Texture

Texture

- Texture is an innate property of all surfaces (clouds, trees, bricks, hair etc...). It refers to visual patterns of homogeneity and does not result from the presence of a single color.
- Texturedness of a surface depends on the scale at which the surface is observed. Textures at a certain scale are not textures at a coarser scale. Differently from color, texture is a property associated with some pixel neighbourhood, not with a single pixel.

 Widely accepted classifications of textures are based on psychology studies, that consider how humans perceive and classify textures

- Textures can be detected and described according to spatial, frequency or perceptual properties. The most used approaches are:
 - Statistics: statistical measures are in relation with aspect properties like contrast, correlation, entropy
 - Stochastic models: stochastic models assume that a texture is the result of a stochastic process that has tunable parameters. Model parameters are therefore the texture descriptors
 - Structure: structure measures assume that texture is a repetition of some atomic texture
- For the purpose of matching any model can be used.
- For the purpose of clustering or categorization perceptual features are most significant:
 - Tamura's features (coarseness, contrast, directionality, line-likeness, regularity and roughness)
 - Busyness, complexity and texture strength
 - Repetitiveness and orientation

Space based models

Co-occurrence matrix

A basic measure for statistical model of textures is the gray level co-occurrence matrix. Given a texture, the image co-occurrence matrix measures the frequency of adjacent pixels. Each element P(i,j) in the matrix indicates the relative frequency at which two pixels of grey level i and j occur:

$$P(i | j) = \frac{\neq \left[(p_1, p_2) \in I \mid (p_1 = i) \land (p_2 = j) \right]}{\neq I}$$

• Statistics of co-occurrence probabilities can be computed and used to characterize properties of a textured region. Among them:

Entropy	$-\sum_{i}\sum_{j}P_{j}(i,j)\log P_{j}(i,j)$	
Contrast	$\sum_i \sum_j (i-j)^2 P \cdot (i,j)$	
Homogeneity	$\sum_{i} \sum_{j} \frac{P_{-}(i,j)}{1+ i-j }$	

1	1	2	2	2
1	1	2	2	2
1	3	3	3	3
3	3	4	4	4
3	3	4	4	4

Contrast
$$2+4+2=8$$

Homogeneity $2+2/2+1/3+4+5+2/2+4=17,3$

Frequency-based models

Wavelet transform

Coefficients of the wavelet transform can be used to represent frequency properties of a texture

pattern. Gabor wavelet decomposition has been used in MPEG7

Perceptual models

- Tamura's features: Tamura's features are based on psychophysical studies of the characterizing elements that are perceived in textures by humans:
 - Contrast
 - Directionality
 - Coarseness
 - Linelikeness
 - Regularity
 - Roughness
- These features can be computed as in the following.

Contrast

measures the way in which gray levels q vary in the image I and to what extent their distribution is biased to black or white.

$$contrast = \frac{\sigma}{(\alpha_4)^n}$$

Directionality

takes into account the edge strenght and the directional angle. They are computed using pixelwise derivatives according to Prewitt's edge detector

edge strenght =
$$0.5(|\Delta_x(x,y)| + |\Delta_y(x,y)|)$$

directionality angle = $\arctan \frac{\Delta x}{\Delta y} + \frac{\pi}{2}$

-1	0	1	
-1	0	1	
-1	0	1	

Δy					
1	1	1			
0	0	0			
-1	-1	-1			

A . .

 Δx , Δy are the pixel differences in the x and y directions

A histogram $H_{dir}(a)$ of quantised direction values is constructed by counting numbers of the edge pixels with the corresponding directional angles and the edge strength greater than a predefined threshold. The histogram is relatively uniform for images without strong orientation and exhibits peaks for highly directional images.

Coarseness

relates to distances of notable spatial variations of grey levels, that is, implicitly, to the size of the primitive elements (*texels*) forming the texture. Measures the scale of a texture. For a fixed window size a texture with a smaller number of texture elements is said more *coarse* than one with a larger number.

A method to evaluate the coarseness of a texture is the following:

1. At each pixel p(x,y) compute six averages for the windows of size k = 0,1,2,...5 around the pixel

2. At each pixel

• compute the absolute differences at each scale E_k (x,y) between pairs of nonoverlapping averages on opposite sides of different directions

$$E_{k,a}(p) = |A_k^1 - A_k^2|$$

 $E_{k,b}(p) = |A_k^3 - A_k^4|$

$$p(x,y) = \left\{ E_{1,a}, E_{1,b}, E_{2,a}, E_{2,b} \dots \right\}$$

- Find the value of k that maximizes $E_k(x,y)$ in either direction.
- Select the scale with the largest variation: $E_k = \max (E_1, E_2, E_3, ...)$. The best pixel window size S_{best} is 2^k
- 3. Compute coarseness by averaging S _{best} over the entire image
- Textures of multiple coarseness have a histogram of the distribution of the S_{best}

Linelikeness

it is defined as the average coincidence of edge directions that co-occur at pixels separated by a distance d along the direction α

Regularity

it is defined as: 1-r ($\sigma_{\text{coarseness}} + \sigma_{\text{contrast}} + \sigma_{\text{directionality}} + \sigma_{\text{linelikeness}}$ Being r a normalising factor and σ the standard deviation of the feature in each subimage of the texture

it is defined as: Coarseness + Contrast

