

Parallel
Computing

Prof. Marco Bertini

Shared
memory:  

C++ threads

C++ multithreading

• It is possible to use Pthreads API within C++
programs.

• The C++11 standard has introduced support for
multithreaded programming:

• it allows to write programs without relying on
platform-specific extensions and libraries

Thread class

• Wrap Pthreads in a class that mimics the Java
Thread class

• we do not need a Runnable interface since in  
C++ we have multiple inheritance…

• use an abstract class to enforce overriding of the
run() method

Thread class
#include <pthread.h>

class Thread {  
 public:  
 Thread();  
 virtual ~Thread();

 int start();  
 int join();  
 int detach();  
 pthread_t self();

 virtual void* run() = 0;

 private:  
 pthread_t tid;  
 bool running;  
 bool detached;  
};

Thread class
#include <pthread.h>

class Thread {  
 public:  
 Thread();  
 virtual ~Thread();

 int start();  
 int join();  
 int detach();  
 pthread_t self();

 virtual void* run() = 0;

 private:  
 pthread_t tid;  
 bool running;  
 bool detached;  
};

detaches a thread when the caller
doesn’t want to wait for the thread

to complete.

Thread class

• Thread::Thread() : tid(0),
running(false), detached(false) {}

• Thread::~Thread() { 
 if (running && !detached) { 
 pthread_detach(tid); 
 }  
 if (running) { 
 pthread_cancel(tid); 
 }  
}

• int Thread::start() { 
 int result =
pthread_create(&tid, NULL,
runThread, this); 
 if (result == 0) {  
 running = true; 
 }  
 return result; 
}

• static void* runThread(void* arg)
{ 
 return
(static_cast<Thread*>(arg))-
>run(); 
}

Thread class

• Thread::Thread() : tid(0),
running(false), detached(false) {}

• Thread::~Thread() { 
 if (running && !detached) { 
 pthread_detach(tid); 
 }  
 if (running) { 
 pthread_cancel(tid); 
 }  
}

• int Thread::start() { 
 int result =
pthread_create(&tid, NULL,
runThread, this); 
 if (result == 0) {  
 running = true; 
 }  
 return result; 
}

• static void* runThread(void* arg)
{ 
 return
(static_cast<Thread*>(arg))-
>run(); 
}

guarantees that the internal
structure is deleted, whether

the thread is joined or not

Thread class

• Thread::Thread() : tid(0),
running(false), detached(false) {}

• Thread::~Thread() { 
 if (running && !detached) { 
 pthread_detach(tid); 
 }  
 if (running) { 
 pthread_cancel(tid); 
 }  
}

• int Thread::start() { 
 int result =
pthread_create(&tid, NULL,
runThread, this); 
 if (result == 0) {  
 running = true; 
 }  
 return result; 
}

• static void* runThread(void* arg)
{ 
 return
(static_cast<Thread*>(arg))-
>run(); 
}

Thread class

• Thread::Thread() : tid(0),
running(false), detached(false) {}

• Thread::~Thread() { 
 if (running && !detached) { 
 pthread_detach(tid); 
 }  
 if (running) { 
 pthread_cancel(tid); 
 }  
}

• int Thread::start() { 
 int result =
pthread_create(&tid, NULL,
runThread, this); 
 if (result == 0) {  
 running = true; 
 }  
 return result; 
}

• static void* runThread(void* arg)
{ 
 return
(static_cast<Thread*>(arg))-
>run(); 
}

needed to let runThread to
execute the run() method

Thread class

• Thread::Thread() : tid(0),
running(false), detached(false) {}

• Thread::~Thread() { 
 if (running && !detached) { 
 pthread_detach(tid); 
 }  
 if (running) { 
 pthread_cancel(tid); 
 }  
}

• int Thread::start() { 
 int result =
pthread_create(&tid, NULL,
runThread, this); 
 if (result == 0) {  
 running = true; 
 }  
 return result; 
}

• static void* runThread(void* arg)
{ 
 return
(static_cast<Thread*>(arg))-
>run(); 
}

needed to let runThread to
execute the run() method

Wraps a class method in
a C function

Using the thread class
• class MyThread : public

Thread {  
 public:  
 void *run() {  
 for (int i = 0; i <
5; i++) {  
 printf("thread
%lu running - %d\n", (long
unsigned int)self(), i+1);  
 sleep(2);  
 }  
 printf("thread done
%lu\n", (long unsigned
int)self());  
 return NULL;  
 }  
};

• MyThread* thread1 = new
MyThread();

• thread1->start();

• thread1->join();

