
Large-Scale Image Retrieval with Compressed Fisher Vectors

Florent Perronnin, Yan Liu, Jorge Sánchez and Hervé Poirier
Xerox Research Centre Europe (XRCE)
Firstname.Lastname@xrce.xerox.com

Abstract

The problem of large-scale image search has been tradi-
tionally addressed with the bag-of-visual-words (BOV). In
this article, we propose to use as an alternative the Fisher
kernel framework. We first show why the Fisher representa-
tion is well-suited to the retrieval problem: it describes an
image by what makes it different from other images. One
drawback of the Fisher vector is that it is high-dimensional
and, as opposed to the BOV, it is dense. The resulting mem-
ory and computational costs do not make Fisher vectors
directly amenable to large-scale retrieval. Therefore, we
compress Fisher vectors to reduce their memory footprint
and speed-up the retrieval. We compare three binarization
approaches: a simple approach devised for this represen-
tation and two standard compression techniques. We show
on two publicly available datasets that compressed Fisher
vectors perform very well using as little as a few hundreds
of bits per image, and significantly better than a very recent
compressed BOV approach.

1. Introduction
We are interested in the problem of retrieving images of a

given object or scene within a large collection of images us-
ing the query-by-example paradigm. The de-facto standard
to address this problem is the bag-of-visual-words (BOV)
[24].
BOV overview: In a nutshell, the BOV works as fol-

lows. Interest points are detected in the image and local
invariant descriptors are extracted. Each descriptor is as-
signed to its closest visual word in a “visual vocabulary”: a
codebook obtained offline by clustering a large set of de-
scriptors with k-means. This results in a typically high-
dimensional sparse histogram representation. Similarly to
text retrieval, an inverted list structure is employed for ef-
ficient indexing and tf-idf scoring is used to discount the
influence of visual-words which occur in many images.
This approach has then been refined in a number of ways.

Efficient quantization techniques, such as hierarchical k-
means (HKM) [18] or approximate k-means (AKM) [21],

were proposed for very large vocabularies. As information
might be lost in the quantization process, descriptors can be
assigned to multiple visual words [22, 11]. [11] proposes
the Hamming Embedding (HE) technique which consists in
complementing the visual word index for a given descrip-
tor with a binary vector which indicates the approximate
location of the descriptor in its Voronoi cell. Discounting
the influence of descriptors which happen in burst can lead
to additional improvements [12]. Finally, post-processing
techniques such as spatial re-ranking [21, 11] and query ex-
pansion [4] can boost the accuracy.
Despite the use of inverted list structures, storage can be

an issue for BOV approaches. [21] reports a memory usage
of 4.3GB for approximately 1.1M images. A state-of-the-
art system which makes use of HE is reported to take 35kB
of memory per image [13], or equivalently more than 32GB
for 1M images. As soon as data does not fit into RAM, the
response time of the system collapses because of slow disk
accesses [21]. Therefore, there has been much research in
compressing BOV histograms.
Small codes: The easiest way to compress the BOV is

to binarize the histogram entries as proposed in [24]. It
is shown in [13] that this strategy does not incur any sig-
nificant loss for visual vocabularies with more than a few
thousand words. [3, 5] propose to apply min-hash to binary
vectors. This technique was shown to be very efficient for
the purpose of near-duplicate retrieval. However, when ap-
plied to complex retrieval problems, e.g. retrieving shots of
objects taken from widely varying viewpoints, the memory
usage is similar to the BOV.
Another approach is to use lossless compression tech-

niques from text-retrieval to compress inverted files. With
such techniques, [9] reports a compression factor of approx-
imately 2 while [13] reports a factor of 4.
Recently, both [13] and [27] noted that standard com-

pression techniques such as Local Sensitive Hashing (LSH)
[6] could not be applied directly to the BOV because of its
sparse nature and that it needed to be densified before com-
pression. [13] proposes to use random aggregations of vi-
sual words. [27] decomposes an image into three layers:
background information (which is discarded), information

