

Parallel
Computing

Prof. Marco Bertini

Shared memory:
OpenMP C/C++

directives

shared / private variables
• Common clauses shared by several directives address how

variables are shared/made private within threads:

• private(list of variables) - a new version of the original
variable with the same type and size is created in the memory of
each thread belonging to the parallel region

• shared(list of variables) - threads of the team access
and modify the same original variable in the shared memory.

• default(shared | none) - used to specify whether variables
in a parallel region are shared or private by default. The first option
causes all variables referenced in the construct to be shared
except the private variables which are specified explicitly, while
none requires each variable in the construct to be specified
explicitly as shared or private.

shared / private variables
• Common clauses shared by several directives address how

variables are shared/made private within threads:

• private(list of variables) - a new version of the original
variable with the same type and size is created in the memory of
each thread belonging to the parallel region

• shared(list of variables) - threads of the team access
and modify the same original variable in the shared memory.

• default(shared | none) - used to specify whether variables
in a parallel region are shared or private by default. The first option
causes all variables referenced in the construct to be shared
except the private variables which are specified explicitly, while
none requires each variable in the construct to be specified
explicitly as shared or private.

private variables are not initialised, i.e. they start with
random values like any other local automatic variable (and

they are often implemented using automatic variables on the
stack of each thread).

shared / private variables
• Common clauses shared by several directives address how

variables are shared/made private within threads:

• private(list of variables) - a new version of the original
variable with the same type and size is created in the memory of
each thread belonging to the parallel region

• shared(list of variables) - threads of the team access
and modify the same original variable in the shared memory.

• default(shared | none) - used to specify whether variables
in a parallel region are shared or private by default. The first option
causes all variables referenced in the construct to be shared
except the private variables which are specified explicitly, while
none requires each variable in the construct to be specified
explicitly as shared or private.

shared / private variables
• Common clauses shared by several directives address how

variables are shared/made private within threads:

• private(list of variables) - a new version of the original
variable with the same type and size is created in the memory of
each thread belonging to the parallel region

• shared(list of variables) - threads of the team access
and modify the same original variable in the shared memory.

• default(shared | none) - used to specify whether variables
in a parallel region are shared or private by default. The first option
causes all variables referenced in the construct to be shared
except the private variables which are specified explicitly, while
none requires each variable in the construct to be specified
explicitly as shared or private.

It’s a good practice to explicitly decide the scope of the
variables. Use default(none) to be forced to make

the declaration !

private variables in/out
• Use firstprivate to declare private variables

that are initialized with the main thread’s value of the
variables

• Use lastprivate to declare private variables
whose values are copied back out to main thread’s
variables by the thread that executes the last
iteration of a parallel for loop, or the thread that
executes the last parallel section

• These are special cases of private, and are useful to
bring values in and out from the parallel section of
code.

reduction
• A typical calculation which needs to be synchronized is a global

reduction operation performed in parallel by the threads of a team.

• It is possible to use the reduction clause with parallel and for
directives. The syntax is:

• reduction (op: list) with op ∈{+, -, *, &, ˆ, |, &&, ||}

• For each of the variables in list, a private copy is created for each
thread of the team. The private copies are initialized to the neutral
element of the operation op (e.g. 0 for +, 1 for *) and can be updated
by the owning thread.  
At the end of the region for which the reduction clause is specified, the
local values of the reduction variables are combined according to the
operator op and the result of the reduction is written into the original
shared variable.

reduction
• A typical calculation which needs to be synchronized is a global

reduction operation performed in parallel by the threads of a team.