Using the thread class
• class MyThread : public

Thread {  
 public:  
 void *run() {  
 for (int i = 0; i <
5; i++) {  
 printf("thread
%lu running - %d\n", (long
unsigned int)self(), i+1);  
 sleep(2);  
 }  
 printf("thread done
%lu\n", (long unsigned
int)self());  
 return NULL;  
 }  
};

• MyThread* thread1 = new
MyThread();

• thread1->start();

• thread1->join();

Use derived class pointer to be
able to call methods specific

for the subclass

Mutex class
class Mutex {  
public:  
// just initialize to defaults  

 Mutex() { pthread_mutex_init(&mutex, NULL); }  
 virtual ~Mutex() { pthread_mutex_destroy(&mutex); }  
 int lock() { return pthread_mutex_lock(&mutex); }  
 int trylock() {  
 return pthread_mutex_trylock(&mutex);  
 }  
 int unlock() { return pthread_mutex_unlock(&mutex); }

private:  
 friend class CondVar;  
 pthread_mutex_t mutex;  
};

Mutex class
class Mutex {  
public:  
// just initialize to defaults  

 Mutex() { pthread_mutex_init(&mutex, NULL); }  
 virtual ~Mutex() { pthread_mutex_destroy(&mutex); }  
 int lock() { return pthread_mutex_lock(&mutex); }  
 int trylock() {  
 return pthread_mutex_trylock(&mutex);  
 }  
 int unlock() { return pthread_mutex_unlock(&mutex); }

private:  
 friend class CondVar;  
 pthread_mutex_t mutex;  
};

If we plan to have also a class
for conditional variables: this
reduces the need of getter

method for the Pthread mutex

Conditional variable class
#include "mutex.h"

class CondVar {  
public:  
 // just initialize to defaults  
 CondVar(Mutex& mutex) : m_lock(mutex) {  
 pthread_cond_init(&cond, NULL);  
 }  
 virtual ~CondVar() { pthread_cond_destroy(&cond); }

 int wait() {  
 return pthread_cond_wait(&cond, &(lock.mutex));  
 }  
 int signal() { return pthread_cond_signal(&cond); }  
 int broadcast() { return pthread_cond_broadcast(&cond); }

private:  
 pthread_cond_t cond;  
 Mutex& lock;  
};

Conditional variable class
#include "mutex.h"

class CondVar {  
public:  
 // just initialize to defaults  
 CondVar(Mutex& mutex) : m_lock(mutex) {  
 pthread_cond_init(&cond, NULL);  
 }  
 virtual ~CondVar() { pthread_cond_destroy(&cond); }

 int wait() {  
 return pthread_cond_wait(&cond, &(lock.mutex));  
 }  
 int signal() { return pthread_cond_signal(&cond); }  
 int broadcast() { return pthread_cond_broadcast(&cond); }

private:  
 pthread_cond_t cond;  
 Mutex& lock;  
};

This is why we need CondVar
as friend of mutex.

Otherwise we need a getter
returning a reference

Boost.Thread

• More complete portable C++ classes are provided
in Boost.Thread library

• #include <boost/thread.hpp>

• The library has been designed to follow the stye of
C++11 standard thread library

C++11

Native support

• C++11 has introduced support for multithreaded
programs within the language itself: there’s no
more need of external libraries like Pthreads.

• The C++11 standard library provides both low and
high level facilities for multithread programming

Native support

• C++11 has introduced support for multithreaded
programs within the language itself: there’s no
more need of external libraries like Pthreads.

• The C++11 standard library provides both low and
high level facilities for multithread programming

Remind to compile using -std=c++11 or -std=c++0x, depending on the compiler

Creating and running threads
• Use a std::thread object to run a function:

• void f(int i, std::string const& s);  
std::thread t(f,3,”hello”);

• a thread object can also use:

• classes, in this case it will execute the operator() method

• lambda expressions

• Join a thread or detach it (without waiting for its conclusion):

• t.join()

• t.detach()

join and exceptions
• To safely join an un-detached thread try execution

of code that may launch an exception followed by

• catch(…) {  
 myThreadObject.join();  
 throw;  
}  
myThreadObject.join();

• or better yet use RAII

join and exceptions
• To safely join an un-detached thread try execution

of code that may launch an exception followed by

• catch(…) {  
 myThreadObject.join();  
 throw;  
}  
myThreadObject.join();