978-1-4244-6983-3/10/$26.00 ©2010 IEEE

related to a set of pre-learned topics (which is dense and can
be compressed with LSH) and residual information (which
can be encoded in a sparse manner).
A common issue in all methods which compress BOV

histograms is that they can perform as well as the BOV at
best 1.
There has been a lot of work recently on computing com-

pact binary codes with application mainly to GIST descrip-
tors [19], including [25, 26, 16, 23]. While GIST descrip-
tors can be very effective to retrieve similar objects and
scenes which are well aligned, they cannot cope with wide
variations in rotation, scaling or viewpoint [7].
Contributions: In this paper, we go beyond the BOV

and the GIST representations. We apply the Fisher kernel
to the problem of same object / scene image retrieval. The
Fisher kernel is a generic framework introduced in [10] for
classification purposes to combine the best of the generative
and discriminative worlds. In the field of computer vision,
this framework has been successfully applied to a number
of problems including categorization [?, 20], dimensional-
ity reduction [1] and saliency detection [17]. However, to
the best of our knowledge, there has not been any thorough
evaluation of Fisher kernels for retrieval. One of the reasons
might be that this framework leads to very high-dimensional
(hundreds of thousands of dimensions) dense representa-
tions. Because of the induced computational and storage
costs, these vectors are not directly amenable to large-scale
retrieval.
Our contributions are as follows:

1. We motivate the use of the Fisher representation for
retrieval: it discounts the influence of background de-
scriptors and therefore describes an image by what
makes it different from other images. We also relate
the similarity between two Fisher vectors with the sim-
ilarity between two BOV histograms.

2. We propose a simple normalization procedure which
can improve the retrieval accuracy significantly, espe-
cially for large visual vocabularies.

3. Since the Fisher vector is dense, we can apply standard
binary encoding techniques. We compare a simple bi-
narization strategy specially devised for the Fisher ker-
nel with LSH [2] and Spectral Hashing [26].

This paper is organized as follows. In section 2, we re-
view the Fisher kernel framework and how to apply it to
obtain image signatures. In section 3, we provide an in-
terpretation of the Fisher vector and discuss the problem
of computing the similarity between such signatures. In
section 4, we discuss three alternatives to binarizing the

1[13] reports better results than the BOV with compressed vectors but
acknowledges that this is certainly due to a suboptimal choice of similarity
for the BOV.

Fisher vector. Finally, we present experimental results on
two standard benchmarks, the Holiday dataset [11] and the
University of Kentucky benchmark [18], showing the excel-
lent performance of our approach.

2. The Fisher Vector Representation
We first provide an introduction to the Fisher kernel

framework as proposed in [10]. We then review the applica-
tion of this framework to the problem of computing image
signatures as proposed in [20].

2.1. Fisher kernel basics
Let X be a sample whose generation process can be

modeled by a probability density function p with parame-
ters λ. In our case,X corresponds to a single image. X can
be described by the gradient vector:

GX
λ = ∇λ log p(X |λ). (1)

The gradient of the log-likelihood describes the contribu-
tion of the parameters to the generation process. The di-
mensionality of this vector depends only on the number of
parameters in λ. A natural kernel on these gradients is:

K(X, Y) = GX
λ

′

F−1

λ GY
λ (2)

where Fλ is the Fisher information matrix of p:

Fλ = Ex∼p [∇λ log p(x|λ)∇λ log p(x|λ)′] . (3)

As Fλ is symmetric and positive definite, it has a Cholesky
decomposition Fλ = L′

λLλ and K(X, Y) can be rewritten
as a dot-product between normalized vectors Gλ with:

GX
λ = LλGX

λ . (4)

We will refer to GX
λ as the Fisher vector ofX .

