Part II – Video

- General Concepts
- MPEG1 encoding
- MPEG2 encoding
- MPEG4 encoding
Video General Concepts
Video generalities

• Video is a sequence of frames consecutively transmitted and displayed so to provide a continuum of actions. This is obtained by adjusting the frequency of frames to the properties of the visual human system.

• Video follows different modes of being formed and delivered, namely *analog* and *digital*, and consequently different standards.

• Distinguishing aspects of video are:
 – Color spaces
 – Color encoding
 – Color sampling rate
 – Video bandwidth
Analog and digital video

- **Analog video** is a video signal transferred by analog signal. It contains the luminance (brightness) and chrominance (color) of the image. No more in use in Italy from 2012.

- **Digital video** was initially obtained in the late 1970s by digitizing a standard analog video input to enhance the video signal and add effects to the video.
 - Digital video was introduced commercially in 1986 with the Sony D1 format, which recorded an uncompressed video signal in digital form, hence followed by cheaper systems using compressed data, most notably Sony's Digital Betacam.
 - With computers, digital video content creation tools initially required an analog video source to be digitized to a computer-readable format.
 - Digital video increased rapidly in quality with the introduction of MPEG-1 and MPEG-2 standards (adopted for use in television transmission and DVD media), and then of the DV tape format allowing recording direct to digital data and simplifying the editing process.
Video color spaces

- Video color is displayed in RGB (monitors use RGB). Although RGB color components could be used to represent color information in video however these signals are expensive to record, process and transmit. Video is therefore transmitted and stored using color spaces that distinguish instead brightness and chrominance information.

- Color spaces for analog video are YUV or YIQ.
- Digital video is coded in YCrCb. Colors are distorted passing from RGB to YCrCb color space:
 - Brightness Y is obtained as a combination of R G and B signals.
 - Chrominance information is obtained instead subtracting Y from R and B signals.

YUV e YCrCb are similar but differ in the range of Y component values:
- YUV: from 0 to 255
- YCrCb: from 16 to 235/240
Video encoding

• Brightness and chrominance of images can be carried either combined in one channel as in composite encoding (brightness and chrominance information are mixed together in a single signal) or in separate channels as component encoding.

• Analog video signal is either transferred with composite or component encoding. Quality of component is usually better than composite.
• Digital video uses component color encoding.
Video sampling

- Sampling is a mechanism for data compression in video. It applies to luminance and chroma information in each video frame. Because the human visual system is less sensitive to the position and motion of color than luminance, bandwidth can be optimized by storing more luminance detail than color detail.

- Sampling is expressed with three values: x, y, z
 - x = relative number of luma (Y) samples (sampling reference usually 4)
 - y = number of chroma (CrCb) samples for odd lines (in the first row of x pixels)
 - z = number of chroma (CrCb) samples for even lines (in the second row of x pixels)

Es. 4:2:2 means that every 4 samples of luma, there are 2 chroma samples both in the odd and the even lines. It compresses frames as it drops data. 4:2:0 provides higher compression

- Video compression algorithms are also available like MPEG1, MPEG2...
Video bandwidth and bitrate

- *Bandwidth* is the frequency range of the video signal measured in MHz. The higher the bandwidth is the more information is carried on. Standard TV signal has about 5.5 MHz bandwidth.

- Bandwidth is directly related to video resolution. For digital video we use the term *bitrate* (the number of bits that are conveyed or processed per unit of time, measured in bits per second) as the equivalent of bandwidth:
 - 16 Kbit/s videophone quality (talking heads)
 - 128-364 Kbit/s videoconferencing quality with video compression
 - 1.25 Mbit/s video CD quality with MPEG1 compression
 - 5 Mbit/s DVD quality with MPEG2 compression
 - 8-16 Mbit/s HDTV quality with MPEG4 compression
 - 29.4 Mbit/s HD DVD quality

- A theoretical upper bound for the bitrate in bits/s for a certain spectral bandwidth in Hertz is given by the Nyquist law for low-pass and bandpass cases:

\[
\text{Low-pass:} \quad \text{Bitrate} \leq \text{Nyquist rate} = 2 \cdot \text{bandwidth} \\
\text{Band-pass:} \quad \text{Bitrate} \leq \text{Bandwidth}
\]
Example

• Suppose we have a video with a duration of 1 hour (3600sec), a frame size of 640x480 (WxH) pixels at a color depth of 24bits (8bits x 3 channels) and a frame rate of 25fps.