• It is possible to use the reduction clause with parallel and for
directives. The syntax is:

• reduction (op: list) with op ∈{+, -, *, &, ˆ, |, &&, ||}

• For each of the variables in list, a private copy is created for each
thread of the team. The private copies are initialized to the neutral
element of the operation op (e.g. 0 for +, 1 for *) and can be updated
by the owning thread.  
At the end of the region for which the reduction clause is specified, the
local values of the reduction variables are combined according to the
operator op and the result of the reduction is written into the original
shared variable.

simpler than critical access to update the shared variable

parallel region
• #pragma omp parallel [clause [clause] ...]  
{  
 // structured block ...  
}

• A team of threads is created to execute the parallel region in
parallel.  
Each thread of the team is assigned a unique thread number,
(master=0 … n-1).  
The parallel construct creates the team but does not
distribute the work of the parallel region among the threads
of the team.

• Use for or sections to distribute the work (work sharing)

parallel region clauses
• Define the scope of variables in the clauses with

the clauses seen previously

• Set the number of threads with
num_threads(integer_expression)

• Decide the parallel execution based on if clause
that evaluates an expression returning non-zero as
true or zero as false (serial execution)

parallel region nesting
• A nesting of parallel regions by calling a parallel

construct within a parallel region is possible.
However, the default execution mode assigns only
one thread to the team of the inner parallel region.

• int omp_get_nested() to know if nesting is
active

• void omp_set_nested(int nested) to set
nesting (with nested != 0)

for loop
• The loop construct causes a distribution of the iterates

of a parallel loop:

#pragma omp for [clauses [] ...]

• It is restricted to loops which are parallel loops, in which
the iterates of the loop are independent of each other
and for which the total number of iterates is known in
advance.

• The index variable should not be changed within the
loop (as lower and upper bounds) and is considered as
private variable of the thread executing the
corresponding iterate.

for loop
• for (name = lower_bound; name op upper_bound;
incr_expr) {  
 // loop iterate ...  
}

• Acceptable for loops must:

• have lower_bound and upper_bound are integer expressions

• have op in {<, <=, >, >=}

• have incr_expr in the form: ++name, name++, --name,
name--, name += incr, name -= incr, name = name +
incr, name = incr + name, name = name - incr, with incr
that does not change within the loop

• must not contain break instruction

for loop scheduling
• Distribution of iterates to threads is done by a scheduling strategy, specified with schedule

clause:

• schedule(static, block_size): static distribution of iterates of blocks of size
block_size in a round-robin fashion. If block_size is not given, blocks of almost equal
size are formed and assigned to the threads.

• schedule(dynamic, block_size) specifies a dynamic distribution of blocks to
threads. A new block of size block_size is assigned to a thread as soon as the thread
has finished the computation of the previously assigned block. If block_size is not
provided, it is set to 1.

• schedule(guided, block_size) specifies a dynamic scheduling of blocks with
decreasing size.

• schedule(auto) delegates the scheduling decision to the compiler and/or runtime
system.

• schedule(runtime) uses the value of environment variable OMP_SCHEDULE

• If no schedule is provided the a default implementation-specific strategy is used

for loop scheduling

for loop scheduling

Simplified syntax
• If a parallel region contains only one for os sections then

instead of:

• #pragma omp parallel  
{  
#pragma omp for  
 for (…) {  
 }  
}

• it is possible to use:

• #pragma omp parallel for  
for (…) {  
}

Combining sequential parallel for
#pragma omp parallel for  
 for (...) {

 // Work-sharing loop 1  
 }

#pragma omp parallel for  
 for (...) {

 // Work-sharing loop 2  
 }

.........

#pragma omp parallel for

 for (...) {

 // Work-sharing loop N  
 }

#pragma omp parallel

 {

 #pragma omp for // Work-sharing loop 1

 { }

 #pragma omp for // Work-sharing loop 2

 { }

.........

 #pragma omp for // Work-sharing loop N

 { }

 }

Better: The cost of the parallel region
is amortized over the various work-

sharing loops.
Bad: parallel overhead and implied barriers

Parallel in inner loops
for (i=0; i<n; i++)  
 for (j=0; j<n; j++)  
 #pragma omp parallel for  
 for (k=0; k<n; k++)  
 {}

#pragma omp parallel  
 for (i=0; i<n; i++)  
 for (j=0; j<n; j++)  
 #pragma omp for  
 for (k=0; k<n; k++)  
 {}

Bad: n2 overheads of parallel

Better: 1 overhead of parallel

sections
• The goal is to execute concurrently independent

sections of code. 
 
