
         

      

         

      

Parallel 
Computing

Prof. Marco Bertini



         

      

         

      

Shared memory: 
OpenMP C/C++ 

directives



         

      
         

      

shared / private variables
• Common clauses shared by several directives address how 

variables are shared/made private within threads: 

• private(list of variables) - a new version of the original 
variable with the same type and size is created in the memory of 
each thread belonging to the parallel region  

• shared(list of variables) - threads of the team access 
and modify the same original variable in the shared memory.  

• default(shared | none) - used to specify whether variables 
in a parallel region are shared or private by default. The first option 
causes all variables referenced in the construct to be shared 
except the private variables which are specified explicitly, while 
none requires each variable in the construct to be specified 
explicitly as shared or private. 



         

      
         

      

shared / private variables
• Common clauses shared by several directives address how 

variables are shared/made private within threads: 

• private(list of variables) - a new version of the original 
variable with the same type and size is created in the memory of 
each thread belonging to the parallel region  

• shared(list of variables) - threads of the team access 
and modify the same original variable in the shared memory.  

• default(shared | none) - used to specify whether variables 
in a parallel region are shared or private by default. The first option 
causes all variables referenced in the construct to be shared 
except the private variables which are specified explicitly, while 
none requires each variable in the construct to be specified 
explicitly as shared or private. 

private variables are not initialised, i.e. they start with 
random values like any other local automatic variable (and 

they are often implemented using automatic variables on the 
stack of each thread).
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each thread belonging to the parallel region  

• shared(list of variables) - threads of the team access 
and modify the same original variable in the shared memory.  

• default(shared | none) - used to specify whether variables 
in a parallel region are shared or private by default. The first option 
causes all variables referenced in the construct to be shared 
except the private variables which are specified explicitly, while 
none requires each variable in the construct to be specified 
explicitly as shared or private. 



         

      
         

      

shared / private variables
• Common clauses shared by several directives address how 

variables are shared/made private within threads: 

• private(list of variables) - a new version of the original 
variable with the same type and size is created in the memory of 
each thread belonging to the parallel region  

• shared(list of variables) - threads of the team access 
and modify the same original variable in the shared memory.  

• default(shared | none) - used to specify whether variables 
in a parallel region are shared or private by default. The first option 
causes all variables referenced in the construct to be shared 
except the private variables which are specified explicitly, while 
none requires each variable in the construct to be specified 
explicitly as shared or private. 

It’s a good practice to explicitly decide the scope of the 
variables. Use default(none) to be forced to make 

the declaration !



         

      
         

      

private variables in/out
• Use firstprivate to declare private variables 

that are initialized with the main thread’s value of the 
variables  

• Use lastprivate to declare private variables 
whose values are copied back out to main thread’s 
variables by the thread that executes the last 
iteration of a parallel for loop, or the thread that 
executes the last parallel section  

• These are special cases of private, and are useful to 
bring values in and out from the parallel section of 
code.



         

      
         

      

reduction
• A typical calculation which needs to be synchronized is a global 

reduction operation performed in parallel by the threads of a team.  

• It is possible to use the reduction clause with parallel and for 
directives. The syntax is: 

• reduction (op: list) with op ∈{+, -, *, &, ˆ, |, &&, ||}  

• For each of the variables in list, a private copy is created for each 
thread of the team. The private copies are initialized to the neutral 
element of the operation op (e.g. 0 for +, 1 for *) and can be updated 
by the owning thread.  
At the end of the region for which the reduction clause is specified, the 
local values of the reduction variables are combined according to the 
operator op and the result of the reduction is written into the original 
shared variable. 



         

      
         

      

reduction
• A typical calculation which needs to be synchronized is a global 

reduction operation performed in parallel by the threads of a team.  