• This example video has the following properties:
 – pixels per frame = 640 * 480 = 307,200
 – bits per frame = 307,200 * 24 = 7,372,800 = 7.37Mbits
 – bit rate = 7.37 * 25 = 184.25Mbits/sec
 – video size = 184Mbits/sec * 3600sec = 662,400Mbits = 82,800Mbytes = 82.8Gbytes

• When compressing video we aim at reducing the average bits per pixel (bpp):
 – with chroma subsampling we reduce from 24 to 12-16 bpp
 – with JPEG compression we reduce to 1-8 bpp
 – with MPEG we go below 1 bpp
Video formats
Analog video formats: PAL, NTSC, SECAM, S-VIDEO....

- There are three main systems of analog color video broadcast transmission (television):
 - NTSC (North America, Japan)
 - PAL (most Europe, Australia, South Africa)
 - SECAM (France, Eastern Europe and Middle East)

- Standard for analog video cable transmission are:
 - S-Video....

- Standard for analog video registration are:
 - VHS, Betacam...
Interlaced and progressive scan

- A television or recorded video image is basically made up of *scan lines* or *pixel rows* displayed across a screen starting at the top of the screen and moving to bottom. These lines or pixel rows can be displayed in two ways:

 - *By interlaced scan:* is to split the lines into two *fields* in which all of the odd numbered lines or pixel rows are displayed first and then all of the even numbered lines or pixel rows are displayed next, in essence, producing a complete frame.

 - *By progressive scan:* allows the lines to be displayed sequentially. This means that both the odd and even numbered lines are displayed in numerical sequence (720 or 1080 pixels).
Video fields

- Fields have been used historically due to the limited bandwidth of the TV signal (5.5 MHz). Fields are displayed interlaced i.e. first the odd, then the even lines... Frequency is such that two fields are perceived as a single image.
- Data in a video field are distinguished both spatially and temporally. At each time instant one half of the information is lost.

By applying “progressive” scanning rather than "interlacing" alternate lines a smoother, more detailed image can be produced on the screen.
PAL, NTSC, SECAM

- **PAL** (Phase Alternate Line) uses 625 horizontal lines at a field rate of 50 fields per second (or 25 frames per second). For Au, NZ, UK, Europe
 312 lines (290 active) per field, 576 pixels per line (625 lines in total)

- **NTSC** (National Television Standards Committee) is a black-and-white and color compatible 525-line system that scans interlaced television picture frames at ~60 field/sec (nominal 29.97 frames per second). For USA, Canada, Japan
 262 lines (242 active) per field, 483 pixels per line (525 lines in total)

- **SECAM**, (Sequential Couleur avec Memoire or sequential color with memory) uses the same bandwidth as PAL but transmits the colour information sequentially. (France, East Europe...)
• NTSC, PAL, SECAM are known as *composite video* because the brightness and color information are mixed together into a single signal. Color information of composite analog signals is coded in YUV (PAL) and YIQ (NTSC). Chrominance information is given in UV (IQ) and combined in a chroma signal, that is in its turn combined with luma Y.

• Having a composite signal is troublesome when the analog video is digitized in that it is difficult to separate the two signals.