2.2. Representing images with Fisher vectors
In the case where we want to describe a given image,

X = {xt, t = 1 . . . T} is the set of descriptors extracted
from the image (typically T is equal to a few hundreds or
thousands). We assume that the xt’s are generated indepen-
dently by p. A natural choice for p is a Gaussian mixture
model (GMM): p(x) =

∑N
i=1

wipi(x). Each Gaussian pi

can be viewed as a visual word andN is the vocabulary size.
In the remainder of the article, we therefore use the words
“Gaussian” and “visual word” interchangeably. We denote
λ = {wi, µi, Σi, i = 1 . . .N} where wi, µi and Σi are re-
spectively the mixture weight, mean vector and covariance
matrix of Gaussian i. We assume that the covariance matri-
ces are diagonal and we denote by σ2

i the variance vector.
The GMM p is trained on a large number of images using
Maximum Likelihood Estimation (MLE).

In this paper, we focus on the partial derivatives with
respect to the mean parameters. We make use of the diag-
onal closed-form approximation of [20], in which case the
normalization of the gradient by Lλ = F

−1/2

λ is simply a
whitening of the dimensions.
Let γt(i) = p(i|xt) be the soft assignment of descriptor

xt to Gaussian i:

γt(i) =
wipi(xt)

∑N
j=1

wjpj(xt)
. (5)

LetD denote the dimensionality of the descriptors. Let GX
i

be the D-dimensional gradient with respect to the mean µi

of Gaussian i. Simple mathematical derivations lead to:

GX
i =

1
√

wi

T
∑

t=1

γt(i)

(

xt − µi

σi

)

(6)

where the division between vectors is as a term-by-term op-
eration. The final gradient vector GX

λ is the concatenation
of the GX

i vectors for i = 1 . . .N and is therefore ND-
dimensional. In section 5 we will experiment with values of
N ranging from 1 to 4, 096.

3. Measuring the Similarity of Fisher Vectors
We now show that the Fisher vector is a good representa-

tion for retrieval as it automatically discounts the influence
of background descriptors. Leveraging this interpretation,
we then explain why the dot product between Fisher vectors
is a good similarity. We finally propose a simple normaliza-
tion step for the Fisher vector.

3.1. Fisher vector and TF-IDF
The tf-idf as proposed in text (and as applied to the BOV)

discounts the influence of frequent discrete events, where
an event is the occurrence of a word in a document (a vi-
sual word in an image). In the field of text processing, [8]
connected the Fisher kernel and tf-idf scoring in the case of
a specific model: the Dirichlet compound multinomial. We
now show that the Fisher vector as applied to a GMM ex-
tends the tf-idf scoring to continuous events, where an event
is the occurrence of a descriptor in an image.
Let xt be a descriptor generated by Gaussian i. Given

that our descriptors are fairly high-dimensional (D = 64),
γt is typically a peaky distribution, i.e. γt(i) ≈ 1 and
γt(j) ≈ 0 for j %= i. xt is likely to occur in any image – and
is therefore likely to be a background descriptor – if it has
a high likelihood p(xt) to have been generated by p. Given
the assumption γt(i) ≈ 1, we have p(xt) ≈ wipi(xt).
Hence, p(xt) is high if:

1. wi is high, i.e. Gaussian i corresponds to a frequent
visual word, and

2. pi(xt) is large, i.e. if ||xt−µi

σi
||2 is small. Loosely

speaking this means that xt is close to µi where prox-
imity is measured with respect to the variance σ2

i .

Going back to equation (6), we can see that if xt has a
high likelihood p(xt), its contribution to the gradient vec-
tor will be doubly discounted by the √wi division and the
µi subtraction. Therefore, the influence of frequent (i.e.
background) descriptors is automatically discounted in the
Fisher vector in a way similar to tf-idf. This is a compelling
argument to use the Fisher vector for retrieval.

