
Programmazione
Prof. Marco Bertini

marco.bertini@unifi.it
http://www.micc.unifi.it/bertini/

mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/

Software engineering
techniques and tools

“A fool with a tool is still a fool.”
- Grady Booch

Use case
• A use case in software engineering and

systems engineering is a description of a
system’s behavior as it responds to a request
that originates from outside of that system.

• In other words, a use case describes "who"
can do "what" with the system in question.

• Use cases describe the system from the
user's point of view.

• Each use case focuses on describing how to
achieve a goal or task.

http://en.wikipedia.org/wiki/Systems_engineering

Use case - cont.

• Each use case should convey a primary
scenario, or typical course of events, also
called “basic flow”, “normal flow,” “happy
flow” and “main path”.  
The main basic course of events is often
conveyed as a set of usually numbered steps.

• Alternate paths can be written, e.g. next to
the steps of the main path.

Use case: example

1. The system prompts the
user to log on,

2. The user enters his name
and password

3. The system verifies the
logon information

4. The system logs user on
to system

2.1 The user swipes an
RFID card on a reader

Main path Alternate path

Use case - cont.

• Reread the use case, check it focuses on
getting the task done.

• Pay attention to the nouns in the use case:
they are candidates to identify the classes
needed to model the system, and tell what
to focus on

• Look at the verbs: they are candidates to
identify the methods of the classes

CRC cards

• CRC cards (Class, Responsibility,
Collaborator) are a technique for
discovering object classes, members and
relationships in an object-oriented program.

• A class represents a collection of similar
objects, a responsibility is something that a
class knows or does, and a collaborator is
another class that a class interacts with to
fulfill its responsibilities.

CRC cards
Class Name

Responsibilities Collaborators

CRC cards - cont.

• To create CRC classes iteratively perform the following
steps:

1. Find classes: look for the three-to-five main classes

2. Find responsibilities: ask yourself what a class does as well as
what information you wish to maintain about it.

3. Define collaborators: a class often does not have sufficient
information to fulfill its responsibilities. Therefore, it must
collaborate (work) with other classes to get the job done:
requesting info or to perform a task

4. Move the cards around: it’s a method to understand the
system: classes that collaborate should stay next each other

UML

• UML (Unified Modeling Language) is a visual
language for specifying, constructing, and
documenting the artifacts of software-
intensive systems.

• Complex software designs difficult for you
to describe with text alone can readily be
conveyed through diagrams using UML.

• Several tools help to draw UML diagrams,
generate code from UML diagrams, generate
UML diagrams from code.

UML Class diagram

• A UML class diagram describes the structure
of a system by showing the system's classes,
their attributes, and the relationships
between the classes.

• They are being used both for general
conceptual modelling of the systematics of
the application, and for detailed modelling
translating the models into programming
code.

http://en.wikipedia.org/wiki/Class_(computer_science)

UML Class diagram - cont.

• In the class diagram these classes are
represented with boxes which
contain three parts:

• The upper part holds the name of the
class

• The middle part contains the
attributes of the class (and their type)

• The bottom part gives the methods
or operations the class can take or
undertake

method()
otherMethod() : boolean
yaMethod(ClassX)

attribute
attribute : String

Class Name

UML Class diagram - cont.

• In the conceptual design of a system a
number of classes are identified and grouped
together in a class diagram, which helps to
determine the statical relations between
those objects. With detailed modeling the
classes of the conceptual design are often
split in a number of subclasses.

• There can be several different types of
relations among the classes, drawn as lines
and arrows

UML Class diagram: example

• Several tools allow to generate code from
UML class diagrams, or reverse engineer
code to UML class diagrams

turnLeft()
turnRight()
driveStraight()

model : string
manufacturer : string

Car

name : int
Personowns

* 0..1

rpm : int
displacement : int

Engine

Vehicle

UML Class diagram

turnLeft()
turnRight()
driveStraight()

model : string
manufacturer : string

Car

name : int
Personowns

* 0..1

rpm : int
displacement : int

Engine

Vehicle

Interface/Abstract class

UML Class diagram

turnLeft()
turnRight()
driveStraight()

model : string
manufacturer : string

Car

name : int
Personowns

* 0..1

rpm : int
displacement : int

Engine

Vehicle

Interface/Abstract class

UML Class diagram

turnLeft()
turnRight()
driveStraight()

model : string
manufacturer : string

Car

name : int
Personowns

* 0..1

rpm : int
displacement : int

Engine

Vehicle

Concrete classes: there’s not always
need to specify all the methods and
attributes