• S-Video, Super-video and S-VHS transmit separate luminance Y and chroma C (Y/C component color). Y/C is commonly used to transmit video via cable between devices. It was developed by the VTR industry to support higher quality for video professionals. It is recommended that S-video is used instead of composite video.
Digital video formats: HDTV

- HDTV (High Definition TeleVision) was finalized in the 90’s with Recomm.709:
 - High resolution: digital video format 1125 x 660 pixels per frame
 - Aspect ratio: 16:9 instead of 4:3 of NTSC and PAL

- With HDTV, the foundation of how frames are displayed still have their roots in the original NTSC and PAL analog video formats:
 - Using NTSC as a foundation for HDTV, a unique high definition frame is displayed every 30th of a second.
 - Using PAL as a foundation for HDTV, a unique high definition frame is displayed every 25th of a second.
• HDTV broadcast systems are identified with three major parameters:
 – Frame size: defined as number of horizontal pixels × number of vertical pixels.
 – Scanning system: both progressive and interlaced pictures are supported. It is identified with the letter p for progressive scanning or i for interlaced
 – Frame rate: identified as number of video frames per second or number of fields per second (for interlaced systems)

• Today HDTV includes different frame sizes:
 – 720p (HD ready) 921,600 pixel (1280×720) with progressive scan, (720 lines per scan)
 – 1080i 2,073,600 pixel (1920x1080) with interlaced scan (540 lines per scan)
 – 1080p 2,073,600 pixel (1920x1080) with progressive scan (1080 lines per scan)
Video sampling

- **4:4:4 (Cb/Cr Same as Luma)**
 Cb and Cr are sampled at the same full rate as the luma.
 MPEG-2 supports 4:4:4 coding. When video is converted from one color space to another, it is often resampled to 4:4:4 first.

- **4:2:2 (1/2 the Luma Samples)**
 Cb and Cr are sampled at half the horizontal resolution of Y.
 Co-sited means that Cb/Cr samples are taken at the same time as Y. It is considered very high quality and used for professional digital video recording, including DV, Digital Betacam and DVCPRO 50. It is an option in MPEG-2.

- **4:1:1 (1/4 the Luma Samples)**
 Cb and Cr are sampled at one quarter the horizontal resolution. Co-sited means that Cb/Cr samples are taken at the same time as the Y. It is used in DV, DVCAM and DVCPRO formats.

- **4:2:0 (1/4 the Luma Samples)**
 The zero in 4:2:0 means that Cb and Cr are sampled at half the vertical resolution of Y. MPEG-1 and MPEG-2 use 4:2:0, but the samples are taken at different intervals. H.261/263 also uses 4:2:0.
Digital video formats: ITU-R BT.601

- Standard ITU-R BT.601 for digital video (also referred as CCIR Recommendation 601 or Rec. 601) defines, independently from the way in which the signal is transmitted, the color space to use, the pixel sampling frequency.

- Distinct modes of color sampling are defined:
 - 4:4:4: A pair of Cr Cb every Y
 - 4:2:2: A pair of Cr Cb every two Y
 - 4:2:0: A pair of Cr Cb every two Y in alternate lines

4:2:2 is used in: D1, Digital Betacam, DVC PRO 50
Digital video formats: MPEG 1

- Bitrate: ~ 1.5 Mbit/s, non interlaced
- Frame size: 352x240 or 352x288
- 4:2:0 sampling

- In MPEG1 lines are dropped so to make data divided by 8 and 16.
 In comparison with CCIR 601 NTSC 4:2:2 sampling: 2:1 in horizontal luminance; 2:1 in time; 2:1 in vertical chrominance.
Digital video formats: MPEG 2

- MPEG2 bitrate 4 Mbit/s. MPEG2 was defined to provide a better resolution than MPEG1 and manage interlaced data. Based on fields instead of frames. Used for DVD and HDTV:
 - Frame size: 720x480
 - 4:2:0 sampling
Digital video formats: DV

- DV standard is used for registration and transmission of digital video over cables. It employs digital video component format to separate luminance and chrominance.
 - Color sampling (typical): 4:1:1 (NTSC, PAL DVC PRO)
 - Digital connectivity follows IEEE 1394 ("Firewire" or "i.Link" Sony).

- Horizontal resolution for luminance is 550 for DV.
- Horizontal resolution for chroma is about 150 lines (about ¼)
• DV25 has 25 Mb/sec data rate. Audio is not compressed with data rate equal to 3.5 Mb/sec.
 1 Hour of DV25 requires approx 13 GB
• DV50 has 50 Mb/sec data rate
• DV100 is used for HDTV.