3.2. Dot-product on Fisher vectors
Let us now see how the previous analysis translates in

the case where we use the dot-product as a similarity. We
introduce the following notations:

wX
i =

1

T

T
∑

t=1

γt(i), (7)

µX
i =

∑T
t=1

γt(i)xt
∑T

t=1
γt(i)

. (8)

wX
i is the proportion of descriptors of X soft-assigned to
visual word i, i.e. this is the soft-BOV representation. µX

i is
the average of the descriptors ofX weighted by their proba-
bility of being assigned to Gaussian i (i.e., loosely speaking,
the average of the descriptors ofX assigned to Gaussian i).
Rewriting (6) using (7), (8) and the notation δX

i = µX

i
−µi

σi
,

we obtain:
1

T
GX

i =
wX

i√
wi

δX
i . (9)

Hence, GX
λ

′GY
λ is proportional to:

N
∑

i=1

wX
i wY

i

wi
δX
i

′

δY
i . (10)

Each term in the sum can be decomposed into two parts:

1. wX

i
wY

i

wi
is the product of the frequencies of visual word

i in X and Y divided by the average frequency of oc-
currence of i in any image. This is similar to standard
tf-idf BOV scoring.

2. The second term δX
i

′

δY
i is large if the δX

i and δY
i vec-

tors have a similar direction and a large norm. δX
i

and δY
i have a similar direction if the descriptors ofX

and Y assigned to Gaussian i have the same average.
δX
i and δY

i have a large norm if µX
i and µY

i are sig-
nificantly different from µi. Based on the analysis of
section 3.1, a large norm indicates that on average the
descriptors ofX assigned to Gaussian i are unlikely to
be background descriptors.

Hence, the dot-product appears as a good measure for
the Fisher vector. We note that we do not use directly the
dot-product on Fisher vectors for retrieval but the cosine
similarity (i.e. the dot product between the L2 normalized
vectors). It guarantees that if we query a database with one
of its images, the first result will be the image itself – a
desirable property. We underline that L2 normalization au-
tomatically normalizes the Fisher vector by the number of
descriptors contained in the image. The previous analysis
remains valid in the case of the cosine similarity.

3.3. Fisher vector normalization
Although the dot-product (or the cosine) is a natural

measure of similarity on Fisher vectors, it does not necessar-
ily lead to the optimal accuracy. Especially, we found-out
that discounting the influence of large values before the L2
normalization could be beneficial. A simple way to achieve
this goal is to raise each dimension of the Fisher vector to
the power of a value α ∈ [0, 1] (using the same value α
for all dimensions). If we go back to equation (9) the ef-
fects of this operation are easy to understand. The power
on the BOV part downplays the influence of those descrip-
tors which happen frequently within a given image (bursty
visual features) in a manner similar to [12]. The power on
the δX

i part discounts the influence of outlier descriptors.
We underline that the proposedα normalization does not

modify our interpretation of the dot-product between Fisher
vectors.

4. Binarizing Fisher Vectors
The direct application of the Fisher kernel framework to

large-scale retrieval faces an important challenge: the gradi-
ent representations can be high-dimensional and dense. For
instance, if we use descriptors of dimension D = 64 (as is
the case in our experiments) and a visual vocabulary of size
N = 100 (which is tiny by BOV standards), then the Fisher
vector already contains DN = 6, 400 dimensions. If we
use floating points, this results in a 25kB signature.
We now describe three approaches to compressing the

Fisher vector. The first one is a simple approach devised
specially for the Fisher vector. The second and third ones
are standard compression techniques: LSH and Spectral
Hashing (SH).

4.1. α = 0 binarization
As α goes to zero, zα converges to −1 if z < 0, 1 if

z > 1 and 0 if z = 0. Hence, as α goes to zero, the α-
normalized Fisher vector (c.f. section 3.3) converges to a
ternary representation. We will show experimentally that,
despite the supposed information loss, this representation
yields good results, especially as the number of Gaussians
in the visual vocabulary increases. We now explain how

to turn this ternary encoding into an equivalent binary en-
coding which is more efficient both in terms of storage and
computation. We take advantage of the fact that the Fisher
vector of X can be decomposed into the product of a BOV
part wX

i and a δX
i part (c.f. equation (9)):

1. We encode the BOV part wX
i in a binary fashion as

proposed in [24]. We define bX
i = 1 if wX

i > 0 and
bX
i = 0 otherwise 2.