#pragma omp parallel sections  
{  
#pragma omp section  
 phase1();  
#pragma omp section  
 phase2();  
#pragma omp section  
 phase3();  
}

sections

• At the end of execution of the assigned section, the
threads synchronize, unless the nowait clause is
used.

• It is illegal to branch in and out of section blocks.

for vs. sections

• The for directive splits the iterations of a loop
across the different threads.

• The sections directive assigns each thread to
explicitly identified tasks.

task
• Tasks are independent units of work. A thread is assigned to

perform a task: #pragma omp task

• Tasks might be executed immediately or might be deferred

• The runtime system decides which of  
the above

• Allows parallelization of irregular  
problems, e.g.:

• Unbounded loops

• Recursive algorithms (e.g. lists)

• Producer/consumer

task completion

• A task stops at:

• thread barriers, explicit or implicit. Tasks created
in a parallel section will stop at its implicit barrier
or at #pragma omp barrier  

• task barriers: #pragma omp taskwait  

task completion

• A task stops at:

• thread barriers, explicit or implicit. Tasks created
in a parallel section will stop at its implicit barrier
or at #pragma omp barrier  

• task barriers: #pragma omp taskwait  

#pragma omp parallel
{
#pragma omp task // multiple foo tasks
 foo();
#pragma omp barrier // explicit barrier
#pragma omp single
 {
#pragma omp task // one bar task
 bar();  
 } // implicit barrier  
}

task motivations
• while(my_pointer) {  
 (void) do_independent_work(my_pointer);  
 my_pointer = my_pointer->next ;  
} // End of while loop

• Hard to do without tasking: first count number of
iterations, then convert while loop to for loop

• A solution is to use the single construct : one thread
generates the tasks. All other threads execute the tasks
as they become available.

task motivations
• while(my_pointer) {  
 (void) do_independent_work(my_pointer);  
 my_pointer = my_pointer->next ;  
} // End of while loop

• Hard to do without tasking: first count number of
iterations, then convert while loop to for loop

• A solution is to use the single construct : one thread
generates the tasks. All other threads execute the tasks
as they become available.

my_pointer = listhead;

#pragma omp parallel
{
#pragma omp single
 {
 while(my_pointer) {
#pragma omp task firstprivate(my_pointer)
 {
 (void) do_independent_work (my_pointer);
 }
 my_pointer = my_pointer->next ;
 } // end while
 } // end single region
} // end parallel region

task motivations
• while(my_pointer) {  
 (void) do_independent_work(my_pointer);  
 my_pointer = my_pointer->next ;  
} // End of while loop

• Hard to do without tasking: first count number of
iterations, then convert while loop to for loop

• A solution is to use the single construct : one thread
generates the tasks. All other threads execute the tasks
as they become available.

my_pointer = listhead;

#pragma omp parallel
{
#pragma omp single
 {
 while(my_pointer) {
#pragma omp task firstprivate(my_pointer)
 {
 (void) do_independent_work (my_pointer);
 }
 my_pointer = my_pointer->next ;
 } // end while
 } // end single region
} // end parallel region

my_pointer = listhead;

#pragma omp parallel
{
#pragma omp single nowait // eliminate a barrier
 {
 while(my_pointer) {
#pragma omp task firstprivate(my_pointer)
 {
 (void) do_independent_work (my_pointer);
 }
 my_pointer = my_pointer->next ;
 } // end while
 } // end single block - no implied barrier (nowait)
} // end parallel block - implied barrier

task motivations
#pragma omp parallel  
{  
#pragma omp single  
 { //block 1  
 node * p = head;  
 while (p) { // block 2  
#pragma omp task  
 process(p);  
 p = p->next; //block 3  
 } // end while  
 } // end single block  
} // end parallel block

for and task
• #pragma omp parallel  
{  
#pragma omp for private(p)  
 for (int i =0; i <numlists ; i++) {  
 p = listheads[i] ;  
 while(p) {  
#pragma omp task  
 process(p)  
 p = next(p) ;  
 } // end while  
 } // end for  
} // end parallel