• The audio, video, and metadata are packaged into 80-byte Digital Interface Format (DIF) blocks. DIF blocks are the basic units of DV streams and can be stored as files in raw form or wrapped in file formats as AVI and QuickTime.
Other digital video formats

- Other formats for (professional) digital video are:
 - D1 (CCIR 601, 8bit, uncompressed)
 - D2 (manages 8 bit color)
 - D3 (used by BBC...)
 - D5 (10bit, uncompressed) / D5 HD
 - D9
 - Digital BetaCam (HDCAM / HDCAM SR for HD format, with 4:2:2 and 4:4:4 RGB)
From analog to digital: fields

- Computers use *frames instead of fields* (all the lines are sent together) and video formats for computer are not interlaced (*noninterlaced or progressive scan*). This can create problems when transferring analog video to computers as in figure.
- Software tools are needed to reconstruct the full frame.
Many cameras both have analog (S-VHS or RCA) and digital (DV) connection. To connect an analog camera film to a computer, you need:

- A DV camera that supports DV pass-through
- An IEEE 1394 cable (FireWire cable)
- An IEEE 1394 port on your computer
- An Audio/Video (A/V) cable
- An S-Video cable

With Windows Vista, import video using Windows Import Video. With Mac, Mac should automatically launch iMovie.
Frame aspect ratio

- Aspect ratio: is the ratio between image width and image height
 - PAL and NTSC aspect ratio: 4:3 (1.33)
 - HDTV Panorama format: 16:9 (1.77)
 - Film USA: 1.85
 - Film Europe: 1.66
Video files formats
A video file format is like an envelop that contains video data. It might support several algorithms for compression. A file in some format can be transcoded into another format: in this case the header is changed and the other data (if possible) are simply copied.

Most common video formats:
- Apple Quicktime (multiplatform) .mov
- Microsoft AVI .avi
- Windows Media Video .wmv
- MPEG (multiplatform) .mpg o .mpeg

Streaming video formats (for live video):
- RealMedia (RealAudio e RealVideo)
- Microsoft Advanced System Format .asf
- Flash Video
MPEG1, MPEG2 file formats

• MPEG is both a video file format and a compression method defined according to ISO standard. It distinguishes: MPEG 1, MPEG 2, MPEG 4

• MPEG1 and MPEG2 have defined the Program stream (PS). MPEG-PS is a container format for multiplexing digital audio, video. It was designed for reliable media, such as disks (like DVDs).

• MPEG2 has defined the transport stream (TS). MPEG-TS is a standard format for transmission and storage of audio, video, and data, and is used in broadcast systems such as DVB and ATSC. MPEG-TS specifies a container format encapsulating packetized elementary streams, with error correction and stream synchronization features for maintaining transmission integrity when the signal is degraded.
MPEG 4 file format

- MPEG4 file format was inspired by the QuickTime format, and may contain different streams and media. Can contain metadata.
 - Audio-only MPEG-4 files generally have extension .m4a.
 - MPEG4 files can be streamed or used for progressive download
 - Supports very low Bit rates: ~ 64 Kb/sec
 - Mobile phones use 3GP, an implementation of MPEG-4 Part 12 (a.k.a MPEG-4/ JPEG2000 ISO Base Media file format), similar to MP4.
Video compression

• Video compression algorithms can be lossy and lossles but typically are lossy, starting with color subsampling

• Algorithms can be symmetric or not symmetric, in terms of (de)compression time/complexity
 – video compression for video conference needs to be symmetric
 – typically video compression algorithms for video distribution are highly asymmetric

• Compression can be spatial or/and temporal
 – remove spatially redundant data (as in JPEG)
 – remove temporally redundant data (the basis for good video compression)
Part II - MPEG 1
MPEG1

• MPEG1 is an ISO standard (ISO/IEC 11172) developed to support VHS quality video at bitrate of ~1.5 Mbps. MPEG1 defines the syntax of encoding a stream video and the method for decoding. However the encoder can be implemented in different ways.