• or better yet use RAII

Example of RAII class to manage threads

class ThreadGuard {
public:
 explicit ThreadGuard(std::thread& aT): t(aT) {}
 ~ThreadGuard() {
 if(t.joinable()) {
 t.join();
 }
 }  
 // use new C++11 controls to eliminate default methods:  
 // we do not want to allow copying of RAII object
 ThreadGuard(ThreadGuard const&)=delete;
 ThreadGuard& operator=(ThreadGuard const&)=delete;
private:
 std::thread& t;
};

Passing arguments
• Arguments are copied into internal thread storage also when

expecting a reference

• be careful when passing a pointer to an automatic variable !

void f(int i,std::string const& s);
void oops(int some_param) {  
 char buffer[1024];  
 sprintf(buffer, "%i",some_param);  
 std::thread t(f,3,buffer);  
 t.detach();
}  
 
oops() may end before conversion of buffer to string is
completed… undefined behavior…

void f(int i,std::string const& s);
void oops(int some_param) {  
 char buffer[1024];  
 sprintf(buffer, "%i",some_param);  
 std::thread t(f,3, std::string(buffer));  
 t.detach();
}

cast before passing to solve the issue

Passing arguments
• Arguments are copied into internal thread storage also when

expecting a reference

• be careful when passing a pointer to an automatic variable !

void f(int i,std::string const& s);
void oops(int some_param) {  
 char buffer[1024];  
 sprintf(buffer, "%i",some_param);  
 std::thread t(f,3,buffer);  
 t.detach();
}  
 
oops() may end before conversion of buffer to string is
completed… undefined behavior…

void f(int i,std::string const& s);
void oops(int some_param) {  
 char buffer[1024];  
 sprintf(buffer, "%i",some_param);  
 std::thread t(f,3, std::string(buffer));  
 t.detach();
}

cast before passing to solve the issue

If you really want to operate on a reference, perhaps to modify it, use std::ref()

std::tread t(f, 3, std::ref(myString));

Mutex

• #include <mutex>

• std::mutex myMutex;

• Instead of calling lock() on the mutex object use a  
C++11 RAII template object:

• std::lock_guard<std::mutex> guard(myMutex)

Mutex

• #include <mutex>

• std::mutex myMutex;

• Instead of calling lock() on the mutex object use a  
C++11 RAII template object:

• std::lock_guard<std::mutex> guard(myMutex)

std::list<int> some_list;
std::mutex some_mutex;

void add_to_list(int new_value) {
 std::lock_guard<std::mutex> guard(some_mutex);
 some_list.push_back(new_value);
}

bool list_contains(int value_to_find) {
 std::lock_guard<std::mutex> guard(some_mutex);
 return std::find(some_list.begin(),some_list.end(),value_to_find)
 != some_list.end();
}

Mutex

• #include <mutex>

• std::mutex myMutex;

• Instead of calling lock() on the mutex object use a  
C++11 RAII template object:

• std::lock_guard<std::mutex> guard(myMutex)

std::list<int> some_list;
std::mutex some_mutex;

void add_to_list(int new_value) {
 std::lock_guard<std::mutex> guard(some_mutex);
 some_list.push_back(new_value);
}

bool list_contains(int value_to_find) {
 std::lock_guard<std::mutex> guard(some_mutex);
 return std::find(some_list.begin(),some_list.end(),value_to_find)
 != some_list.end();
}

When a lock_guard object is created, it attempts to take ownership of the mutex it is given.
When control leaves the scope in which the lock_guard object was created, the destructor

releases the mutex.

Protecting shared data

• As long as none of the member functions of an
object, containing data protected with a mutex,
return a pointer or reference to the protected data
to their caller either via their return value or via an
out parameter, the data is safe.

• But again be careful of calling alien functions that
are not under control

Protecting shared data

• As long as none of the member functions of an
object, containing data protected with a mutex,
return a pointer or reference to the protected data
to their caller either via their return value or via an
out parameter, the data is safe.

• But again be careful of calling alien functions that
are not under control

Don’t pass pointers and references to protected data outside the scope of
the lock, whether

• by returning them from a function,
• storing them in externally visible memory,
• or passing them as arguments to user-supplied functions

Deadlock
• Instead of acquiring multiple locks on mutexes in a fixed order it is

possible to lock simultaneously two or more mutexes using
std::lock()

• std::lock() can be used in conjunction with
std::lock_guard<>, asking to lock_guard to avoid locking the
already locked mutex: 
 
std::mutex m1, m2;  
std::lock(m1, m2);  
std::lock_guard<std::mutex> lockM1(m1, std::adopt_lock);  
std::lock_guard<std::mutex> lockM2(m2, std::adopt_lock);  
do_critical_operation();  

std::unique_lock
• A std::unique_lock instance doesn’t always own

the mutex that it’s associated with.