2. We encode each dimension of δX
i on a single bit based

on its sign. Let uX
i be the binarized version of δX

i .
uX

i is reminiscent of the Hamming Embedding (HE)
of [11] as it encodes in a binary fashion the approxi-
mate location of the descriptors which are assigned to
Gaussian i. A major difference is the fact that [11] en-
codes each descriptor individually while we encode all
the descriptors assigned to the same Gaussian jointly
which is much more efficient.

Hence, the binarized Fisher vector is encoded onN(D +1)
bits. The dot-product between the ternary representations
can be computed equivalently as a similarity between the
binary representations:

N
∑

i=1

bX
i bY

i

(

D − 2Ha(uX
i , uY

i)
)

(11)

where Ha is the Hamming distance between uX
i and uY

i .
Again, we do not use the dot-product directly but the co-
sine and therefore the above similarity should be divided by
√

D
∑N

i=1
bX
i

√

D
∑N

i=1
bY
i .

4.2. Local Sensitive Hashing (LSH)
As we use the cosine to measure the similarity between

Fisher vectors, we can make use of LSH to binarize Fisher
vectors [2]. Let x and y be two d-dimensional vectors. Let
r be a d-dimensional vector such that each of its coordinates
is drawn from a 1-D Gaussian distribution with mean 0 and
standard deviation 1. Let hr(x) = Q(x′r) where Q(z) =
+1 if z ≥ 0 and 0 otherwise. We have:

P (hr(x) = hr(y)) = 1 −
θ(x, y)

π
(12)

where θ(x, y) is the angle between x and y. To binarize a
vector x, one simply draws a set of random vectors {rb, b =
1 . . . B} and computes the sign of r′bx.

2Because we make use of a probabilistic framework, wX
i
cannot be

equal to a mathematical zero and therefore, this encoding should always
yield bX

i
= 1. However, to speed-up the Fisher vector computation we

have set the value of the soft-assignment γt(i) to zero if its value was
below 1e-4 and therefore we have zero wX

i
values in practice.

4.3. Spectral Hashing (SH)
The SH algorithm [26] finds a binary encoding such that

points which are far apart in the original Euclidean space are
also fart apart in the Hamming space and vice-versa. Since
the cosine similarity is equivalent to the Euclidean distance
on L2-normalized vectors, we can apply the SH algorithm
to our L2-normalized Fisher vector representations.
In a nutshell, the idea of SH is to minimize the sum of the

Hamming distances between pairs of binary codes weighted
by the Gaussian kernel between the corresponding vectors.
The solution is based on the eigenfunctions of continuous
Laplacian operators. If one assumes that the data is uncorre-
lated (which is the case if the feature vectors have been pro-
jected on the principal components) and that it is uniformly
distributed in each dimension, one can then make use of a
simple and efficient encoding rule on a per-dimension basis.
In our experiments, we used the Matlab code provided

by [26].

5. Experiments
5.1. Datasets and experimental set-up
We used publicly available datasets as well as publicly

available feature detectors and descriptors to ensure the
comparability of our results.
Datasets: We report results on two standard bench-

marks: the Holiday dataset [11] and the University of Ken-
tucky benchmark [18]. The Holiday dataset contains 1,491
images of 500 scenes and objects and the first image of each
scene is used as a query. The retrieval accuracy is measured
as the Average Precision (AP) averaged over the 500 queries
(the query image is discarded for the AP computation). The
Kentucky benchmark contains 10,200 images of 2,550 ob-
jects (4 images per object) and each image is used in turn as
a query. The accuracy is measured in terms of the number
of relevant images in the top 4 retrieved images, i.e. 4× re-
call@4. For learning purposes, we used an additional set of
60K images (later referred to as Flickr60k) made available
by the authors of [11]. Finally, for large-scale experiments,
we also used an additional set of 1M distractor Flickr im-
ages (later referred to as Flickr1M) made available by the
same authors.
Experimental set-up: We used the same feature detec-

tion and description procedure as in [11] (Hessian-Affine
extractor and the SIFT descriptor) since the code and the
features are available online. We reduced the dimensional-
ities of these features from 128 to D = 64 through Princi-
pal Component Analysis (PCA) as we observed in prelimi-
nary experiments that it had a positive impact on the accu-
racy. We used the Flickr60k dataset to learn the PCA and
the GMM vocabularies as well as the parameters of the SH
binary encoding. Except where it is mentioned explicitly,
the Fisher vectors used in our experiments were computed