• It is possible to use the reduction clause with parallel and for 
directives. The syntax is: 

• reduction (op: list) with op ∈{+, -, *, &, ˆ, |, &&, ||}  

• For each of the variables in list, a private copy is created for each 
thread of the team. The private copies are initialized to the neutral 
element of the operation op (e.g. 0 for +, 1 for *) and can be updated 
by the owning thread.  
At the end of the region for which the reduction clause is specified, the 
local values of the reduction variables are combined according to the 
operator op and the result of the reduction is written into the original 
shared variable. 

simpler than critical access to update the shared variable



         

      
         

      

parallel region
• #pragma omp parallel [clause [clause] ... ]  
{  
  // structured block ...  
} 

• A team of threads is created to execute the parallel region in 
parallel.  
Each thread of the team is assigned a unique thread number, 
(master=0 … n-1).  
The parallel construct creates the team but does not 
distribute the work of the parallel region among the threads 
of the team.  

• Use for or sections to distribute the work (work sharing)



         

      
         

      

parallel region clauses
• Define the scope of variables in the clauses with 

the clauses seen previously 

• Set the number of threads with 
num_threads(integer_expression)  

• Decide the parallel execution based on if clause 
that evaluates an expression returning non-zero as 
true or zero as false (serial execution)



         

      
         

      

parallel region nesting
• A nesting of parallel regions by calling a parallel 

construct within a parallel region is possible. 
However, the default execution mode assigns only 
one thread to the team of the inner parallel region.  

• int omp_get_nested() to know if nesting is 
active 

• void omp_set_nested(int nested) to set 
nesting (with nested != 0) 



         

      
         

      

for loop
• The loop construct causes a distribution of the iterates 

of a parallel loop: 

#pragma omp for [clauses [ ] ...]  

• It is restricted to loops which are parallel loops, in which 
the iterates of the loop are independent of each other 
and for which the total number of iterates is known in 
advance.  

• The index variable should not be changed within the 
loop (as lower and upper bounds) and is considered as 
private variable of the thread executing the 
corresponding iterate. 



         

      
         

      

for loop
• for (name = lower_bound; name op upper_bound; 
incr_expr) {  
 // loop iterate ...  
} 

• Acceptable for loops must: 

• have lower_bound and upper_bound are integer expressions  

• have op in {<, <=, >, >=} 

• have incr_expr in the form: ++name, name++, --name, 
name--, name += incr, name -= incr, name = name + 
incr, name = incr + name, name = name - incr, with incr 
that does not change within the loop 

• must not contain break instruction



         

      
         

      

for loop scheduling
• Distribution of iterates to threads is done by a scheduling strategy, specified with schedule 

clause: 

• schedule(static, block_size): static distribution of iterates of blocks of size 
block_size in a round-robin fashion. If block_size is not given, blocks of almost equal 
size are formed and assigned to the threads.  

• schedule(dynamic, block_size) specifies a dynamic distribution of blocks to 
threads. A new block of size block_size is assigned to a thread as soon as the thread 
has finished the computation of the previously assigned block. If block_size is not 
provided, it is set to 1.  

• schedule(guided, block_size) specifies a dynamic scheduling of blocks with 
decreasing size.  

• schedule(auto) delegates the scheduling decision to the compiler and/or runtime 
system. 

• schedule(runtime) uses the value of environment variable OMP_SCHEDULE 

• If no schedule is provided the a default implementation-specific strategy is used



         

      
         

      

for loop scheduling



         

      
         

      

for loop scheduling



         

      
         

      

Simplified syntax
• If a parallel region contains only one for os sections then 

instead of: 

• #pragma omp parallel  
{  
#pragma omp for  
  for (…) {  
  }  
}

• it is possible to use: 

• #pragma omp parallel for  
for (…) {  
}



         

      
         

      

Combining sequential parallel for
#pragma omp parallel for  
    for (...) {

        // Work-sharing loop 1  
    }

#pragma omp parallel for  
    for (...) {

        // Work-sharing loop 2  
    }

......... 

#pragma omp parallel for

    for (...) {

        // Work-sharing loop N  
    }

 

#pragma omp parallel

    {

        #pragma omp for  // Work-sharing loop 1

        { ...... }

        #pragma omp for  // Work-sharing loop 2

        { ...... }

......... 