Interface/Abstract class

UML Class diagram

turnLeft()
turnRight()
driveStraight()

model : string
manufacturer : string

Car

name : int
Personowns

* 0..1

rpm : int
displacement : int

Engine

Vehicle

Concrete classes: there’s not always
need to specify all the methods and
attributes

Inheritance relation:  
Car extends Vehicle

Interface/Abstract class

UML Class diagram

turnLeft()
turnRight()
driveStraight()

model : string
manufacturer : string

Car

name : int
Personowns

* 0..1

rpm : int
displacement : int

Engine

Vehicle

Concrete classes: there’s not always
need to specify all the methods and
attributes

Inheritance relation:  
Car extends Vehicle

Composition
relation:  

Car includes Engine,
when Car is

destroyed then also
Engine is destroyed

Interface/Abstract class

UML Class diagram

turnLeft()
turnRight()
driveStraight()

model : string
manufacturer : string

Car

name : int
Personowns

* 0..1

rpm : int
displacement : int

Engine

Vehicle

Concrete classes: there’s not always
need to specify all the methods and
attributes

Inheritance relation:  
Car extends Vehicle

Composition
relation:  

Car includes Engine,
when Car is

destroyed then also
Engine is destroyed

Association relation:.  
Multiplicity of the

association says that
0 or 1 Person own 0

or more Car

Technical documentation

• Sometimes reading code alone does not
provide a full understanding of how
something must be used or how it works:
technical documentation is required, e.g.
library manuals

• It’s possible to create technical
documentation from code comments using
specialized tools like Doxygen (common in
C++) or JavaDoc (common in Java)

Technical documentation

• Documentation tools require that
programmers use specific tags in comments,
parse code and generate documentation.  
An example of Doxygen comments:

/**
 * <A short one line description>
 *
 * <Longer description>
 * <May span multiple lines or paragraphs as needed>
 *
 * @param Description of method's or function's input parameter
 * @param ...
 * @return Description of the return value
 */

Technical documentation

• Documentation tools require that
programmers use specific tags in comments,
parse code and generate documentation.  
An example of Doxygen comments:

/**
 * <A short one line description>
 *
 * <Longer description>
 * <May span multiple lines or paragraphs as needed>
 *
 * @param Description of method's or function's input parameter
 * @param ...
 * @return Description of the return value
 */

Note the double **

Doxygen example
/**
 * @file
 * @author John Doe <jdoe@example.com>
 * @version 1.0
 *
 * @section LICENSE
 *
 * This program is free software; you can redistribute it
and/or
 * modify it under the terms of the GNU General Public
License as
 * published by the Free Software Foundation; either
version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be
useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty
of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU
 * General Public License for more details at
 * http://www.gnu.org/copyleft/gpl.html
 *
 * @section DESCRIPTION
 *
 * The time class represents a moment of time.
 */

class Time {

 public:

 /**

 * Constructor that sets the time to a given value.
 *
 * @param timemillis Number of milliseconds
 * passed since Jan 1, 1970.
 */
 Time (int timemillis) {
 // the code
 }

 /**
 * Get the current time.
 *
 * @return A time object set to the current time.
 */
 static Time now () {
 // the code
 }
};

mailto:jdoe@example.com
http://www.gnu.org/copyleft/gpl.html

Doxygen example
/**
 * @file
 * @author John Doe <jdoe@example.com>
 * @version 1.0
 *
 * @section LICENSE
 *
 * This program is free software; you can redistribute it
and/or
 * modify it under the terms of the GNU General Public
License as
 * published by the Free Software Foundation; either
version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be
useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty
of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU
 * General Public License for more details at
 * http://www.gnu.org/copyleft/gpl.html
 *
 * @section DESCRIPTION
 *
 * The time class represents a moment of time.
 */

class Time {

 public:

