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Reorganizing computations

• Task decomposition: computations are a set of 
independent tasks that threads can execute in any 
order.  

• Data decomposition: the application processes a 
large collection of data and can compute every 
element of the data independently. 



         

      
         

      

Task decomposition
• Tasks must be assigned to threads for execution.  

• We can allocate tasks to threads in two different ways: 
static scheduling or dynamic scheduling. 

• static scheduling: the division of labor is known at 
the outset of the computation and doesn’t change 
during the computation.  

• dynamic scheduling: assign tasks to threads as the 
computation proceeds. The goal is to try to balance 
the load as evenly as possible between threads.  
Different methods to do this, but they all require a set 
of many more tasks than threads.



         

      
         

      

Decomposition criteria
• There should be at least as many tasks as there will be threads. 

Goal: avoid idle threads (or cores) during the execution of the 
application 

• The amount of computation within each task (granularity) must 
be large enough to offset the overhead that will be needed to 
manage the tasks and the threads.  
Goal: avoid to write an algorithm that is worse than the 
sequential version

time



         

      
         

      

Data decomposition
• We may identify that execution of a serial program is dominated by a 

sequence od operations on all elements of one or more large data 
structures.  
If these are independent we can divide the data assigning portions 
(chunks) to different tasks. 

• Key problems: 

• How to divide the data into chunks? Consider shape and 
granularity… 

• How to ensure that the tasks for each chunk have access to all 
data required for computations? A thread may need data 
contained in different thread… 

• How are the data chunks assigned to threads? 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Data decomposition
• We may identify that execution of a serial program is dominated by a 

sequence od operations on all elements of one or more large data 
structures.  
If these are independent we can divide the data assigning portions 
(chunks) to different tasks. 

• Key problems: 

• How to divide the data into chunks? Consider shape and 
granularity… 

• How to ensure that the tasks for each chunk have access to all 
data required for computations? A thread may need data 
contained in different thread… 

• How are the data chunks assigned to threads? 

Tasks that are associated with the data chunks can be assigned to threads 
statically or dynamically. The latter is more complex (coordination) and 

requires (many) more tasks than threads. 

Ensure that the amount of computation that goes along with that chunk is 
sufficient to warrant breaking out that data as a separate chunk.



         

      
         

      

Chunk shape
• The shape of a chunk determines what the neighboring 

chunks are and how any exchange of data will be 
handled during the course of the chunk’s computations.  
Reducing the size of the overall border reduces the 
amount of exchange data required for updating local 
data elements; reducing the total number of chunks 
that share a border with a given chunk will make the 
exchange operation less complicated to code and 
execute.  

• A good rule of thumb is to try to maximize the volume-
to-surface ratio. The volume defines the granularity of 
the computations, and the surface is the border of 
chunks that require an exchange of data. 
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Decomposition example:  

Data Distributions for Arrays 
• Let us consider a set of processes P = {P1,..., Pp}  

• 1 dimensional arrays 

• Blockwise distribution: cuts an array v of n 
elements into p blocks with ⎡n/p⎤ consecutive 
elements each. 

• Cyclic distribution: assigns elements to processes 
in round-robin way, so that vi is assigned to P(i-1)mod 

p+1 

• Block-cyclic: combination of the two
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Decomposition example:  

Data Distributions for Arrays 

• For two-dimensional arrays, combinations of 
blockwise and cyclic distributions in only one or 
both dimensions are used.  

• For the distribution in one dimension, columns or 
rows are distributed in a block- wise, cyclic, or 
block–cyclic way. The blockwise columnwise (or 
rowwise) distribution builds p blocks of contiguous 
columns (or rows) of equal size and assigns block i 
to processor Pi , i = 1, . . . , p. 
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Decomposition example:  

Data Distributions for Arrays 

• A distribution of array elements of a two-
dimensional array of size n1×n2 in both dimensions 
uses checkerboard distributions which distinguish 
between blockwise cyclic and block–cyclic 
checkerboard patterns.  