         #pragma omp for  // Work-sharing loop N

         { ...... }

 } 

Better: The cost of the parallel region 
is amortized over the various work-

sharing loops. 
Bad: parallel overhead and implied barriers



         

      
         

      

Parallel in inner loops
for (i=0; i<n; i++)  
    for (j=0; j<n; j++)  
        #pragma omp parallel for  
        for (k=0; k<n; k++)  
            { .........} 

#pragma omp parallel  
   for (i=0; i<n; i++)  
       for (j=0; j<n; j++)  
           #pragma omp for  
           for (k=0; k<n; k++)  
               { .........}

Bad: n2 overheads of parallel

Better: 1 overhead of parallel



         

      
         

      

sections
• The goal is to execute concurrently independent 

sections of code. 
 
#pragma omp parallel sections  
{  
#pragma omp section  
        phase1();  
#pragma omp section  
        phase2();  
#pragma omp section  
        phase3();  
}



         

      
         

      

sections

• At the end of execution of the assigned section, the 
threads synchronize, unless the nowait clause is 
used. 

• It is illegal to branch in and out of section blocks.



         

      
         

      

for vs. sections

• The for directive splits the iterations of a loop 
across the different threads.  

• The sections directive assigns each thread to 
explicitly identified tasks. 



         

      
         

      

task
• Tasks are independent units of work. A thread is assigned to 

perform a task: #pragma omp task 

• Tasks might be executed immediately or might be deferred  

• The runtime system decides which of  
the above  

• Allows parallelization of irregular  
problems, e.g.: 

• Unbounded loops  

• Recursive algorithms (e.g. lists) 

• Producer/consumer 



         

      
         

      

task completion

• A task stops at: 

• thread barriers, explicit or implicit. Tasks created 
in a parallel section will stop at its implicit barrier 
or at #pragma omp barrier  

• task barriers: #pragma omp taskwait  



         

      
         

      

task completion

• A task stops at: 

• thread barriers, explicit or implicit. Tasks created 
in a parallel section will stop at its implicit barrier 
or at #pragma omp barrier  

• task barriers: #pragma omp taskwait  

 
#pragma omp parallel
{
#pragma omp task // multiple foo tasks
  foo();
#pragma omp barrier // explicit barrier
#pragma omp single
  {
#pragma omp task // one bar task
    bar();  
  } // implicit barrier  
} 



         

      
         

      

task motivations
• while(my_pointer) {  
  (void) do_independent_work(my_pointer);  
  my_pointer = my_pointer->next ;  
} // End of while loop

• Hard to do without tasking: first count number of 
iterations, then convert while loop to for loop  

• A solution is to use the single construct : one thread 
generates the tasks. All other threads execute the tasks 
as they become available.



         

      
         

      

task motivations
• while(my_pointer) {  
  (void) do_independent_work(my_pointer);  
  my_pointer = my_pointer->next ;  
} // End of while loop

• Hard to do without tasking: first count number of 
iterations, then convert while loop to for loop  

• A solution is to use the single construct : one thread 
generates the tasks. All other threads execute the tasks 
as they become available.

my_pointer = listhead; 
 
#pragma omp parallel 
{ 
#pragma omp single 
  { 
    while(my_pointer) { 
#pragma omp task firstprivate(my_pointer) 
      { 
         (void) do_independent_work (my_pointer); 
      } 
      my_pointer = my_pointer->next ; 
    } // end while 
  } // end single region 
} // end parallel region 



         

      
         

      

task motivations
• while(my_pointer) {  
  (void) do_independent_work(my_pointer);  
  my_pointer = my_pointer->next ;  
} // End of while loop

• Hard to do without tasking: first count number of 
iterations, then convert while loop to for loop  

• A solution is to use the single construct : one thread 
generates the tasks. All other threads execute the tasks 
as they become available.

my_pointer = listhead; 
 
#pragma omp parallel 
{ 
#pragma omp single 
  { 
    while(my_pointer) { 
#pragma omp task firstprivate(my_pointer) 
      { 
         (void) do_independent_work (my_pointer); 
      } 
      my_pointer = my_pointer->next ; 
    } // end while 
  } // end single region 
} // end parallel region 

my_pointer = listhead; 
 
#pragma omp parallel 
{ 
#pragma omp single nowait // eliminate a barrier
  { 
    while(my_pointer) { 
#pragma omp task firstprivate(my_pointer) 
      { 
         (void) do_independent_work (my_pointer); 
      } 
      my_pointer = my_pointer->next ; 
    } // end while 
  } // end single block - no implied barrier (nowait)
} // end parallel block - implied barrier 