• Pass std::adopt_lock as a second argument to
the constructor to have the lock object manage the
lock on a mutex, or pass std::defer_lock to
indicate that the mutex should remain unlocked on
construction.

• The lock can then be acquired later by calling lock()
on the std::unique_lock object (not the mutex) or
by passing the std::unique_lock object itself to
std::lock().

std::unique_lock
• A std::unique_lock instance doesn’t always own

the mutex that it’s associated with.

• Pass std::adopt_lock as a second argument to
the constructor to have the lock object manage the
lock on a mutex, or pass std::defer_lock to
indicate that the mutex should remain unlocked on
construction.

• The lock can then be acquired later by calling lock()
on the std::unique_lock object (not the mutex) or
by passing the std::unique_lock object itself to
std::lock().

Allows more granularity:

{
 std::unique_lock<std::mutex> my_lock(a_mutex);
 do_critical_work();
 my_lock.unlock();
 do_not_critical_work();
 my_lock.lock();
 do_critical_work();
 // my_lock destructor releases lock
}

Condition variables
• #include <condition_variables>  
std::condition_variable data_cond;

• Use in association with a mutex

• Notify using notify_one()

• Wait providing the mutex and a lambda expression
that checks for the expected condition: there’s no
need of while(!condition)

Condition variables
• #include <condition_variables>  
std::condition_variable data_cond;

• Use in association with a mutex

• Notify using notify_one()

• Wait providing the mutex and a lambda expression
that checks for the expected condition: there’s no
need of while(!condition)

std::mutex mut;
std::queue<DataType> data_queue;
std::condition_variable data_cond;

// thread adding data
DataType data = produce_data();
std::lock_guard<std::mutex> lk(mut);
data_queue.push(data);
data_cond.notify_one();  

// thread consuming data
std::unique_lock<std::mutex> lk(mut);
data_cond.wait(lk, []{return !data_queue.empty();});
DataType data=data_queue.front();
data_queue.pop();
lk.unlock();
process(data)

Condition variables
• #include <condition_variables>  
std::condition_variable data_cond;

• Use in association with a mutex

• Notify using notify_one()

• Wait providing the mutex and a lambda expression
that checks for the expected condition: there’s no
need of while(!condition)

std::mutex mut;
std::queue<DataType> data_queue;
std::condition_variable data_cond;

// thread adding data
DataType data = produce_data();
std::lock_guard<std::mutex> lk(mut);
data_queue.push(data);
data_cond.notify_one();  

// thread consuming data
std::unique_lock<std::mutex> lk(mut);
data_cond.wait(lk, []{return !data_queue.empty();});
DataType data=data_queue.front();
data_queue.pop();
lk.unlock();
process(data)

Use std::unique_lock because:
- the wait on the condition must unlock the mutex

(and thus it can not be controlled solely by
std::lock_guard)

- it allows to explicitly unlock (we do not want
process(data) to be synchronized)

Thread-safe queue example
#include <memory> // for std::shared_ptr

template<typename T>  
class threadsafe_queue {

public:  
 threadsafe_queue();  
 threadsafe_queue(const threadsafe_queue&);  
 threadsafe_queue& operator=(const threadsafe_queue&) = delete;

 void push(T new_value);

 bool try_pop(T& value);  
 std::shared_ptr<T> try_pop();

 void wait_and_pop(T& value);  
 std::shared_ptr<T> wait_and_pop();

 bool empty() const;

};

For simplicity

Two pop variants: try_ tries to pop and
returns an indication of failure if queue is

empty, while wait_ blocks the pop.  
Each method has a variant: one returns
data in the argument, keeping the result

for errors, the other uses the return
argument.

Thread-safe queue example
#include <memory> // for std::shared_ptr

template<typename T>  
class threadsafe_queue {

public:  
 threadsafe_queue();  
 threadsafe_queue(const threadsafe_queue&);  
 threadsafe_queue& operator=(const threadsafe_queue&) = delete;

 void push(T new_value);

 bool try_pop(T& value);  
 std::shared_ptr<T> try_pop();

 void wait_and_pop(T& value);  
 std::shared_ptr<T> wait_and_pop();

 bool empty() const;

};

For simplicity

Two pop variants: try_ tries to pop and
returns an indication of failure if queue is

empty, while wait_ blocks the pop.  
Each method has a variant: one returns
data in the argument, keeping the result

for errors, the other uses the return
argument.