 /**

 * Constructor that sets the time to a given value.
 *
 * @param timemillis Number of milliseconds
 * passed since Jan 1, 1970.
 */
 Time (int timemillis) {
 // the code
 }

 /**
 * Get the current time.
 *
 * @return A time object set to the current time.
 */
 static Time now () {
 // the code
 }
};

mailto:jdoe@example.com
http://www.gnu.org/copyleft/gpl.html

Doxygen example
/**
 * @file
 * @author John Doe <jdoe@example.com>
 * @version 1.0
 *
 * @section LICENSE
 *
 * This program is free software; you can redistribute it
and/or
 * modify it under the terms of the GNU General Public
License as
 * published by the Free Software Foundation; either
version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be
useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty
of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU
 * General Public License for more details at
 * http://www.gnu.org/copyleft/gpl.html
 *
 * @section DESCRIPTION
 *
 * The time class represents a moment of time.
 */

class Time {

 public:

 /**

 * Constructor that sets the time to a given value.
 *
 * @param timemillis Number of milliseconds
 * passed since Jan 1, 1970.
 */
 Time (int timemillis) {
 // the code
 }

 /**
 * Get the current time.
 *
 * @return A time object set to the current time.
 */
 static Time now () {
 // the code
 }
};

Doxygen parses the comments and
produces different types of
documents (HTML, Word, LaTeX),
with all the required indexes

mailto:jdoe@example.com
http://www.gnu.org/copyleft/gpl.html

An exercise in software
engineering

How to start ?

• Discuss with client, to get a description of
the desired system

• Condense it in a feature list

• Create use cases

• Identify the most important aspects, and
focus on them

• Apply OO principles to add flexibility

• aim for a maintainable and reusable design

An example

• Client: create a Dungeon&Dragons/Rogue-like videogame

• Discussing with the client we get this list of features:

• Players can play using different fighting characters

• Each character has different specialities

• Each character may change different weapons while
game progresses

• Characters move within a map

• A map is composed by different tiles

• The game allows to buy add-ons like maps and
characters

• From the feature list we find out what is
most important by asking ourselves if a part:

1. is essential to the system: e.g. the game
could exist without a “character” ?

2. has a clear meaning. If not spend time to
figure it out.

3. you know how to do it. E.g. how to manage
the movement of characters in the map.

Most relevant elements

• From the feature list we find out what is
most important by asking ourselves if a part:

1. is essential to the system: e.g. the game
could exist without a “character” ?

2. has a clear meaning. If not spend time to
figure it out.

3. you know how to do it. E.g. how to manage
the movement of characters in the map.

Most relevant elements

Considering the previous list of features it is clear
that a “character” is a significant element, while
the add-ons are less important (though there’s
need to figure out the exact meaning of it)

• From the feature list we find out what is
most important by asking ourselves if a part:

1. is essential to the system: e.g. the game
could exist without a “character” ?

2. has a clear meaning. If not spend time to
figure it out.

3. you know how to do it. E.g. how to manage
the movement of characters in the map.

Most relevant elements

Considering the previous list of features it is clear
that a “character” is a significant element, while
the add-ons are less important (though there’s
need to figure out the exact meaning of it)

The key features from our list are:
•The map - essential
•The character - essential, check meaning
•The movement coordination - check meaning and
how to do it

Designing the objects

• A map has a certain size

• A map has different tiles

• It’s possible to add/remove characters on
tiles

getTile(int, int) : Tile
addCharacter(Character, int, int)
removeCharacter(Character, int, int)

width: int
height: int
tiles : Tile[*][*]

Map

addCharacter(Character)
removeCharacter(Character)

characters : Character[*]

Tile

Character

*

Designing the objects - 2

• Build on what you already have... let’s
continue to expand on character...

• There are different types of characters,
with specific actions...