• The processors are arranged in a virtual mesh of 
size p1·p2 = p where p1 is the number of rows and 
p2 is the number of columns in the mesh.  
Array elements (k,l) are mapped to processors  
Pi,j , i = 1, . . . , p1, j = 1, . . . , p2. 
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Important 
properties



         

      
         

      

Safety and Liveness
• The correctness (i.e. specification and verification of what a given 

program actually does) of parallel programs, by their very nature, is 
more complex than that of their sequential counterparts. 

• A modern computer is asynchronous: activities can be halted or 
delayed without warning by interrupts, preemption, cache misses, 
failures, and other events. Parallel computing multiplies all this. 

• We are interested in two properties: 

• Safety Properties 

• Nothing bad happens ever 

• Liveness Properties  

• Something good happens eventually



         

      
         

      

Example
• If two processes need to use a common resource, 

and this resource can be used only by one process 
at a certain time, we need a protocol that allows to 
have these properties: 

• Mutual exclusion: i.e. both processes never use 
the resource at the same time. 
This is a safety property. 

• No deadlock: i.e. if one or both the processes want 
the resource then one gets it. 
This is a liveness property.



         

      
         

      

Example
• If two processes need to use a common resource, 

and this resource can be used only by one process 
at a certain time, we need a protocol that allows to 
have these properties: 

• Mutual exclusion: i.e. both processes never use 
the resource at the same time. 
This is a safety property. 

• No deadlock: i.e. if one or both the processes want 
the resource then one gets it. 
This is a liveness property.

Deadlock is used to denote that if processes are stuck then no amount
of retry (backoff) will help, while livelock means backoff can help



         

      
         

      

Other properties

• Starvation freedom: i.e. if one of the processes 
wants the resource will it get it eventually ? 

• Waiting: what happens if a processes is waiting for 
the other to release the resource, but the process 
controlling it fails to do so for some reason ? 
This is an example of fault-tolerance. 
A mutual exclusion problem implies waiting.



         

      
         

      

Communication properties
• Two kinds of communication occur naturally in concurrent 

systems:  

• Transient communication requires both parties to 
participate at the same time. (like speaking) 

• Persistent communication allows the sender and receiver 
to participate at different times. (like writing) 

• A protocol capable of achieving mutual exclusion needs 
persistent communication. 

• An interrupt is persistent communication: a process interrupts 
another setting a bit, the interrupted process will periodically 
check it, act and then reset the bit.



         

      
         

      

Communication properties
• Two kinds of communication occur naturally in concurrent 

systems:  

• Transient communication requires both parties to 
participate at the same time. (like speaking) 

• Persistent communication allows the sender and receiver 
to participate at different times. (like writing) 

• A protocol capable of achieving mutual exclusion needs 
persistent communication. 

• An interrupt is persistent communication: a process interrupts 
another setting a bit, the interrupted process will periodically 
check it, act and then reset the bit.

An interrupt still is not enough to solve mutual exclusion, though.



         

      

         

      

Rules of thumbs for 
designing parallel 

(multithreaded) 
applications



         

      
         

      

Identify Truly Independent Computations 

• It’s obvious, but remind that you can’t execute 
anything concurrently unless the operations that 
would be executed can be run independently of 
each other.  