• Example – parallel pointer chasing on multiple lists using tasks
(nested parallelism)

OpenMP memory
model

and synchronization

OpenMP memory model
• In the shared memory model of OpenMP all threads

share an address space ... but what they actually see
at a given point in time may be complicated: a variable
residing in shared memory may be in the cache of
several CPUs/cores.

• A memory model is defined in terms of:

• Coherence: Behavior of the memory system when a
single address is accessed by multiple threads.

• Consistency: Orderings of reads, writes, or
synchronizations (RWS) with various addresses and
by multiple threads.

OpenMP memory model
• In the shared memory model of OpenMP all threads

share an address space ... but what they actually see
at a given point in time may be complicated: a variable
residing in shared memory may be in the cache of
several CPUs/cores.

• A memory model is defined in terms of:

• Coherence: Behavior of the memory system when a
single address is accessed by multiple threads.

• Consistency: Orderings of reads, writes, or
synchronizations (RWS) with various addresses and
by multiple threads.

At a given point in time, the “private view” seen by a thread
may be different from the view in shared memory.

In fact, there are several re-orderings from the original
source code:

- Compiler re-orders program order to the code order  
- Machine re-orders code order to the memory commit order

Consistency
• Sequential Consistency:

• In a multi-processor, ops (R, W, S) are sequentially
consistent if:

• They remain in program order for each processor.

• They are seen to be in the same overall order by each of
the other processors.

• Program order = code order = commit order

• Relaxed consistency:

• Remove some of the ordering constraints for memory ops (R,
W, S).

OpenMP consistency

• OpenMP has a relaxed consistency:

• S ops must be in sequential order across
threads.

• Can not reorder S ops with R or W ops on the
same addresses on the same thread

• The S operation provided by OpenMP is flush

OpenMP consistency

• OpenMP has a relaxed consistency:

• S ops must be in sequential order across
threads.

• Can not reorder S ops with R or W ops on the
same addresses on the same thread

• The S operation provided by OpenMP is flush

Relaxed consistency means that memory updates made by one CPU may not be immediately
visible to another CPU
• Data can be in registers
• Data can be in cache  

(cache coherence protocol is slow or non-existent)  

Therefore, the updated value of a shared variable that was set by a thread may not be
available to another

The flush construct flushes shared variables from local storage (registers, cache) to shared
memory  

OpenMP consistency

• OpenMP has a relaxed consistency:

• S ops must be in sequential order across
threads.

• Can not reorder S ops with R or W ops on the
same addresses on the same thread

• The S operation provided by OpenMP is flush

Relaxed consistency means that memory updates made by one CPU may not be immediately
visible to another CPU
• Data can be in registers
• Data can be in cache  

(cache coherence protocol is slow or non-existent)  

Therefore, the updated value of a shared variable that was set by a thread may not be
available to another

The flush construct flushes shared variables from local storage (registers, cache) to shared
memory  

double A;
A = compute();
#pragma omp flush(A); // flush to memory to make sure other  
 // threads can pick up the right value

Implicit flush
• An OpenMP flush is automatically performed at:

• Entry and exit of parallel and critical and atomic (only
variable being atomically updated)

• unless nowait is specified

• Exit of for

• Exit of sections

• Exit of single

• Barriers

• When setting/unsetting/testing locks after acquisition

• the flush operation does not actually
synchronize different threads. It just ensures that
a thread’s values are made consistent with main
memory.

• b = 3, but there is no guarantee that a will be 3

flush
• Defines a sequence point at which a thread is guaranteed to see a consistent view of

memory with respect to the “flush set”.