• MPEG1 was developed for progressive video (non interlaced) so it manages only frames (progressive scan): input is given according to SIF Standard Image Format and is made of 1 field

• If we have interlaced video, two fields can be combined into a single frame, and hence encoded with MPEG1; they are separated when decoding. However in this case there are artifacts due to the motion of the objects. MPEG2 is a better choice in this case, since it manages fields natively.
• MPEG (Moving Picture Expert Group) is based on the principle that an encoding of the differences between adjacent still pictures is a fruitful approach to compression. It assumes that:
 – A moving picture is simply a succession of still pictures.
 – The differences between adjacent still pictures are generally small

• Main features of MPEG
 – Transform-domain-based compression i.e. *intra-frame coding* (similar to JPEG with 2D DCT, quantization and run-length encoding)
 – Block-based motion compensation (similar blocks of pixels common to two or more successive frames are replaced by a pointer i.e. a *motion vector* that references one of the blocks). Predictive Encoding is done with reference to an anchor frame according to interpolative techniques, i.e. *Inter-frame coding*.
CPB Constrained Parameters Bitstream

- MPEG1 can provide compressed video at broadcast quality with a bandwidth up to 4 Mbps - 6 Mbps. Similar quality is obtained in MPEG-2 with 4 Mbps bandwidth, thanks to fields. MPEG1 specifications:

<table>
<thead>
<tr>
<th>horizontal resolution</th>
<th>≤ 768 samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>vertical resolution</td>
<td>≤ 576 scan lines</td>
</tr>
<tr>
<td>picture area</td>
<td>≤ 396 macroblocks</td>
</tr>
<tr>
<td>pel rate</td>
<td>≤ 396 × 25 macroblocks per second</td>
</tr>
<tr>
<td>picture rate</td>
<td>≤ 30 frames per second</td>
</tr>
<tr>
<td>bit rate</td>
<td>≤ 1.856 Mbps</td>
</tr>
</tbody>
</table>

One macroblock is composed by 16x16 pixel (396 macroblocks = 101.376 pixel)

- However usual MPEG1 video resolution is: 352x240 or 320x240 at a bitrate of ~1.5 Mbps.
- This modality is also referred to as *Constrained Parameters Bitstream* or CPB (1 bit of the stream indicates if CPB is used) and is the minimum video specification for a decoder to be MPEG compliant.
6 layers

- Sequence:
 - Unit for random access
- GOP:
 - Unit for video random access. The smallest unit of independent coding
- Picture (frame):
 - Primary coding unit
- Slice:
 - Syncronizzazione unit
- Macroblock:
 - Motion compensation unit
- Block:
 - Unit for DCT processing
GOP

- A video sequence is decomposed in Groups of Pictures (GOPs). Frames have different typology: I (intra-coded), P (Predictive), B (Bi-directional), D (DC) frame.
 - Frame types: I, P, B occur in repetitive patterns within a GOP; there are predictive relationships between I, P and B frames. D frames contain DC coefficients only and are used for preview exclusively.
 - Distance between I, P e B frames can be defined when coding.
 - The smaller GOP is the better is fidelity to motion and the smaller compression (due to I frames)

- A GOP is *closed* if can be decoded without information from frames of the preceding GOP (ends with I,P or B with past prediction). Max GOP length are 14-17

Typically m=3, n=9:
Frames

- I-frame: contains the full image
- P-frame is based on preceding I or P-frame
- B-frame uses past or future I or P frames
I-frames

- *Intra – coded frames* are so called because they are decoded independently from any other frames. They are identical to JPEG frames.

- Intra-Coded frame are coded with no reference to other frames (*anchor*). Minimize propagation of errors and permit random access. I-frame compression is very fast but produces large files (three times larger than normally encoded MPEG video).
P-frames

- *Predictive-Coded frame* are coded with forward motion prediction from preceding I or P frame.
- Improve compression by exploiting the temporal redundancy. They store the difference in image from the frame immediately preceding it. The difference is calculated using *motion vectors*.
B-frames

• *Bi-directional-Coded frame* are coded with bidirectional (past and future) motion compensation using I and P frame (no B frame).