• ...but they have common attributes

• A super class holds commonalities, sub-
classes manage specific functions

Designing the objects - 3

• Develop the Character class seen before

• A possible solution is:

move(int, int)
fight(Character, int, int)

weapon : Weapon
hp : int

Character

berzerk()

dexterity : int

Knight

heal(Character, int, int)

int : healing

Cleric

doMagic(Enchantment)

level : int

Wizard

Designing the objects - 3

• Develop the Character class seen before

• A possible solution is:

move(int, int)
fight(Character, int, int)

weapon : Weapon
hp : int

Character

berzerk()

dexterity : int

Knight

heal(Character, int, int)

int : healing

Cleric

doMagic(Enchantment)

level : int

Wizard

It’s an abstract class:
defines the interface

of the sub classes

Designing the objects - 3

• Develop the Character class seen before

• A possible solution is:

move(int, int)
fight(Character, int, int)

weapon : Weapon
hp : int

Character

berzerk()

dexterity : int

Knight

heal(Character, int, int)

int : healing

Cleric

doMagic(Enchantment)

level : int

Wizard

It’s an abstract class:
defines the interface

of the sub classes
Don’t Repeat Yourself (DRY):
avoid duplicate code by
abstracting common things and
placing them in a single sensible
location

Designing the objects - 4
• Some useful guidelines:

• Open-Closed Principle (OCP): classes should be open for extension and closed for
modification

• move() is defined in the base class and doesn’t change. If a new character will
need to change it will just override it (so think in advance and make it virtual)

• Don’t Repeat Yourself (DRY): avoid duplicate code by abstracting common things and
placing them in a single sensible location

• hit points are common to all characters, code to manage them is in the super
class

• Single Responsibility Principle (SRP): every object should have just one responsibility
and all services should focus on it

• Liskov Substitution Principle: a subtype must be substitutable for their base type

• Delegation: hand over the responsibility for a particular task to another class or
method

Liskov substitution principle

• Let’s suppose we want to add aerial fighting
with dragons: we need a 3D map.

• Extending the base class makes the 3D
map to inherit all the methods that work
on 2D coordinates... but these methods
are of no use. LSP shows us that a 3D map
is NOT a 2D map !

• Instead of inheriting consider delegating
the management of each layer of a 3D
map to a 2D map

Liskov substitution principle

• Let’s suppose we want to add aerial fighting
with dragons: we need a 3D map.

• Extending the base class makes the 3D
map to inherit all the methods that work
on 2D coordinates... but these methods
are of no use. LSP shows us that a 3D map
is NOT a 2D map !

• Instead of inheriting consider delegating
the management of each layer of a 3D
map to a 2D map

Use delegation when you want to
use the functionality of another
class without changing it’s behaviour

When to use composition ?

• Use composition to assemble behaviours of
different classes

• Composition allows to use behaviour from a
family of other classes, changing their
behaviour at runtime

• if the object that is composed of other
objects is destroyed so are the behaviours

• if it’s not destroyed then it’s called
aggregation

Composition: an example

• When the Character dies we destroy the
Weapon

move(int, int)
fight(Character, int, int)

weapon : Weapon
hp : int

Character

berzerk()

dexterity : int

Knight

heal(Character, int, int)

int : healing

Cleric

doMagic(Enchantment)

level : int

Wizard

attack()

Weapon

attack()

Sword

attack()

Spear

attack()

arrows : int

Bow

Inheritance et al.

• In OO inheritance is just one of the
solutions we can use to design good
software. We have also:

• Delegation

• Composition

• Aggregation

Some C++ style
suggestions
from Bjarne Stroustrup*

*original interview (http://www.artima.com/intv/goldilocks.html)

Avoid Object-Orientaphilia

• Do NOT do everything by creating a class as
part of a class hierarchy with lots of virtual
functions:  
“You can program with a lot of free-standing
classes. If I want a complex number, I write a
complex number. It doesn't have any virtual
functions. It's not meant for derivation.”

• Use inheritance only when a class hierarchy
makes sense from the point of view of your
application, from your requirements.

Classes Should Enforce Invariants

• A class invariant is an invariant used to
constrain objects of a class. Methods of the class
should preserve the invariant. The class invariant
constrains the state stored in the object: an
invariant allows you to say when the object's
representation is good and when it isn't.

• Rule of thumb: you should have a real class with
an interface and a hidden representation if and
only if you can consider an invariant for the
class.

Classes Should Enforce Invariants

• A class invariant is an invariant used to
constrain objects of a class. Methods of the class
should preserve the invariant. The class invariant
constrains the state stored in the object: an
invariant allows you to say when the object's
representation is good and when it isn't.