         

      
         

      

task motivations
#pragma omp parallel  
{  
#pragma omp single  
  { //block 1  
    node * p = head;  
    while (p) { // block 2  
#pragma omp task  
      process(p);  
      p = p->next; //block 3  
    } // end while  
  } // end single block  
} // end parallel block



         

      
         

      

for and task
• #pragma omp parallel  
{  
#pragma omp for private(p)  
  for ( int i =0; i <numlists ; i++) {  
    p = listheads[ i ] ;  
    while( p ) {  
#pragma omp task  
      process(p)  
      p = next( p ) ;  
    } // end while  
  } // end for  
} // end parallel

• Example – parallel pointer chasing on multiple lists using tasks 
(nested parallelism) 



         

      

         

      

OpenMP memory 
model 

and synchronization



         

      
         

      

OpenMP memory model 
• In the shared memory model of OpenMP all threads 

share an address space ... but what they actually see 
at a given point in time may be complicated: a variable 
residing in shared memory may be in the cache of 
several CPUs/cores. 

• A memory model is defined in terms of: 

• Coherence: Behavior of the memory system when a 
single address is accessed by multiple threads.  

• Consistency: Orderings of reads, writes, or 
synchronizations (RWS) with various addresses and 
by multiple threads. 



         

      
         

      

OpenMP memory model 
• In the shared memory model of OpenMP all threads 

share an address space ... but what they actually see 
at a given point in time may be complicated: a variable 
residing in shared memory may be in the cache of 
several CPUs/cores. 

• A memory model is defined in terms of: 

• Coherence: Behavior of the memory system when a 
single address is accessed by multiple threads.  

• Consistency: Orderings of reads, writes, or 
synchronizations (RWS) with various addresses and 
by multiple threads. 

At a given point in time, the “private view” seen by a thread 
may be different from the view in shared memory.  

In fact, there are several re-orderings from the original 
source code: 

- Compiler re-orders program order to the code order  
- Machine re-orders code order to the memory commit order 



         

      
         

      

Consistency
• Sequential Consistency: 

• In a multi-processor, ops (R, W, S) are sequentially 
consistent if:  

• They remain in program order for each processor. 

• They are seen to be in the same overall order by each of 
the other processors. 

• Program order = code order = commit order  

• Relaxed consistency: 

• Remove some of the ordering constraints for memory ops (R, 
W, S). 



         

      
         

      

OpenMP consistency

• OpenMP has a relaxed consistency: 

• S ops must be in sequential order across 
threads. 

• Can not reorder S ops with R or W ops on the 
same addresses on the same thread  

• The S operation provided by OpenMP is flush



         

      
         

      

OpenMP consistency

• OpenMP has a relaxed consistency: 

• S ops must be in sequential order across 
threads. 

• Can not reorder S ops with R or W ops on the 
same addresses on the same thread  

• The S operation provided by OpenMP is flush

Relaxed consistency means that memory updates made by one CPU may not be immediately 
visible to another CPU  
• Data can be in registers  
• Data can be in cache  

(cache coherence protocol is slow or non-existent)  

Therefore, the updated value of a shared variable that was set by a thread may not be 
available to another  

The flush construct flushes shared variables from local storage (registers, cache) to shared 
memory  



         

      
         

      

OpenMP consistency

• OpenMP has a relaxed consistency: 

• S ops must be in sequential order across 
threads. 

• Can not reorder S ops with R or W ops on the 
same addresses on the same thread  

• The S operation provided by OpenMP is flush

Relaxed consistency means that memory updates made by one CPU may not be immediately 
visible to another CPU  
• Data can be in registers  
• Data can be in cache  

(cache coherence protocol is slow or non-existent)  

Therefore, the updated value of a shared variable that was set by a thread may not be 
available to another  

The flush construct flushes shared variables from local storage (registers, cache) to shared 
memory  

double A; 
A = compute(); 
#pragma omp flush(A); // flush to memory to make sure other  
                      // threads can pick up the right value 



         

      
         

      

Implicit flush
• An OpenMP flush is automatically performed at: 

• Entry and exit of parallel and critical and atomic (only 
variable being atomically updated) 

• unless nowait is specified 

• Exit of for 

• Exit of sections  

• Exit of single 

• Barriers  

• When setting/unsetting/testing locks after acquisition



         

      
         

      

• the flush operation does not actually 
synchronize different threads. It just ensures that 
a thread’s values are made consistent with main 
memory.  