OK: now let’s see where to really store data and manage race conditions and data access

Thread-safe queue example
#include <mutex>  
#include <condition_variable>  
#include <queue>

template<typename T>  
class threadsafe_queue {

private:  
 std::queue<T> data_queue;  
 std::mutex mut;  
 std::condition_variable data_cond;

public:  
 void push(T new_value) {  
 std::lock_guard<std::mutex> lk(mut);  
 data_queue.push(new_value);  
 data_cond.notify_one();  
 }

 void wait_and_pop(T& value) {  
 std::unique_lock<std::mutex> lk(mut);  
 data_cond.wait(lk,[this]{return !data_queue.empty();});  
 value=data_queue.front();  
 data_queue.pop();  
 }

};

Thread-safe queue example
#include <mutex>  
#include <condition_variable>  
#include <queue>

template<typename T>  
class threadsafe_queue {

private:  
 std::queue<T> data_queue;  
 std::mutex mut;  
 std::condition_variable data_cond;

public:  
 void push(T new_value) {  
 std::lock_guard<std::mutex> lk(mut);  
 data_queue.push(new_value);  
 data_cond.notify_one();  
 }

 void wait_and_pop(T& value) {  
 std::unique_lock<std::mutex> lk(mut);  
 data_cond.wait(lk,[this]{return !data_queue.empty();});  
 value=data_queue.front();  
 data_queue.pop();  
 }

};

No external synchronization required

Thread-safe queue example
#include <mutex>  
#include <condition_variable>  
#include <queue>

template<typename T>  
class threadsafe_queue {

private:  
 std::queue<T> data_queue;  
 std::mutex mut;  
 std::condition_variable data_cond;

public:  
 void push(T new_value) {  
 std::lock_guard<std::mutex> lk(mut);  
 data_queue.push(new_value);  
 data_cond.notify_one();  
 }

 void wait_and_pop(T& value) {  
 std::unique_lock<std::mutex> lk(mut);  
 data_cond.wait(lk,[this]{return !data_queue.empty();});  
 value=data_queue.front();  
 data_queue.pop();  
 }

};

No external synchronization required

Allows mutex unlock in wait

Thread-safe queue example
#include <mutex>  
#include <condition_variable>  
#include <queue>

template<typename T>  
class threadsafe_queue {

private:  
 std::queue<T> data_queue;  
 std::mutex mut;  
 std::condition_variable data_cond;

public:  
 void push(T new_value) {  
 std::lock_guard<std::mutex> lk(mut);  
 data_queue.push(new_value);  
 data_cond.notify_one();  
 }

 void wait_and_pop(T& value) {  
 std::unique_lock<std::mutex> lk(mut);  
 data_cond.wait(lk,[this]{return !data_queue.empty();});  
 value=data_queue.front();  
 data_queue.pop();  
 }

};

No external synchronization required

Allows mutex unlock in wait

automatic mutex unlock thanks to std::unique_lock

Thread-safe queue example
threadsafe_queue(threadsafe_queue const& other) {  
 std::lock_guard<std::mutex> lk(other.mut);  
 data_queue=other.data_queue;  
}

std::shared_ptr<T> wait_and_pop() {  
 std::unique_lock<std::mutex> lk(mut);  
 data_cond.wait(lk,[this]{return !data_queue.empty();});  
 std::shared_ptr<T> res(std::make_shared<T>(data_queue.front()));  
 data_queue.pop();  
 return res;  
}

bool try_pop(T& value) {  
 std::lock_guard<std::mutex> lk(mut);  
 if(data_queue.empty)  
 return false;  
 value=data_queue.front();  
 data_queue.pop();  
 return true;  
}

std::shared_ptr<T> try_pop() {  
 std::lock_guard<std::mutex> lk(mut);  
 if(data_queue.empty())  
 return std::shared_ptr<T>();  
 std::shared_ptr<T> res(std::make_shared<T>(data_queue.front()));  
 data_queue.pop();  
 return res;  
}

bool empty() const {  
 std::lock_guard<std::mutex> lk(mut);  
 return data_queue.empty();  
}