• The flush set is:

• “all thread visible variables” for a flush construct without an argument list.

• a list of variables when the flush(list) construct is used.

• The action of flush is to guarantee that:

• All R,W ops that overlap the flush set and occur prior to the flush complete before
the flush executes

• All R,W ops that overlap the flush set and occur after the flush don’t execute until
after the flush.

• Flushes with overlapping flush sets can not be reordered.

• Flush forces data to be updated in memory so other threads see the most recent value.

• A flush construct with a list applies the flush
operation to the items in the list,and does not return
until the operation is complete for all specified list
items.

• If a pointer is present in the list, the pointer itself
is flushed, not the object to which the pointer
refers

• A flush construct without a list, executed on a
given thread, operates as if the whole thread-visible
data state of the program is flushed.

• A flush construct with a list applies the flush
operation to the items in the list,and does not return
until the operation is complete for all specified list
items.

• If a pointer is present in the list, the pointer itself
is flushed, not the object to which the pointer
refers

• A flush construct without a list, executed on a
given thread, operates as if the whole thread-visible
data state of the program is flushed.

Atomics
• If a variable used as flag is flushed, does the flush

assure that the flag value is cleanly
communicated ?

• No: if the flag variable straddles word boundaries or
is a data type that consists of multiple words, it is
possible for the read to load a partial result.

• We need the ability to manage updates to memory
locations atomically.

atomic
• # pragma omp atomic [read | write | update | capture]

• Atomic can protect loads

• # pragma omp atomic read  
v = x;

• Atomic can protect stores

• # pragma omp atomic write  
x = expr;

• Atomic can protect updates to a storage location (this is the default behavior ... i.e.
when you don’t provide a clause)

• # pragma omp atomic update  
x++; or ++x; or x--; or –x;  
or x binop= expr; or x = x binop expr;  
where binop ∈ {+, -, *, /, &, ˆ, |, <<, >>}

atomic
• Atomic can protect the assignment of a value (its capture) and an associated update operation:

• # pragma omp atomic capture  
statement or structured block

• Where the statement is one of the following forms:

• v=x++; v=++x; v=x--; v= --x; v=x binop expr;

• Where the structured block is one of the following forms:

• {v=x; x binop = expr;} {x binop = expr; v=x;}

• {v=x; x = x binop expr;} {x = x binop expr; v=x;}

• {v=x; x++;} {v=x; ++x}

• {++x; v=x} {x++; v=x;}

• {v=x; x--;} {v=x; --x;}

• {--x; v=x;} {x--; v=x;}

atomic and flush

Thread 1

#pragma omp flush(flag)  
#pragma omp atomic write  
 flag = 1;  
#pragma omp flush(flag)  
 
 
 
 

Thread 2

#pragma omp flush(flag)  
#pragms omp atomic read  
 flg_tmp= flag;  
if (flg_tmp == 1)  
 // do something…

critical
• The critical construct protects access to shared, modifiable data.

• The critical section allows only one thread to enter it at a given
time.

• float dot_prod(float* a, float* b, int N)  
{  
 float sum = 0.0;  
#pragma omp parallel for shared(sum)  
 for(int i=0; i<N; i++) {  
#pragma omp critical  
 sum += a[i] * b[i];  
 }  
 return sum;  
}

critical
• The critical construct protects access to shared, modifiable data.

• The critical section allows only one thread to enter it at a given
time.

• float dot_prod(float* a, float* b, int N)  
{  
 float sum = 0.0;  
#pragma omp parallel for shared(sum)  
 for(int i=0; i<N; i++) {  
#pragma omp critical  
 sum += a[i] * b[i];  
 }  
 return sum;  
}

float RES;
#pragma omp parallel
{
#pragma omp for  
 for(int i=0; i<niters; i++){
 float B = big_job(i);
#pragma omp critical (RES_lock)
 consum(B, RES);
 }  
}

atomic vs. critical
• atomic is a special case of a critical section

• atomic introduces less overhead then critical

• the atomic construct does not enforce exclusive access to x with
respect to a critical region specified by a critical construct.  
An advantage of the atomic construct over the critical construct is
that parts of an array variable can also be specified as being atomically
updated.  
The use of a critical construct would protect the entire array.