• b = 3, but there is no guarantee that a will be 3 



         

      
         

      

flush
• Defines a sequence point at which a thread is guaranteed to see a consistent view of 

memory with respect to the “flush set”.  

• The flush set is:  

• “all thread visible variables” for a flush construct without an argument list.  

• a list of variables when the flush(list) construct is used.  

• The action of flush is to guarantee that:  

• All R,W ops that overlap the flush set and occur prior to the flush complete before 
the flush executes  

• All R,W ops that overlap the flush set and occur after the flush don’t execute until 
after the flush.  

• Flushes with overlapping flush sets can not be reordered.  

• Flush forces data to be updated in memory so other threads see the most recent value.



         

      
         

      

• A flush construct with a list applies the flush 
operation to the items in the list,and does not return 
until the operation is complete for all specified list 
items.  

• If a pointer is present in the list, the pointer itself 
is flushed, not the object to which the pointer 
refers  

• A flush construct without a list, executed on a 
given thread, operates as if the whole thread-visible 
data state of the program is flushed. 



         

      
         

      

• A flush construct with a list applies the flush 
operation to the items in the list,and does not return 
until the operation is complete for all specified list 
items.  

• If a pointer is present in the list, the pointer itself 
is flushed, not the object to which the pointer 
refers  

• A flush construct without a list, executed on a 
given thread, operates as if the whole thread-visible 
data state of the program is flushed. 



         

      
         

      

Atomics
• If a variable used as flag is flushed, does the flush 

assure that the flag value is cleanly 
communicated ? 

• No: if the flag variable straddles word boundaries or 
is a data type that consists of multiple words, it is 
possible for the read to load a partial result.  

• We need the ability to manage updates to memory 
locations atomically. 



         

      
         

      

atomic
• # pragma omp atomic [read | write | update | capture]  

• Atomic can protect loads  

• # pragma omp atomic read  
v = x;  

• Atomic can protect stores  

• # pragma omp atomic write  
x = expr;  

• Atomic can protect updates to a storage location (this is the default behavior ... i.e. 
when you don’t provide a clause)  

• # pragma omp atomic update  
x++; or ++x; or x--; or –x;  
or x binop= expr; or x = x binop expr;  
where binop ∈ {+, -, *, /, &, ˆ, |, <<, >>} 



         

      
         

      

atomic
• Atomic can protect the assignment of a value (its capture) and an associated update operation:  

• # pragma omp atomic capture  
statement or structured block 

• Where the statement is one of the following forms:  

• v=x++; v=++x; v=x--; v= --x; v=x binop expr;  

• Where the structured block is one of the following forms:  

• {v=x; x binop = expr;}      {x binop = expr; v=x;}

• {v=x; x = x binop expr;}    {x = x binop expr; v=x;}

• {v=x; x++;}                 {v=x; ++x}

• {++x; v=x}                  {x++; v=x;}

• {v=x; x--;}                 {v=x; --x;}

• {--x; v=x;}                 {x--; v=x;}



         

      
         

      

atomic and flush

Thread 1 

#pragma omp flush(flag)  
#pragma omp atomic write  
  flag = 1;  
#pragma omp flush(flag)  
 
 
 
 

Thread 2 

#pragma omp flush(flag)  
#pragms omp atomic read  
  flg_tmp= flag;  
if (flg_tmp == 1)  
  // do something…



         

      
         

      

critical
• The critical construct protects access to shared, modifiable data. 

• The critical section allows only one thread to enter it at a given 
time.  

• float dot_prod(float* a, float* b, int N)  
{  
  float sum = 0.0;  
#pragma omp parallel for shared(sum)  
  for(int i=0; i<N; i++) {  
#pragma omp critical  
    sum += a[i] * b[i];  
  }  
  return sum;  
} 



         

      
         

      

critical
• The critical construct protects access to shared, modifiable data. 

• The critical section allows only one thread to enter it at a given 
time.  