• Check the dependencies (e.g. data or loop)



         

      
         

      

Examples of dependencies
• Recurrences: relations within loops feed information forward from one 

iteration to the next.  

for (i = 1; i < N; i++)  
    a[i] = a[i-1] + b[i];

• Induction variables: variables that are incremented on each trip 
through a loop, without having a one-to-one relation with loop iterator.  

i1 = 4;  
i2 = 0;  
for (k = 1; k < N; k++) {  
    B[i1++] = function1(k,q,r);  
    i2 += k;  
    A[i2] = function2(k,r,q);  
} 
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iteration to the next.  

for (i = 1; i < N; i++)  
    a[i] = a[i-1] + b[i];

• Induction variables: variables that are incremented on each trip 
through a loop, without having a one-to-one relation with loop iterator.  

i1 = 4;  
i2 = 0;  
for (k = 1; k < N; k++) {  
    B[i1++] = function1(k,q,r);  
    i2 += k;  
    A[i2] = function2(k,r,q);  
} 

Even if function1() and 
function2() are independent, 

there’s no way to transform this code 
for concurrency without transforming 
the array index increment expression 

with a calculation based only on k



         

      
         

      

Examples of dependencies
• Reduction: takes a collection (e.g. array) of data and 

reduces it to a single scalar through some 
combination. If the operation is associative and 
commutative it can be eliminated. 
 
sum = 0;  
big = c[0]; 
for (i = 0; i < N; i++) {  
    sum += c[i];  
    big = (c[i] > big ? c[i] : big); // maximum element 
} 
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• Reduction: takes a collection (e.g. array) of data and 

reduces it to a single scalar through some 
combination. If the operation is associative and 
commutative it can be eliminated. 
 
sum = 0;  
big = c[0]; 
for (i = 0; i < N; i++) {  
    sum += c[i];  
    big = (c[i] > big ? c[i] : big); // maximum element 
} 

In this case we have to compute sum and max so there’s a solution:  

1. divide the loop iterations among the threads to be used and simply compute partial 
results (sum and big in the preceding example) in local storage.  

2. combine each partial result into a global result, taking care to synchronize access to 
the shared variables. 



         

      
         

      

Examples of dependencies
• Loop-Carried Dependance: occurs when results of some 

previous iteration are used in the current iteration. 
Recurrence is a special case of a loop-carried dependence 
where the backward reference is the immediate previous 
iteration. 
 
Dividing such loop iterations into tasks presents the problem 
of requiring extra synchronization to ensure that the backward 
references have been computed before they are used in 
computation of the current iteration.  

for (k = 5; k < N; k++) {  
    b[k] = DoSomething(k);  
    a[k] = b[k-5] + MoreStuff(k);  
} 



         

      
         

      

Examples of dependencies

Sometimes loop-carried dependance is not 
immediately visible, e.g. hidden by a variable: 
 
wrap = a[0] * b[0];  
for (i = 1; i < N; i++) {  
    c[i] = wrap; 
    wrap = a[i] * b[i]; 
    d[i] = 2 * wrap; 
} 



         

      
         

      

Examples of dependencies

Sometimes loop-carried dependance is not 
immediately visible, e.g. hidden by a variable: 
 
wrap = a[0] * b[0];  
for (i = 1; i < N; i++) {  
    c[i] = wrap; 
    wrap = a[i] * b[i]; 
    d[i] = 2 * wrap; 
} 

Luckily this case can be solved:  
 
for (i = 1; i < N; i++) {
    wrap = a[i-1] * b[i-1];
    c[i] = wrap;
    wrap = a[i] * b[i];
    d[i] = 2 * wrap;
} 



         

      
         

      
Implement Concurrency at the  

Highest Level Possible
• Identify the hotspots in the code, then examine if it’s 

possible to parallelize the higher level. 

• This allows to parallelize with a larger granularity 

• E.g.: we may identify that the hotspot of a video 
coding application is related to coding macroblocks, 
but perhaps the application is required to encode 
many videos, so it’s better to parallelize at the video 
processing level 

• The objective of this rule is to find the highest level 
where concurrency can be implemented so that your 
hotspot of code will be executed concurrently. 



         

      
         

      
Plan Early for Scalability to Take Advantage of 

Increasing Numbers of Cores 

• Designing and implementing concurrency by data 
decomposition methods will give you more scalable 
solutions.  