Thread-safe queue example
threadsafe_queue(threadsafe_queue const& other) {  
 std::lock_guard<std::mutex> lk(other.mut);  
 data_queue=other.data_queue;  
}

std::shared_ptr<T> wait_and_pop() {  
 std::unique_lock<std::mutex> lk(mut);  
 data_cond.wait(lk,[this]{return !data_queue.empty();});  
 std::shared_ptr<T> res(std::make_shared<T>(data_queue.front()));  
 data_queue.pop();  
 return res;  
}

bool try_pop(T& value) {  
 std::lock_guard<std::mutex> lk(mut);  
 if(data_queue.empty)  
 return false;  
 value=data_queue.front();  
 data_queue.pop();  
 return true;  
}

std::shared_ptr<T> try_pop() {  
 std::lock_guard<std::mutex> lk(mut);  
 if(data_queue.empty())  
 return std::shared_ptr<T>();  
 std::shared_ptr<T> res(std::make_shared<T>(data_queue.front()));  
 data_queue.pop();  
 return res;  
}

bool empty() const {  
 std::lock_guard<std::mutex> lk(mut);  
 return data_queue.empty();  
}

The method is const, but locking the mutex is a mutating operation. Therefore the mutex
should be marked as mutable in its declaration. Change the previous declaration as:  

mutable std::mutex mut

Thread-safe queue example
threadsafe_queue(threadsafe_queue const& other) {  
 std::lock_guard<std::mutex> lk(other.mut);  
 data_queue=other.data_queue;  
}

std::shared_ptr<T> wait_and_pop() {  
 std::unique_lock<std::mutex> lk(mut);  
 data_cond.wait(lk,[this]{return !data_queue.empty();});  
 std::shared_ptr<T> res(std::make_shared<T>(data_queue.front()));  
 data_queue.pop();  
 return res;  
}

bool try_pop(T& value) {  
 std::lock_guard<std::mutex> lk(mut);  
 if(data_queue.empty)  
 return false;  
 value=data_queue.front();  
 data_queue.pop();  
 return true;  
}

std::shared_ptr<T> try_pop() {  
 std::lock_guard<std::mutex> lk(mut);  
 if(data_queue.empty())  
 return std::shared_ptr<T>();  
 std::shared_ptr<T> res(std::make_shared<T>(data_queue.front()));  
 data_queue.pop();  
 return res;  
}

bool empty() const {  
 std::lock_guard<std::mutex> lk(mut);  
 return data_queue.empty();  
}

The method is const, but locking the mutex is a mutating operation. Therefore the mutex
should be marked as mutable in its declaration. Change the previous declaration as:  

mutable std::mutex mut

other is const, but locking the mutex is a mutating operation. This is another operation that
need a mutable mutex.

Using the thread-safe queue
threadsafe_queue<data_chunk> data_queue;

void data_preparation_thread() {
 while(more_data_to_prepare()) {
 data_chunk const data=prepare_data();
 data_queue.push(data);
 }
}

void data_processing_thread() {
 while(true) {
 data_chunk data;
 data_queue.wait_and_pop(data);
 process(data);
 if(is_last_chunk(data))
 break;
 }
}

Atomic types
• C++ provides many atomic types in <atomic>, that provides

synchronization “under the hood” in their implementation, e.g.:

• std::atomic<int> , is also available as atomic_int type

• The standard atomic types are not copyable or assignable in
the conventional sense, in that they have no copy constructors
or copy assignment operators.  
They do, however, support assignment from and implicit
conversion to the corresponding built-in types as well as direct
load() and store() member functions, exchange(),
compare_exchange_weak(), and
compare_exchange_strong()

• They have many operators and support for pointer operations

Atomic types
• C++ provides many atomic types in <atomic>, that provides

synchronization “under the hood” in their implementation, e.g.:

• std::atomic<int> , is also available as atomic_int type

• The standard atomic types are not copyable or assignable in
the conventional sense, in that they have no copy constructors
or copy assignment operators.  
They do, however, support assignment from and implicit
conversion to the corresponding built-in types as well as direct
load() and store() member functions, exchange(),
compare_exchange_weak(), and
compare_exchange_strong()

• They have many operators and support for pointer operations

Compare/exchange operation is the cornerstone of programming with atomic types; it
compares the value of the atomic variable with a supplied expected value and stores the
supplied desired value if they’re equal. If the values aren’t equal, the expected value is
updated with the actual value of the atomic variable.