0 0.2 0.4 0.6 0.8 1
25

30

35

40

45

50

55

60

65

70

75

Normalization α

Av
er

ag
e

Pr
ec

isi
on

 (i
n

%
)

N=1
N=8
N=64
N=512
N = 4,096

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

4

Normalization α

4
x

re
ca

ll@
4

N=1
N=8
N=64
N=512

Figure 1. Influence of the vocabulary size N and the normaliza-
tion factor α (c.f. section 3.3). Top: Holiday dataset. Bottom:
Kentucky benchmark.

by taking the gradient with respect to the mean parameters
only.

5.2. Experiments on non-binarized Fisher vectors
We first observe in Figure 1 the influence of the vocab-

ulary size N and the normalization factor α. As the vo-
cabulary size increases, the optimal value of α gets closer
to zero. For instance, on the Holiday dataset, for N = 1
α = 0.8 yields the best results while for N = 4, 096,
α = 0.3 is optimal. The best results are 70.5% AP with
N = 4, 096 on the Holiday dataset and a score of 3.44
with N = 512 on the Kentucky benchmark. If we com-
pute Fisher vectors by taking the gradient with respect to
the mean and standard deviation, we can obtain a small in-
crease of the accuracy to 73.5% AP on the Holiday dataset
and 3.50 on the Kentucky benchmark at the expense of dou-
bling the size of Fisher vectors. If we use only the BOV
part of the similarity and disregard the δ part (c.f. equation

128 256 512 1024 2048 4096 8192
20

30

40

50

60

number of bits

Av
er

ag
e

Pr
ec

isi
on

 (i
n

%
)

Uncompressed
LSH
SH
α=0

128 256 512 1024 2048 4096 8192
20

30

40

50

60

number of bits

Av
er

ag
e

Pr
ec

isi
on

 (i
n

%
)

Uncompressed
LSH
SH
α=0

Figure 2. Comparison of the three proposed binarization schemes
on the Holiday dataset for a vocabulary size of N = 8 Gaussians
(top) and N = 64 Gaussians (bottom). Uncompressed = non-
binarized accuracy (with the best α).

(10)), we obtain 41.9% AP and a score of 2.70 respectively.
We underline that the Fisher vector yields reasonable results
even for tiny vocabularies. For instance, with a single visual
word (N = 1), we report an AP of 40.7% on the Holiday
dataset, which is comparable to a BOV with 4,000 visual
words.

We can compare these results to the state-of-the-art. Us-
ing the same features and a BOV approach, [13] reports on
the Holiday dataset an AP of 54.9% (200K visual words)
and on the Kentucky benchmark a score of 3.02 (20k visual
words). [11] reports 72.7% AP on the Holiday dataset us-
ing Hamming Embedding (20k visual words). On the Ken-
tucky benchmark, [15] reports a score of 3.60 using a fairly
sophisticated contextual similarity. Hence, our approach far
exceeds the accuracy of standard BOV approaches and is
comparable to the state-of-the-art approaches (when no ge-
ometrical information is used).

128 256 512 1024 2048 4096 8192
2

2.5

3

3.5

number of bits

4
x

re
ca

ll@
4

Uncompressed
LSH
SH
 α=0

128 256 512 1024 2048 4096 8192
2

2.5

3

3.5

number of bits

4
x

re
ca

ll@
4

Uncompressed
LSH
SH
 α=0

Figure 3. Comparison of the three proposed binarization schemes
on the Kentucky benchmark for a vocabulary size ofN = 8 Gaus-
sians (top) and N = 64 Gaussians (bottom). Uncompressed =
non-binarized accuracy (with the best α).