• #pragma omp parallel for shared(x, y, index, n)  
 for (i = 0; i < n; i++) {  
#pragma omp atomic  
 x[index[i]] += work1(i);  
 y[i] += work2(i);  
}

locks vs. critical
• locks: performance and function similar to named
critical; best used for structures

• E.g.: message queue data structure composed by:

• list of messages

• pointer to rear of queue

• pointer to fron of queue

• count of messages dequeued

• omp_lock_t lock variable

Caveats
• Do not mix different types of mutual exclusion for a

variable: 
 
pragma omp atomic # pragma omp critical  
x += f(y); x = g(x);

• the critical section can not block the atomic
directive from accessing x

• Solution: use critical in both fragments or
rewrite critical in a form suitable for atomic

Caveats
• Do not nest anonymous critical sections to avoid deadlocks: 
 
#pragma omp critical  
y = f(x);  
...  
double f(double x) {  
#pragma omp critical  
 z=g(x); /∗ z is shared ∗/  
 ...  
}

• When a thread attempts to enter the second critical section, it
will block forever. A thread blocked waiting to enter the second
critical block will never leave the first, and it will stay blocked
forever.

Caveats
• Do not nest anonymous critical sections to avoid deadlocks: 
 
#pragma omp critical  
y = f(x);  
...  
double f(double x) {  
#pragma omp critical  
 z=g(x); /∗ z is shared ∗/  
 ...  
}

• When a thread attempts to enter the second critical section, it
will block forever. A thread blocked waiting to enter the second
critical block will never leave the first, and it will stay blocked
forever.

pragma omp critical(one)  
y = f(x);  
...  
double f(double x) {
#pragma omp critical(two)  
 z=g(x); /∗ z is global ∗/  
 ...
}

Caveats

• Remind Dijkstra: named critical sections acquired
in wrong order may lead to deadlock:

Time Thread u Thread v

0 Enter crit. sect. one Enter crit. sect. two

1 Attempt to enter two Attempt to enter one

2 Block Block

Unnecessary protection
• Any protection slows down the program's execution and it

does not matter whether you use atomic operations, critical
sections or locks. Therefore, you should not use memory
protection when it is not necessary.

• A variable should not be protected from concurrent writing in
the following cases:

• If a variable is local for a thread (also, if the variable is
threadprivate, firstprivate, private or
lastprivate).

• If the variable is accessed in a code fragment which is
guaranteed to be executed by a single thread only (in a
master or single section).

Reduce critical sections
• Critical sections always slow down a program's execution. Do not use critical sections where it is not

necessary. For example: 
 
#pragma omp parallel for  
for (i = 0 ; i < N; ++i) {  
 #pragma omp critical  
 {  
 if (arr[i] > max) max = arr[i];  
 }  
}

• can be rewritten as: 
#pragma omp parallel for  
for (i = 0 ; i < N; ++i) {  

#pragma omp flush(max)  
if (arr[i] > max) {  

 #pragma omp critical  
 {  

if (arr[i] > max) max = arr[i];  
 }  
}  

}

Producer /
Consumer

Queue
• We need a queue data structure, e.g. following a

FIFO policy in which a producer enqueues
workloads at the rear of the queue and a consumer
dequeues at the front.

struct queue_node_s {
 int src;
 int msg;
 struct queue_node_s* next_p;
};

struct queue_s{
 int enqueued;
 int dequeued;
 struct queue_node_s* front_p;
 struct queue_node_s* tail_p;
};

struct queue_s*
Allocate_queue(void);
void Free_queue(struct queue_s*
q_p);
void Print_queue(struct queue_s*
q_p);
void Enqueue(struct queue_s* q_p,
int src, int msg);
int Dequeue(struct queue_s* q_p,
int* src_p, int* msg_p);
int Search(struct queue_s* q_p, int
msg, int* src_p);

Message passing
• Let us consider a case in which any thread may

communicate with other threads.