• float dot_prod(float* a, float* b, int N)  
{  
  float sum = 0.0;  
#pragma omp parallel for shared(sum)  
  for(int i=0; i<N; i++) {  
#pragma omp critical  
    sum += a[i] * b[i];  
  }  
  return sum;  
} 

float RES;
#pragma omp parallel
{
#pragma omp for  
  for(int i=0; i<niters; i++){
    float B = big_job(i);
#pragma omp critical (RES_lock)
    consum(B, RES);
  }  
} 



         

      
         

      

atomic vs. critical
• atomic is a special case of a critical section  

• atomic introduces less overhead then critical  

• the atomic construct does not enforce exclusive access to x with 
respect to a critical region specified by a critical construct.  
An advantage of the atomic construct over the critical construct is 
that parts of an array variable can also be specified as being atomically 
updated.  
The use of a critical construct would protect the entire array.  

• #pragma omp parallel for shared(x, y, index, n)  
    for (i = 0; i < n; i++) {  
#pragma omp atomic  
        x[index[i]] += work1(i);  
        y[i] += work2(i);  
}



         

      
         

      

locks vs. critical
• locks: performance and function similar to named 
critical; best used for structures  

• E.g.: message queue data structure composed by: 

• list of messages 

• pointer to rear of queue 

• pointer to fron of queue 

• count of messages dequeued 

• omp_lock_t lock variable



         

      
         

      

Caveats
• Do not mix different types of mutual exclusion for a 

variable: 
 
# pragma omp atomic       # pragma omp critical  
x += f(y);                x = g(x);  

• the critical section can not block the atomic 
directive from accessing x

• Solution: use critical in both fragments or 
rewrite critical in a form suitable for atomic



         

      
         

      

Caveats
• Do not nest anonymous critical sections to avoid deadlocks: 
 
#pragma omp critical  
y = f(x);  
...  
double f(double x) {  
#pragma omp critical  
  z=g(x); /∗ z is shared ∗/  
  ...  
}  

• When a thread attempts to enter the second critical section, it 
will block forever. A thread blocked waiting to enter the second 
critical block will never leave the first, and it will stay blocked 
forever. 



         

      
         

      

Caveats
• Do not nest anonymous critical sections to avoid deadlocks: 
 
#pragma omp critical  
y = f(x);  
...  
double f(double x) {  
#pragma omp critical  
  z=g(x); /∗ z is shared ∗/  
  ...  
}  

• When a thread attempts to enter the second critical section, it 
will block forever. A thread blocked waiting to enter the second 
critical block will never leave the first, and it will stay blocked 
forever. 

# pragma omp critical(one)  
y = f(x);  
...  
double f(double x) { 
#pragma omp critical(two)  
  z=g(x); /∗ z is global ∗/  
  ... 
} 



         

      
         

      

Caveats

• Remind Dijkstra: named critical sections acquired 
in wrong order may lead to deadlock:

Time Thread u Thread v

0 Enter crit. sect. one Enter crit. sect. two 

1 Attempt to enter two Attempt to enter one 

2 Block Block



         

      
         

      

Unnecessary protection
• Any protection slows down the program's execution and it 

does not matter whether you use atomic operations, critical 
sections or locks. Therefore, you should not use memory 
protection when it is not necessary. 

• A variable should not be protected from concurrent writing in 
the following cases: 

• If a variable is local for a thread (also, if the variable is 
threadprivate, firstprivate, private or 
lastprivate). 

• If the variable is accessed in a code fragment which is 
guaranteed to be executed by a single thread only (in a 
master or single section).



         

      
         

      

Reduce critical sections
• Critical sections always slow down a program's execution. Do not use critical sections where it is not 

necessary. For example: 
 
#pragma omp parallel for  
for ( i = 0 ; i < N; ++i ) {  
  #pragma omp critical  
  {    
    if (arr[i] > max) max = arr[i];  
  }  
} 

• can be rewritten as: 
#pragma omp parallel for  
for ( i = 0 ; i < N; ++i ) {  

#pragma omp flush(max)  
if (arr[i] > max) {  

      #pragma omp critical  
   {  

if (arr[i] > max) max = arr[i];  
   }  
}  

}



         

      

         

      