Future and async

• std::async provides facilities for a higher-level
parallelism than std::thread

• returns more easily results from threads (no need
to use pointer args)

• allows to defer thread launch

• executes asynchronously

Future and async

• std::async provides facilities for a higher-level
parallelism than std::thread

• returns more easily results from threads (no need
to use pointer args)

• allows to defer thread launch

• executes asynchronously

void accumulate_block_worker(int* data, size_t count, int* result) {
 *result = std::accumulate(data, data + count, 0);
}

void use_worker_in_std_thread() {
 std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8};
 int result;
 std::thread worker(accumulate_block_worker,
 v.data(), v.size(), &result);
 worker.join();
 std::cout << "use_worker_in_std_thread computed " << result << "\n";
}

Future and async

• std::async provides facilities for a higher-level
parallelism than std::thread

• returns more easily results from threads (no need
to use pointer args)

• allows to defer thread launch

• executes asynchronously

void accumulate_block_worker(int* data, size_t count, int* result) {
 *result = std::accumulate(data, data + count, 0);
}

void use_worker_in_std_thread() {
 std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8};
 int result;
 std::thread worker(accumulate_block_worker,
 v.data(), v.size(), &result);
 worker.join();
 std::cout << "use_worker_in_std_thread computed " << result << "\n";
}

int accumulate_block_worker_ret(int* data, size_t count) {
 return std::accumulate(data, data + count, 0);
}

void use_worker_in_std_async() {
 std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8};
 std::future<int> fut = std::async(
 std::launch::async, accumulate_block_worker_ret, v.data(),
v.size());
 std::cout << "use_worker_in_std_async computed " << fut.get() <<
"\n";
}

Future and async

• std::async provides facilities for a higher-level
parallelism than std::thread

• returns more easily results from threads (no need
to use pointer args)

• allows to defer thread launch

• executes asynchronously

void accumulate_block_worker(int* data, size_t count, int* result) {
 *result = std::accumulate(data, data + count, 0);
}

void use_worker_in_std_thread() {
 std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8};
 int result;
 std::thread worker(accumulate_block_worker,
 v.data(), v.size(), &result);
 worker.join();
 std::cout << "use_worker_in_std_thread computed " << result << "\n";
}

int accumulate_block_worker_ret(int* data, size_t count) {
 return std::accumulate(data, data + count, 0);
}

void use_worker_in_std_async() {
 std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8};
 std::future<int> fut = std::async(
 std::launch::async, accumulate_block_worker_ret, v.data(),
v.size());
 std::cout << "use_worker_in_std_async computed " << fut.get() <<
"\n";
}

Use explicitly this execution politics (the default allows also deferral)

Future

• std::future decouples the task from the result

• bonus: you can pass the future somewhere else,
and it encapsulates both the thread to wait on
and the result you'll end up with.  
 
Useful in the scenario in which we want to launch
tasks in one place but collect results in some
other place.

Future

• std::future decouples the task from the result

• bonus: you can pass the future somewhere else,
and it encapsulates both the thread to wait on
and the result you'll end up with.  
 
Useful in the scenario in which we want to launch
tasks in one place but collect results in some
other place.

using int_futures = std::vector<std::future<int>>;

int_futures launch_split_workers_with_std_async(std::vector<int>& v) {
 int_futures futures;
 futures.push_back(std::async(std::launch::async,
accumulate_block_worker_ret,
 v.data(), v.size() / 2));
 futures.push_back(std::async(std::launch::async,
accumulate_block_worker_ret,
 v.data() + v.size() / 2, v.size() /
2));
 return futures;
}

...

{
 // Usage
 std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8};
 int_futures futures = launch_split_workers_with_std_async(v);
 std::cout << "results from launch_split_workers_with_std_async: "
 << futures[0].get() << " and " << futures[1].get() <<
"\n";
}

Future and time out

• It is possible to time out on futures, so to avoid to
be blocked on long computations

• instead joining threads does not allow this. We
need to create a control structure with condition
variables.

Future and time out

• It is possible to time out on futures, so to avoid to
be blocked on long computations

• instead joining threads does not allow this. We
need to create a control structure with condition
variables.

int accumulate_block_worker_ret(int* data, size_t count) {
 std::this_thread::sleep_for(std::chrono::seconds(3));
 return std::accumulate(data, data + count, 0);
}

int main(int argc, const char** argv) {
 std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8};
 std::future<int> fut = std::async(
 std::launch::async, accumulate_block_worker_ret, v.data(),
v.size());
 while (fut.wait_for(std::chrono::seconds(1)) !=
std::future_status::ready) {
 std::cout << "... still not ready\n";
 }
 std::cout << "use_worker_in_std_async computed " << fut.get() <<
"\n";

 return 0;
}

Exceptions and threads
• The C++ standard states, “~thread(), if joinable(), calls
std::terminate()”.  
So trying to catch the exception of a thread in another thread won't help: 
 
try {  
 std::thread worker(accumulate_block_worker, v.data(),
v.size(), &result);  
 worker.join();  
 std::cout << "use_worker_in_std_thread computed " << result
<< "\n";  
} catch (const std::runtime_error& error) {  
 std::cout << "caught an error: " << error.what() << "\n";  
}