• Each thread needs a queue. It enqueues messages
to other threads and dequeues from its own queue
to receive from other threads.

• Let us suppose each thread first sends a message
then check is any message has been received.

• When a thread is done sending messages, it
receives messages until all the threads are done, at
which point all the threads quit.

Message passing
• Let us consider a case in which any thread may

communicate with other threads.

• Each thread needs a queue. It enqueues messages
to other threads and dequeues from its own queue
to receive from other threads.

• Let us suppose each thread first sends a message
then check is any message has been received.

• When a thread is done sending messages, it
receives messages until all the threads are done, at
which point all the threads quit.

for (sent msgs = 0; sent msgs < send max; sent msgs++) {  
 Send_msg();
 Try_receive();
}
while (!Done())  
 Try_receive();

Send_msg() and Try_receive() use the Enqueue/Dequeue of the queue.  
Done() checks if the queue is empty and no other threads are still alive to send
messages

Sending messages
• Even without looking at the details of the

implementation of: 
  
void Enqueue(struct queue_s* q_p, int src, int msg);  
 
we may think that it is going to update the pointer to
the last element, i.e. something that is critical… 

• Send_msg() should protect the access to that
function…

Sending messages
• Even without looking at the details of the

implementation of: 
  
void Enqueue(struct queue_s* q_p, int src, int msg);  
 
we may think that it is going to update the pointer to
the last element, i.e. something that is critical… 

• Send_msg() should protect the access to that
function…

mesg = random();
dest = random() % thread count;  
pragma omp critical
Enqueue(queue, dest, my rank, mesg);

Receiving messages
• In this scenario only the owner of the queue dequeues a message, so

the requirement for synchronization is different.

• If we dequeue one message at a time, and there are at least two
messages in the queue, a call to Dequeue can’t possibly conflict with
any calls to Enqueue:

• keep track of the size of the queue, so that we can avoid any
synchronization as long as there are at least two messages.

• Keep track of size using 2 variables:  
queue_size = enqueued − dequeued

• dequeued is owned by the receiving thread, while enqueued may
be changed by a different thread, but we have small delays only if
we get an error when computing size 0 or 1 instead of actual
values of 1 or 2.

Receiving messages
• In this scenario only the owner of the queue dequeues a message, so

the requirement for synchronization is different.

• If we dequeue one message at a time, and there are at least two
messages in the queue, a call to Dequeue can’t possibly conflict with
any calls to Enqueue:

• keep track of the size of the queue, so that we can avoid any
synchronization as long as there are at least two messages.

• Keep track of size using 2 variables:  
queue_size = enqueued − dequeued

• dequeued is owned by the receiving thread, while enqueued may
be changed by a different thread, but we have small delays only if
we get an error when computing size 0 or 1 instead of actual
values of 1 or 2.

It’s a tradeoff: we renounce to certain synchronization costs for some
uncertain possible delays: waiting when erroneously computing a size of 0
instead of 1, or synchronizing when computing size of 1 instead of 2.
Try_receive() can be implemented as:

queue_size = enqueued − dequeued;
if (queue size == 0)

return;
else if (queue_size == 1)
#pragma omp critical

Dequeue(queue, &src, &mesg);
else

Dequeue(queue, &src, &mesg);
Print message(src, mesg);

Termination detection
• We need to know if the queue is empty because

nobody will ever produce a new message. Use a
counter to know how many active threads are still
there…

• Function Done() can be implemented as: 
 
queue_size = enqueued − dequeued;  
if (queue_size == 0 && done_sending ==
thread_count)  
 return TRUE;  
else  
 return FALSE;

Termination detection
• We need to know if the queue is empty because

nobody will ever produce a new message. Use a
counter to know how many active threads are still
there…

• Function Done() can be implemented as: 
 
queue_size = enqueued − dequeued;  
if (queue_size == 0 && done_sending ==
thread_count)  
 return TRUE;  
else  
 return FALSE;

When a producer says that it has finished it must update done_sending
The update must be critical or atomic:

#pragma omp atomic
done_sending++;

Startup
• The master thread, will allocate an array of message

queues, one for each thread.  
This array needs to be shared among the threads,
since any thread can send to any other thread, and
hence any thread can enqueue a message in any of
the queues.