5.3. Experiments on binarized Fisher vectors

We experiment with three approaches to binarizing
Fisher vectors: the proposed approach which is equivalent
to setting α = 0, LSH and SH (c.f. section 4). Results
are given for Holiday and Kentucky in Figures 2 and 3 re-
spectively. For LSH and SH, we used the best α parame-
ter for each vocabulary size and each dataset (which gives
an advantage with respect to the simple α = 0 binariza-
tion). Also, for LSH and SH we can vary the number of
bits for a given vocabulary size N . For the α = 0 bina-
rization, given N , the number of bits is fixed and equal to
N(D +1) = 65N bits. We observe that for a small number
of bits SH outperforms LSH but for a larger number of bits,
LSH outperforms SH. This is in line with [23] which reports
that SH can be outsmarted by binarization algorithms based
on random projections for a large number of bits. Some-
what surprisingly, the simple α = 0 binarization scheme
works extremely well.

128 256 512 1024 2048 4096 8192
20

25

30

35

40

45

50

55

60

number of bits

Av
er

ag
e

Pr
ec

isi
on

 (i
n

%
)

[14]
Proposed

128 256 512 1024 2048 4096 8192 16384
2

2.25

2.5

2.75

3

3.25

3.5

number of bits

4
x

re
ca

ll@
4

[14]
Proposed

Figure 4. Comparison of the proposed binarized Fisher vectors and
the results of [13] (compressed BOV). Top: Holiday dataset. Bot-
tom: Kentucky benchmark. The results of [13] are directly taken
from their Tables 1 and 2.

We now compare in Figure 4 our results with the re-
cent results of [13] based on compressed BOV vectors. For
Fisher vectors, we use the α = 0 binarization scheme. We
observe a very significant increase of the retrieval accuracy
for a similar number of bits. For instance, on the Holiday
dataset, we can do as well as their best reported results with
approximately 10 times fewer bits. Yet, in all fairness, we
should mention that [13] requires to scan only a fraction of
the database while we perform an exhaustive comparison of
the query with all database signatures.
Finally, we report in Figure 5 the results of our large-

scale experiments using the combined Holiday+Flickr1M
datasets. The same 500 Holiday images are queried and
the 1M Flickr images are used as distractors. We report the
recall@K (as is the case of [11, 13]) for various vocabulary
sizes N . Again, if we compare our results with the recent
results of [13], we observe a very significant improvement
of the recall@K for a comparable number of bits. For in-
stance, they report a recall@1000 around 45% for 5,120 bits

1 2 5 10 25 50 100 250 500 1000
0

10

20

30

40

50

60

70

K

re
ca

ll@
K

(in
 %

)

Proposed (N=1)
Proposed (N=8)
Proposed (N=64)
[14] (32 minibofs)

Figure 5. Large scale experiments on Holiday+Flickr1M. Compar-
ison of the proposed approach (for various values of N) with the
best results reported in [13] (compressed BOV).

per image (32 minibofs) while we report close to 65% with
4,160 bits.

For N = 8, an image signature takes 520 bits (1M+ im-
ages fit in 60MB) and the response time is approximately
100 ms per query on a 3GHz Opteron machine using a sin-
gle CPU. ForN = 64, one image signature takes 4,160 bits
(1M+ images fit in 500MB) and the response time is ap-
proximately 440 ms per query. We show in Figure 6 sample
results on the Holiday+Flickr1M dataset for 520 bits signa-
tures. In some cases, even with such compact signatures,
we can go well beyond duplicate detection.

Finally, in the same proceedings, Jégou et al. [14] report
impressive results for very compact codes (128 bits) using
a signature inspired by the Fisher vector and product quan-
tizers. We believe that our Fisher vector signatures could
benefit from similar quantizers.

6. Conclusion

In this article, we applied the Fisher kernel framework
to image retrieval. We explained that the Fisher vector is
particularly well-suited to retrieval because it discounts the
influence of background descriptors. The Fisher vector, be-
ing high-dimensional and dense, cannot be directly applied
to large-scale retrieval. We therefore explored three differ-
ent techniques to compressing the Fisher vector: a simple
approach devised for the Fisher kernel, LSH and SH. We
showed that the simple binarization strategy performs ex-
tremely well and we showed that compressed Fisher vectors
significantly outperform a recent retrieval technique using
compressed BOV technique [13].