• Rule of thumb: you should have a real class with
an interface and a hidden representation if and
only if you can consider an invariant for the
class.

a condition that can be relied
upon to be true during
execution of a program, or
during some portion of it

Classes Should Enforce Invariants - 2

• You can write the interfaces so that they
maintain that invariant. Operations that
don't need to mess with the representation
are better done outside the class. This
results in a clean, small interface that you
can understand and maintain.

• The invariant is a relationship between
different pieces of data in the class. If every
data can have any value, then it doesn't make
much sense to have a class.

Classes Should Enforce Invariants - 3

• Example: a data structure containing a name and
address in which any string is a good name and
address then should be implemented as struct...
no private attributes and getter/setter or base
classes with virtual methods.

• But... if the representation may change often or
there’s need to have different representations of
the object then use the class.

• The constructor establishes the environment for
the member functions to operate in: it establishes
the invariant.

Designing Simple Interfaces

• A method that is using data but not
defending invariant may not need to be in
the class.  
Example: operations that need direct access
to representations should be in class.

• In a Date class changing day/month/year
should be members, instead a function that
finds the next Sunday given a date could be a
function built in a supporting library.

Class design
suggestions

OOP key concepts and class design

• Abstraction - responsibilities (interface) is
different from implementation

• A class provides some services, takes on
some responsibilities, that are defined by the
public interface. How it works inside doesn't
matter. Distinguish between interface and
implementation.

• Client should be able to use just the public
interface, and not care about the
implementation.

OOP key concepts and class design

• Encapsulation - guarantee responsibilities by
protecting implementation from interference

• Developer of a class can guarantee behavior
of a class only if the internals are protected
from outside interference. Specifying private
access for the internals puts a wall around
the internals, making a clear distinction
between which code the class developer is
responsible for.

Some design principles

• Design a class by choosing a clear set of responsibilities

• Make classes responsible for working with their own data.

• Domain classes should be based on actual domain objects.

• What kinds of objects are in the domain?

• Which classes -

• What characterizes each domain object?

• Members -

• How are different kinds of objects related to each other?

• Inclusion versus association -

• Part-of relation versus "using" or "interacts with"

• Relative lifetimes -

• Do they exist independently of each other?

Red flags

• If class responsibilities can’t be made clear, then
OOP might not be a good solution

• Lots of problems work better in procedural
programming than in OOP, so there is no need to
force everything into the OO paradigm. OO is no
silver bullet.

• Beware of classes that do nothing more than a C
struct.

• Is it really a “Plain Old Data” object, like C struct,
or did you overlook something? If it is a simple
bundle of data, define it as a simple struct.

Red flags - cont.
• Avoid heavy-weight, bloated, or “God” classes -

prefer clear limited responsibilities.

• If a class does everything, it is probably a bad
design. Either you have combined things that
should be delegated to derived classes or peer
classes, or you have misunderstood the domain.

• Put in the public interface only the functions that
clients can meaningfully use.

• Reserve the rest for private helpers.

• Resist the temptation to provide getters/setters
for everything.

Design principles for methods
• Make member functions const if they do not modify the

logical state of the object.

• Make a class fully responsible for initializing itself with
constructor functions.

• It is error-prone and bad design if the client has to
“stuff” initial data into the object. Take care that all
member variables get a good initial value.

• Only supply these where necessary - if the member
variable is a class type, the compiler will call its default
constructor for you.

• Do not write constructors, assignment operators, or
destructors when the compiler- supplied ones will work
correctly. Unnecessary code is simply places for bugs to
hide, especially when revisions are made!

Methods’ responsibilities

• Constructor methods allow a class to be
responsible for its initialization.

• Destructor methods allow a class to be
responsible for cleaning up after itself.

• Copy/Move constructor and assignment
operator functions allow a class to be
responsible for how it is copied or its data
moved.

Methods’ responsibilities

• Constructor methods allow a class to be
responsible for its initialization.

• Destructor methods allow a class to be
responsible for cleaning up after itself.

• Copy/Move constructor and assignment
operator functions allow a class to be
responsible for how it is copied or its data
moved. More on “Move” constructors

in next lectures...

Credits

• These slides are (partly) based on the
material of:

• Prof. David Kieras, Univ. of Michigan