• Motion is inferred by averaging past and future predictions. Harder to encode introduces delay in coding. The player must first decode the next I or P frame sequentially after the B frame before it can be decoded and displayed. This makes B frames computationally complex and requires large data buffers.
• Relative number of (I), (P), and (B) pictures can be arbitrary. It depends on the nature of the application. It may depend on fast access and compression ratio requirements:
 • relatively smaller amount of compression is expected to be achieved at (I) pictures compared to (P) and (B) pictures.
 • the (B) pictures are expected to provide relatively the largest amount of compression under favorable predict
Frames and macroblocks

• Each video frame contains *macroblocks* that is the smallest independent unit of video considered by MPEG. Macroblocks are set of (16x16 pixel) are necessary for purposes of the calculation of motion vectors and error blocks for motion compensation.

• I frames contain Intra-coded (I) macroblocks with direct encoding from the image samples

• P and B frames contain encoding of residual error after prediction:
 – P frames contain Intra-coded (I) macroblocks or forward-predicted (P) macroblocks
 – B frames contain Intra-coded (I), forward or/and backward-predicted (P or B) macroblocks

• D frames are similar to I frames but are only DC encoded (no AC coefficients). They are low quality representations used as thumbnails in video summaries

B Frame with macroblocks
• Main types of macroblocks:
 – I encoded independently of other macroblocks (by 2D Discrete Cosine Transform as in JPEG blocks)
 – P encode not the region but the motion vector and error block of the previous frame (forward predicted macroblock)
 – B same as above except that the motion vector and error block are encoded from the previous (forward predicted macroblock) or next frame (backward predicted macroblock)
Macroblock components

- Each macroblock is encoded separately.

- The component of a macroblock for motion compensation is luminance Y component. Cr and Cb are chrominance components.
Slices

- Macroblocks are organized into slices
Encoding macroblocks

The block diagram of the MPEG encoder
I-macroblock coding

I-frame

Color Space converter

DCT

Quantization

Entropy encoder

Compressed data

100011100101.....

P/B frame

Color Space converter

RGB -> YCrCb

Reference frame

Residual error

DCT

Motion estimator

Entropy encoder

Compressed data

00111100101.....

martedì 23 aprile 2013
I-macroblock coding
I-macroblock coding in more detail

- Intra blocks are processed through DCT 8x8 (lossless)
- DCT coefficient quantization (lossy)
- zig-zag scanning
- DC (DPCM) and AC (RLE) coding
- Entropy coding (Huffman)
Spatially-Adaptive Quantization

- Spatially-adaptive quantization is made possible by the scale factor quantizer_scale. This parameter is allowed to vary from one macroblock to another within a picture to adaptively adjust the quantization on a macroblock basis.
- The default quantization matrix can be changed for each sequence.

![MPEG1 default quantization matrix](image)

- zig-zag scanning is used to create a 1D stream
• AC coefficients are encoded losslessly according to run length encoding and Huffman coding (VLC: variable length coding). Run length and level tables are formed on a statistical basis. Different tables for Y and CbCr.

• DC coefficients encode differences between blocks of the macroblock.
P/B macroblock coding
Block motion compensation

- P and B macroblock coding is based on block motion compensation. This is the process of
Example: the match of the shaded macroblock of the current frame in the previous frame is in position (24,4). Then the forward predicted motion vector for the current frame is (8, -4).

Block motion compensation
• Predictive video encoding aims to reduce the data transmitted by detecting the motion of objects. This will typically result in 50% - 80% savings in bits.