• Task decomposition solutions will suffer from the 
fact that the number of independent functions or 
code segments in an application is likely limited 
and fixed during execution.  
After each independent task has a thread and core 
to execute on, increasing the number of threads to 
take advantage of more cores will not increase 
performance of the application. 



         

      
         

      

Use of Thread-Safe Libraries Wherever Possible 

• Check that the library you use is thread-safe. It may 
contain some shared variable that causes data 
races. 

• A library function is thread-safe if it can be called by 
different threads concurrently, without performing 
additional operations to avoid race conditions. 



         

      
         

      

Use the Right Threading Model 
• There are different libraries and APIs to implement multi-

threaded programs. Use the correct one for the task, i.e. do 
not go low-level and reinvent the wheel if it’s not necessary. 

• E.g. in C++ you can use: 

• Pthreads 

• C++11 threads 

• OpenMP 

• Intel TBB 

• Cilk++



         

      
         

      

Never Assume a Particular Order of Execution 

• Execution order of threads is nondeterministic and 
controlled by the OS scheduler: 

• no reliable way to predict their execution order 

• this is the motivation of the risk of data races 

• Don’t try to enforce a particular order of execution 
unless it is absolutely necessary.  
Recognize those times when it is absolutely 
necessary, and implement some form of 
synchronization to coordinate the execution order of 
threads relative to each other. 



         

      
         

      

Never Assume a Particular Order of Execution 

• Execution order of threads is nondeterministic and 
controlled by the OS scheduler: 

• no reliable way to predict their execution order 

• this is the motivation of the risk of data races 

• Don’t try to enforce a particular order of execution 
unless it is absolutely necessary.  
Recognize those times when it is absolutely 
necessary, and implement some form of 
synchronization to coordinate the execution order of 
threads relative to each other. 

Data races are a direct result of this scheduling nondeterminism.  
Do not assume that one thread will write a value into a shared variable before another thread 

will read that value. 



         

      
         

      
Use Thread-Local Storage Whenever Possible or  

Associate Locks to Specific Data
• Synchronization is overhead: do not use it except to 

guarantee the correct answers are produced from 
the parallel execution. 

• Use temporary work variables allocated locally to 
each thread. 

• Use thread-local storage (TLS) APIs to enable 
persistence of data local to threads (similar to the 
concept of static variables in C functions). 

• If the above two options are not viable then use 
shared and synchronized data.



         

      
         

      
Dare to Change the Algorithm for a Better  

Chance of Concurrency

• Some algorithm with higher complexity may be 
more amenable to parallelization than other 
algorithms with better complexity. 

• E.g. simple O(n3) matrix multiplication is easily 
parallelizable, while optimized algorithms like 
Strassen and Coppersmith-Winograd may be 
unpractical.



         

      

         

      

Design patterns 
for parallel 

programming



         

      
         

      

Loop level parallelism
• Many programs are expressed using iterative 

constructs: 

• Assign loop iteration to units of execution (i.e. 
threads and processes)  

• Especially good when code cannot be massively 
restructured 

for( i=0; i<12; i++) {

i = 0
i = 1
i = 2
i = 3

i = 4
i = 5
i = 6
i = 7

i = 8
i = 9

i = 10
i = 11

}



         

      
         

      

Task parallelism
• Task parallelism focuses on distributing tasks – concretely 

performed by processes or threads – across different 
parallel computing nodes. 

• Can be applied to shared and distributed memory 
systems. 

• In a multi-processor/multi-core system, task parallelism 
is achieved when each processor executes a different 
thread (or process) on the same or different data.  
The threads may execute the same or different code.  
In the general case, different execution threads 
communicate with one another as they work. 
Communication usually takes place by passing data from 
one thread to the next as part of a workflow.



         

      
         

      

Fork-Join parallelism
• A main process/thread forks some number of 

processes/threads that then continue in parallel to 
accomplish some portion of the overall work. 