• We can start the threads using a parallel directive, and
each thread can allocate storage for its individual
queue.

• But we must check that all the queues have been
built before starting any threads, to a void writing to a
queue not yet available.

Startup
• The master thread, will allocate an array of message

queues, one for each thread.  
This array needs to be shared among the threads,
since any thread can send to any other thread, and
hence any thread can enqueue a message in any of
the queues.

• We can start the threads using a parallel directive, and
each thread can allocate storage for its individual
queue.

• But we must check that all the queues have been
built before starting any threads, to a void writing to a
queue not yet available.

We can not rely on implicit barrier. Add a:

pragma omp barrier

When a thread encounters the barrier, it blocks until all the threads in the team have reached
the barrier. After all the threads have reached the barrier, all the threads in the team can
proceed.

Using locks
• Using unnamed critical sections adds unnecessary

synchronization costs in the previous example,
where Enqueue and Dequeue block themselves,
even when different threads are sending messages
to other different threads…

• we can not rely on named critical sections
since they have to be defined at compile time… we
do not know which thread will try to communicate
with another thread.

• Solution: add locks to the data structure.

Using locks
• Using unnamed critical sections adds unnecessary

synchronization costs in the previous example,
where Enqueue and Dequeue block themselves,
even when different threads are sending messages
to other different threads…

• we can not rely on named critical sections
since they have to be defined at compile time… we
do not know which thread will try to communicate
with another thread.

• Solution: add locks to the data structure.

struct queue_node_s {
 int src;
 int mesg;
 struct queue_node_s* next_p;
};

struct queue_s{
 omp_lock_t lock;
 int enqueued;
 int dequeued;
 struct queue_node_s* front_p;
 struct queue_node_s* tail_p;
};

Sending message
• # pragma omp critical  
/∗ q_p = msg queues[dest] ∗/  
Enqueue(q_p, my rank, mesg);

• can be replaced with

• /∗ q p = msg queues[dest] ∗/  
omp_set_lock(&q_p−>lock);  
Enqueue(q_p, my rank, mesg);  
omp_unset_lock(&q_p−>lock);

Receiving message
• # pragma omp critical  
/∗ q_p = msg queues[my rank] ∗/  
Dequeue(q_p, &src, &mesg);

• can be replaced with

• /∗ q_p = msg queues[my rank] ∗/  
omp_set_lock(&q_p−>lock);  
Dequeue(q_p, &src, &mesg);  
omp_unset_lock(&q_p−>lock);

Creation/destruction of lock

• Add initialization of the lock to the function that
initializes an empty queue.

• Destruction of the lock can be done by the thread
that owns the queue before it frees the queue.

Credits
• These slides report material from:

• Prof. Robert van Engelen (Florida State University)

• Prof. Dan Negrut (UW-Madison)

• Prof. Robert M. Keller (Harvey Mudd College)

• Prof. Vivek Sarkar (Rice University)

• Tim Mattson (Intel Corp.)

• Mary Thomas (SDSU)

Books
• The Art of Concurrency, Clay Breshears, O’Reilly -

Chapt. 5

• Principles of Parallel Programming, Calvin Lyn and
Lawrence Snyder, Pearson - Chapt. 6

• Parallel Programming for Multicore and Cluster
Systems, Thomas Dauber and Gudula Rünger,
Springer - Chapt. 6

• An introduction to parallel programming, Peter S.
Pacheco, Morgan Kaufman - Chapt. 5