Producer / 
Consumer



         

      
         

      

Queue
• We need a queue data structure, e.g. following a 

FIFO policy in which a producer enqueues 
workloads at the rear of the queue and a consumer 
dequeues at the front.

struct queue_node_s {
   int src;
   int msg;
   struct queue_node_s* next_p;
};

struct queue_s{
   int enqueued;
   int dequeued;
   struct queue_node_s* front_p;
   struct queue_node_s* tail_p;
};

struct queue_s* 
Allocate_queue(void);
void Free_queue(struct queue_s* 
q_p);
void Print_queue(struct queue_s* 
q_p);
void Enqueue(struct queue_s* q_p, 
int src, int msg);
int Dequeue(struct queue_s* q_p, 
int* src_p, int* msg_p);
int Search(struct queue_s* q_p, int 
msg, int* src_p);



         

      
         

      

Message passing
• Let us consider a case in which any thread may 

communicate with other threads. 

• Each thread needs a queue. It enqueues messages 
to other threads and dequeues from its own queue 
to receive from other threads. 

• Let us suppose each thread first sends a message 
then check is any message has been received. 

• When a thread is done sending messages, it 
receives messages until all the threads are done, at 
which point all the threads quit. 



         

      
         

      

Message passing
• Let us consider a case in which any thread may 

communicate with other threads. 

• Each thread needs a queue. It enqueues messages 
to other threads and dequeues from its own queue 
to receive from other threads. 

• Let us suppose each thread first sends a message 
then check is any message has been received. 

• When a thread is done sending messages, it 
receives messages until all the threads are done, at 
which point all the threads quit. 

for (sent msgs = 0; sent msgs < send max; sent msgs++) {  
  Send_msg(); 
  Try_receive(); 
} 
while (!Done())  
  Try_receive();  

Send_msg() and Try_receive() use the Enqueue/Dequeue of the queue.  
Done() checks if the queue is empty and no other threads are still alive to send 
messages



         

      
         

      

Sending messages
• Even without looking at the details of the 

implementation of: 
  
void Enqueue(struct queue_s* q_p, int src, int msg);  
 
we may think that it is going to update the pointer to 
the last element, i.e. something that is critical… 

• Send_msg() should protect the access to that 
function…



         

      
         

      

Sending messages
• Even without looking at the details of the 

implementation of: 
  
void Enqueue(struct queue_s* q_p, int src, int msg);  
 
we may think that it is going to update the pointer to 
the last element, i.e. something that is critical… 

• Send_msg() should protect the access to that 
function…

mesg = random(); 
dest = random() % thread count;  
# pragma omp critical 
Enqueue(queue, dest, my rank, mesg); 



         

      
         

      

Receiving messages
• In this scenario only the owner of the queue dequeues a message, so 

the requirement for synchronization is different. 

• If we dequeue one message at a time, and there are at least two 
messages in the queue, a call to Dequeue can’t possibly conflict with 
any calls to Enqueue: 

• keep track of the size of the queue, so that we can avoid any 
synchronization as long as there are at least two messages.  

• Keep track of size using 2 variables:  
queue_size = enqueued − dequeued  

• dequeued is owned by the receiving thread, while enqueued may 
be changed by a different thread, but we have small delays only if 
we get an error when computing size 0 or 1 instead of actual 
values of 1 or 2.



         

      
         

      

Receiving messages
• In this scenario only the owner of the queue dequeues a message, so 

the requirement for synchronization is different. 

• If we dequeue one message at a time, and there are at least two 
messages in the queue, a call to Dequeue can’t possibly conflict with 
any calls to Enqueue: 

• keep track of the size of the queue, so that we can avoid any 
synchronization as long as there are at least two messages.  

• Keep track of size using 2 variables:  
queue_size = enqueued − dequeued  

• dequeued is owned by the receiving thread, while enqueued may 
be changed by a different thread, but we have small delays only if 
we get an error when computing size 0 or 1 instead of actual 
values of 1 or 2.