• Parent tasks creates new task (fork) then waits until 
all they complete (join) before continuing on with 
the computation 

Parallel region

fork join



         

      
         

      

Pipelining
• Special form of coordination of different threads in 

which data elements are forwarded from thread to 
thread to perform different processing steps.  

• can be considered as a special form of functional 
decomposition where the pipeline threads 
process the computations of an application 
algorithm one after another.  
A parallel execution is obtained by partitioning 
the data into a stream of data elements which 
flow through the pipeline stages one after 
another. 



         

      
         

      

SPMD
• Single program, multiple data  

• All units of execution execute the same program in 
parallel, but each has its own set of data.  

• Initialize 

• Obtain a unique identifier 

• Run the same program on each processor 

• Distribute data/tasks based on ID 

• Finalize 
Mostly used in distributed memory systems, rather than 

shared memory…  
…but it’s still applicable, either using processes or threads



         

      
         

      

Master-worker
• A master process or thread set up a pool of worker 

processes of threads and a bag of tasks (often 
managed with a queue).  

• The workers execute concurrently, with each worker 
repeatedly removing a tasks from the bag of the tasks.  

• Workers request a new task as they finish their 
assigned work: load is automatically balanced between 
a collection of workers. 

• Appropriate for “embarrassingly parallel problems”  

• Other names: producer-consumer, master-slave



         

      
         

      

Master-worker
• A master process or thread set up a pool of worker 

processes of threads and a bag of tasks (often 
managed with a queue).  

• The workers execute concurrently, with each worker 
repeatedly removing a tasks from the bag of the tasks.  

• Workers request a new task as they finish their 
assigned work: load is automatically balanced between 
a collection of workers. 

• Appropriate for “embarrassingly parallel problems”  

• Other names: producer-consumer, master-slave
Remind: an “embarrassingly parallel problem”, is one for which little or no effort is 
required to separate the problem into a number of parallel tasks. This is often the 

case where there exists no dependency (or communication) between those 
parallel tasks.



         

      
         

      

Master-worker

Worker 1

Do work

Worker n

Do work

Master

Initiate computation
Set up problem

Create bag of tasks
Launch workers

…
…

Wait for workers
Collect results

Terminate computation

  . . .  



         

      
         

      

Client-Server
• The client–server model is similar to the general MPMD 

(multiple-program multiple-data) model.  

• This model originally comes from distributed computing  

• Parallelism can be used by computing requests from 
different clients concurrently or even by using multiple 
threads to compute a single request if this includes 
enough work.  

• There may be several server threads or the threads of 
a parallel program may play the role of both clients and 
servers, generating requests to other threads and 
processing requests from other threads. 



         

      
         

      

Client-server vs Master-slave

Master

Slave 1 Slave 2 Slave 3

controlcontrolcontrol

Server

Client 1 Client 2 Client 3

replyreplyreply

request requestrequest



         

      
         

      

Task pool
• A task pool is a data structure in which tasks to be performed 

are stored and from which they can be retrieved for execution.  
A task comprises computations to be executed and a 
specification of the data to which the computations should be 
applied. The computations are often specified as a function 
call.  

• A fixed number of threads is used for the processing of the 
tasks. The threads are created at program start by the main 
thread and they are terminated not before all tasks have been 
processed. For the threads, the task pool is a common data 
structure which they can access to retrieve tasks for execution  

• Access to the task pool must be synchronized to avoid race 
conditions. 



         

      
         

      

Producer-Consumer
• Producer threads produce data which are used as 

input by consumer threads.  

• Data is transferred from producers to consumers, 
using a common data structure (e.g. a data buffer of 
fixed length, accessible by both types of threads). 
Producers store the data elements generated into 
the buffer, consumers retrieve data elements from 
the buffer for further processing  

• Synchronization has to be used to ensure a correct 
coordination between producer and consumer 
threads.