Figure 6. Sample results on the combined Holiday+Flickr1M dataset using a vocabulary of N=8 visual words, i.e. 520 bits signatures.
The images on the left correspond to queries and the following images correspond to the first 5 retrieved images (discarding the query).
Green/red boxes indicate correct/incorrect results respectively.

Acknowledgments
This work was partially funded by the European Com-

munity’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement no 216529.

References
[1] M. Bressan, C. Cifarelli, and F. Perronnin. An analysis of the

relationship between painters based on their work. In ICIP,
2008.

[2] M. Charikar. Similarity estimation techniques from rounding
algorithms. In STOC, 2002.

[3] O. Chum, J. Philbin, M. Isard, and A. Zisserman. Scalable
near identical image and shot detetction. In CIVR, 2007.

[4] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman.
Total recall: Automatic query expansion with a generative
feature model for object retrieval. In ICCV, 2007.

[5] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image
detection: min-hash and tf-idf weighting. In BMVC, 2008.

[6] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In
SOCG, 2004.

[7] M. Douze, H. Jégou, H. Singh, L. Amsaleg, and C. Schmid.
Evaluation of gist descriptors for web-scale image search. In
CIVR, 2009.

[8] C. Elkan. Deriving tf-idf as a fisher kernel. In SPIRE, 2005.
[9] S. Gammeter, L. Bossard, T. Quack, and L. V. Gool. I know

what you did last summer: object-level auto-annotation of
holiday snaps. In ICCV, 2009.

[10] T. Jaakkola and D. Haussler. Exploiting generative models
in discriminative classifiers. In NIPS, 1999.

[11] H. Jégou, M. Douze, and C. Schmid. Hamming embedding
and weak geometric consistency for large scale image search.
In ECCV, 2008. http://lear.inrialpes.fr/˜jegou/data.php.

[12] H. Jégou, M. Douze, and C. Schmid. On the burstiness of
visual elements. In CVPR, 2009.

[13] H. Jégou, M. Douze, and C. Schmid. Packing bag-of-
features. In ICCV, 2009.

[14] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating
local descriptors into a compact image representation. In
CVPR, 2010.

[15] H. Jégou, H. Harzallah, and C. Schmid. A contextual dis-
similarity measure for accurate and efficient image search.
In CVPR, 2007.

[16] B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. In ICCV, 2009.

[17] L. Marchesotti, C. Cifarelli, and G. Csurka. A frame-
work for visual saliency detetction with application to image
thumnbnailing. In ICCV, 2009.

[18] D. Nistér and H. Stewénius. Scalable recognition with a vo-
cabulary tree. In CVPR, 2006.

[19] A. Oliva and A. Torralba. Modeling the shape of the scene:
a holistic representation of the spatial envelope. IJCV, 42(3),
2001.

[20] F. Perronnin and C. Dance. Fisher kernels on visual vocabu-
laries for image categorization. In CVPR, 2007.

[21] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spatial
matching. In CVPR, 2007.

[22] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Lost in quantization: Improving particular object retrieval in
large scale image databases. In CVPR, 2008.

[23] M. Raginsky and S. Lazebnik. Locality-sensitive binary
codes from shift-invariant kernels. In NIPS, 2009.

[24] J. Sivic and A. Zisserman. Video google: A text retrieval
approach to object matching in videos. In ICCV, 2003.

[25] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large
image databases for recognition. In CVPR, 2008.

[26] Y. Weiss, A. Torralba, and R. Fergus. Spectral
hashing. In NIPS, 2008. http://www.cs.huji.ac.il/
˜yweiss/SpectralHashing/.

[27] X. Zhang, Z. Li, L. Zhang, W.-Y. Ma, and H.-Y. Shum. Effi-
cient indexing for large-scale visual search. In ICCV, 2009.