It’s a tradeoff: we renounce to certain synchronization costs for some
uncertain possible delays: waiting when erroneously computing a size of 0
instead of 1, or synchronizing when computing size of 1 instead of 2.
Try_receive() can be implemented as:

queue_size = enqueued − dequeued;
if (queue size == 0)

return;
else if (queue_size == 1)
#pragma omp critical

Dequeue(queue, &src, &mesg);
else

Dequeue(queue, &src, &mesg);
Print message(src, mesg);



         

      
         

      

Termination detection
• We need to know if the queue is empty because 

nobody will ever produce a new message. Use a 
counter to know how many active threads are still 
there… 

• Function Done() can be implemented as: 
 
queue_size = enqueued − dequeued;  
if (queue_size == 0 && done_sending == 
thread_count)  
  return TRUE;  
else  
  return FALSE; 



         

      
         

      

Termination detection
• We need to know if the queue is empty because 

nobody will ever produce a new message. Use a 
counter to know how many active threads are still 
there… 

• Function Done() can be implemented as: 
 
queue_size = enqueued − dequeued;  
if (queue_size == 0 && done_sending == 
thread_count)  
  return TRUE;  
else  
  return FALSE; 

When a producer says that it has finished it must update done_sending 
The update must be critical or atomic: 

#pragma omp atomic
done_sending++;



         

      
         

      

Startup
• The master thread, will allocate an array of message 

queues, one for each thread.  
This array needs to be shared among the threads, 
since any thread can send to any other thread, and 
hence any thread can enqueue a message in any of 
the queues. 

• We can start the threads using a parallel directive, and 
each thread can allocate storage for its individual 
queue.  

• But we must check that all the queues have been 
built before starting any threads, to a void writing to a 
queue not yet available.



         

      
         

      

Startup
• The master thread, will allocate an array of message 

queues, one for each thread.  
This array needs to be shared among the threads, 
since any thread can send to any other thread, and 
hence any thread can enqueue a message in any of 
the queues. 

• We can start the threads using a parallel directive, and 
each thread can allocate storage for its individual 
queue.  

• But we must check that all the queues have been 
built before starting any threads, to a void writing to a 
queue not yet available.

We can not rely on implicit barrier. Add a: 

# pragma omp barrier 

When a thread encounters the barrier, it blocks until all the threads in the team have reached 
the barrier. After all the threads have reached the barrier, all the threads in the team can 
proceed. 



         

      
         

      

Using locks
• Using unnamed critical sections adds unnecessary 

synchronization costs in the previous example, 
where Enqueue and Dequeue block themselves, 
even when different threads are sending messages 
to other different threads… 

• we can not rely on named critical sections 
since they have to be defined at compile time… we 
do not know which thread will try to communicate 
with another thread. 

• Solution: add locks to the data structure.



         

      
         

      

Using locks
• Using unnamed critical sections adds unnecessary 

synchronization costs in the previous example, 
where Enqueue and Dequeue block themselves, 
even when different threads are sending messages 
to other different threads… 

• we can not rely on named critical sections 
since they have to be defined at compile time… we 
do not know which thread will try to communicate 
with another thread. 

• Solution: add locks to the data structure.

struct queue_node_s {
   int src;
   int mesg;
   struct queue_node_s* next_p;
};

struct queue_s{
   omp_lock_t lock;
   int enqueued;
   int dequeued;
   struct queue_node_s* front_p;
   struct queue_node_s* tail_p;
};



         

      
         

      

Sending message
• # pragma omp critical  
/∗ q_p = msg queues[dest] ∗/  
Enqueue(q_p, my rank, mesg); 

• can be replaced with  

• /∗ q p = msg queues[dest] ∗/  
omp_set_lock(&q_p−>lock);  
Enqueue(q_p, my rank, mesg);  
omp_unset_lock(&q_p−>lock); 



         

      
         

      

Receiving message
• # pragma omp critical  
/∗ q_p = msg queues[my rank] ∗/  
Dequeue(q_p, &src, &mesg); 

• can be replaced with  

• /∗ q_p = msg queues[my rank] ∗/  
omp_set_lock(&q_p−>lock);  
Dequeue(q_p, &src, &mesg);  
omp_unset_lock(&q_p−>lock); 



         

      
         

      

Creation/destruction of lock

• Add initialization of the lock to the function that 
initializes an empty queue.  

• Destruction of the lock can be done by the thread 
that owns the queue before it frees the queue. 
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