         

      
         

      

Task pool vs. producer-consumer

Task pool data buffer

thread 
1

thread 
2

thread 
3

thread 
4

producer 
1

producer 
2

consumer 
3

consumer 
2

consumer 
1store task

store task

store task

store task

retreive task

retreive task

retreive task

retreive task

store data
retreive

data



         

      
         

      

Work queue
• A FIFO, LIFO, priority order queue is typically used 

in the producer-consumer paradigm 

• Pay attention to the granularity of the data inserted 
in the queue to avoid to pay an excessive overhead 
needed to access the data in the queue. 

• Using multiple queues reduces contention, but then 
there is need to balance work among queues. 

• A solution is to allow processes to perform work 
stealing from other queues than that assigned to 
them.



         

      

         

      

Information 
exchange



         

      
         

      

Information exchange

• To control the coordination of the different parts of a 
parallel program, information must be exchanged 
between the executing processors.  

• The implementation depends changes if we are 
dealing with shared or distributed memory 
systems



         

      
         

      

Shared memory
• Each thread can access shared data in the global 

memory. Such shared data can be stored in 
shared variables which can be accessed as 
normal variables.  
A thread may also have private data stored in 
private variables, which cannot be accessed by 
other threads.  

• To coordinate access by different threads to the 
same shared variable we need a sequentialization 
mechanism.



         

      
         

      

Shared memory: race condition
• The term race condition describes the effect that the 

result of a parallel execution of a program part by 
multiple execution units depends on the order in which 
the statements of the program part are executed by 
the different units.  

• This may lead to non-deterministic behavior, since, 
depending on the execution order, different results are 
possible, and the exact outcome cannot be predicted.  

• We need mutual exclusion to allow the execution of 
critical sections of code accessing the shared 
variables, using lock mechanisms.



         

      
         

      

Distributed memory
• Exchange of data and information between the 

processors is performed by communication 
operations which are explicitly called by the 
participating processors.  

• The actual data exchange is realized by the transfer 
of messages between the participating processors. 
The corresponding programming models are 
therefore called message-passing programming 
models.  

• There are point-to-point and global 
communication operations.



         

      
         

      

Communication operations
• Single transfer: for a single transfer operation, a processor Pi 

(sender) sends a message to processor Pj (receiver) with j!=i.  
For each send operation, there must be a corresponding 
receive operation, and vice versa. Otherwise, deadlocks may 
occur  

• Single-broadcast: for a single-broadcast operation, a specific 
processor Pi sends the same data block to all other processors.  

• Single-accumulation: for a single-accumulation operation, 
each processor provides a block of data with the same type and 
size. By performing the operation, a given reduction operation is 
applied element by element to the data blocks provided by the 
processors, and the resulting accumulated data block of the 
same length is collected at a specific root processor Pi 



         

      
         

      

Communication operations

• Gather: for a gather operation, each processor 
provides a data block, and the data blocks of all 
processors are collected at a specific root 
processor Pi . No reduction operation is applied.  

• Scatter: for a scatter operation, a specific root 
processor Pi provides a separate data block for 
every other processor. 



         

      
         

      

Communication operations
• Multi-broadcast: the effect of a multi-broadcast operation 

is the same as the execution of several single-broadcast 
operations, one for each processor. From the receiver’s 
point of view, each processor receives a data block from 
every other processor; there is no root processor.  

• Multi-accumulation: the effect of a multi-accumulation 
operation is that each processor executes a single-
accumulation operation  

• Total exchange: for a total exchange operation, each 
processor provides for each other processor a potentially 
different data block. These data blocks are sent to their 
intended receivers, i.e., each processor executes a scatter 
operation. 
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Books
• The Art of Concurrency, Clay Breshears, O’Reilly - 

Chapt. 2, 4 

• Parallel Programming for Multicore and Cluster 
Systems, Thomas Rauber and Gudula Rünger, 
Springer - Chapt. 3 

• The Art of Multiprocessor Programming, Maurice 
Herlihy and Nir Shavit, Morgan Kaufmann  
- Chapt. 1