Results in:

terminate called after throwing an instance of
'std::runtime_error'  
 what(): something broke  
Aborted (core dumped)

Exceptions and threads
• The C++ standard states, “~thread(), if joinable(), calls
std::terminate()”.  
So trying to catch the exception of a thread in another thread won't help: 
 
try {  
 std::thread worker(accumulate_block_worker, v.data(),
v.size(), &result);  
 worker.join();  
 std::cout << "use_worker_in_std_thread computed " << result
<< "\n";  
} catch (const std::runtime_error& error) {  
 std::cout << "caught an error: " << error.what() << "\n";  
}

Results in:

terminate called after throwing an instance of
'std::runtime_error'  
 what(): something broke  
Aborted (core dumped)

Solution:

Use std::future, since it propagates exceptions:  
 
int accumulate_block_worker_ret(int* data, size_t count) {
 throw std::runtime_error("something broke");
 return std::accumulate(data, data + count, 0);
}

...

{
 std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8};
 try {
 std::future<int> fut = std::async(
 std::launch::async, accumulate_block_worker_ret, v.data(),
v.size());
 std::cout << "use_worker_in_std_async computed " << fut.get() <<
"\n";
 } catch (const std::runtime_error& error) {
 std::cout << "caught an error: " << error.what() << "\n";
 }
}

Future and deferred async
• The deferred policy means that the task will run

lazily on the calling thread only when get() is
called on the future it returns.

• The default std::async let the runtime choose
either to execute async or deferred, but the code to
manage both cases may become complicated

• Good practice: always explicitly execute with
std::launch::async

Future and deferred async
• The deferred policy means that the task will run

lazily on the calling thread only when get() is
called on the future it returns.

• The default std::async let the runtime choose
either to execute async or deferred, but the code to
manage both cases may become complicated

• Good practice: always explicitly execute with
std::launch::async

Scott Meyers suggests to use this wrapper to ensure to always launch async:  
 
template <typename F, typename... Ts>
inline auto reallyAsync(F&& f, Ts&&... params) {
 return std::async(std::launch::async, std::forward<F>(f),
 std::forward<Ts>(params)...);
}

Future and deferred async
• The deferred policy means that the task will run

lazily on the calling thread only when get() is
called on the future it returns.

• The default std::async let the runtime choose
either to execute async or deferred, but the code to
manage both cases may become complicated

• Good practice: always explicitly execute with
std::launch::async

Scott Meyers suggests to use this wrapper to ensure to always launch async:  
 
template <typename F, typename... Ts>
inline auto reallyAsync(F&& f, Ts&&... params) {
 return std::async(std::launch::async, std::forward<F>(f),
 std::forward<Ts>(params)...);
}

forwards the argument to another function with the value category (e.g. lvalue, rvalue)  
it had when passed to the calling function.

STL Thread safety
• All const member functions can be called concurrently by different

threads on the same container. In addition, the member functions
begin(), end(), rbegin(), rend(), front(),
back(), data(), find(), lower_bound(),
upper_bound(), equal_range(), at(), and, except in
associative containers, operator[], behave as const for the
purposes of thread safety.

• Any member function that invalidates iterators, such as
vector::push_back or set::erase, requires synchronization
with every thread that accesses any iterator, even the ones that
aren't invalidated.

• Different elements in the same container can be modified
concurrently by different threads, except for the elements of
std::vector<bool>

STL Thread safety
• All const member functions can be called concurrently by different

threads on the same container. In addition, the member functions
begin(), end(), rbegin(), rend(), front(),
back(), data(), find(), lower_bound(),
upper_bound(), equal_range(), at(), and, except in
associative containers, operator[], behave as const for the
purposes of thread safety.

• Any member function that invalidates iterators, such as
vector::push_back or set::erase, requires synchronization
with every thread that accesses any iterator, even the ones that
aren't invalidated.

• Different elements in the same container can be modified
concurrently by different threads, except for the elements of
std::vector<bool>

Basically reading from a container from multiple threads is
fine, and modifying elements that are already in the container
is fine (as long as they are different elements).

But:
- having two threads inserting into a vector/list is not thread-

safe: they are modifying the vector/list itself - not existing
separate elements.

- one thread erasing and other walking to access the same
element is not thread safe

Container operations that invalidate any iterators modify the
container and cannot be executed concurrently with any
operations on existing iterators even if those iterators are not
invalidated.

Books

• C++ Concurrency in action: practical
multithreading, Anthony Williams, Manning - Chapt.
2-5

