallel Programming for Multicore and Cluster
Systems, Thomas Rauber and Gudula Rünger,
Springer - Chapt. 3

• The Art of Multiprocessor Programming, Maurice
Herlihy and Nir Shavit, Morgan Kaufmann  
- Chapt. 1