• Instead of sending quantized DCT coefficients of macroblock X:
 – Finds the best-matching block in the reference frame, by searching an area in the reference frame and compare. Each block can be assigned a match from either a backward (B) or forward (F) reference
 – Sends quantized DCT coefficients of X-F (prediction error). If prediction is good, error will be near zero and will need few bits.
 – Encodes and sends the motion vector MV_F. This will be differentially coded with respect to its neighboring vector, and will code efficiently.
Motion vectors

- A motion vector is specified with two components (horizontal and vertical offset). Absence of motion vector is indicated with (0,0).
 - Offset is calculated starting from the top left pixel:
 - Positive values indicate top and right.
 - Negative values indicate bottom and left.
 - Set to 0,0 at the start of the frame or slice or I-type macroblock.

- P Macroblock have always a predictive base selected according to the motion vector. If motion vector is (0,0) the predictive base is the same macroblock in the reference frame.

Motion vectors for P and B macroblocks
Error blocks

• The error block is obtained as the difference between two motion compensated blocks in adjacent frames. It is encoded as a normal block.

• For a P macroblock:

![Diagram of error blocks process]

- **Target image** (new image)
- **Reference image** (previous image)
- **Match window**
- **Difference**
- **Huffman Coder**
- **Output** (0100110)
• For a B macroblock:
• For P/B error blocks a different quantization matrix is used wrt I-blocks: “16” value is set in all the matrix positions as error blocks have usually high frequency information.

• Zig-zag scanning, RLE encoding and Huffman encoding follow. DC component and AC component are managed in the same way (there is no differential encoding as in I blocks).

• When a new P/B block is found DC component are reset. Motion vectors are reset when a new I macroblock is found.
Motion estimation by block matching

- Motion estimation is performed by applying block matching algorithms. Different block matching techniques exist: often they limit the search area for matching.
Full search

- All the positions within the window are checked with a pre-defined criterion for block matching (es. SAE/SAD......)
 - Computationally expensive, only suited for hardware implementation
Mean Squared Error (MSE)

- Mean Squared Error (MSE) (for N x N block):

\[MSE = \frac{1}{N^2} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} (C_{ij} - R_{ij})^2 \]

where \(C_{ij} \) is the sample in the current block and \(R_{ij} \) the sample in the reference block.

- Example:

\[
\begin{align*}
\{(1-4)^2 + (3-2)^2 + (2-3)^2 + (6-4)^2 + (4-2)^2 \} / 9 = 2.44
\end{align*}
\]

MSE is:

- block centered in MSE value:

<table>
<thead>
<tr>
<th>Position (x, y)</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-1, -1)</td>
<td>4.67</td>
</tr>
<tr>
<td>(0, -1)</td>
<td>2.89</td>
</tr>
<tr>
<td>(1, -1)</td>
<td>2.78</td>
</tr>
<tr>
<td>(0, 0)</td>
<td>3.22</td>
</tr>
<tr>
<td>(1, 0)</td>
<td>2.44</td>
</tr>
<tr>
<td>(-1, 1)</td>
<td>3.33</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>0.22</td>
</tr>
<tr>
<td>(1, 1)</td>
<td>2.56</td>
</tr>
</tbody>
</table>

minimum value
Mean Absolute Error/Difference (MAE/MAD)

- Mean absolute error/difference (MAE/MAD)
 - Easier wrt MSE:
 \[
 \text{MAE} = \frac{1}{N^2} \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} |C_{ij} - R_{ij}|
 \]

- Matching pel count (MPC)
 - similar pixels are counted in two blocks
Sum of Squared Differences (SSD), Sum of Absolute Errors (SAE)

- **Sum of Squared Differences (SSD):**

\[
SSD = \sum_{i}(x_i - y_i)^2
\]

\[
\begin{align*}
798 & \quad \text{versus} \quad 879 \\
546 & \quad \text{versus} \quad 754 \\
982 & \quad \text{versus} \quad 754
\end{align*}
\]

\[
\begin{align*}
SSD &= (7-8)^2 + (9-7)^2 + (8-9)^2 \\
&= 1 + 4 + 1 + 4 + 1 + 4 + 4 + 9 + 4 \\
&= 32
\end{align*}
\]

\[
\begin{align*}
798 & \quad \text{versus} \quad 8710 \\
546 & \quad \text{versus} \quad 654 \\
982 & \quad \text{versus} \quad 1071
\end{align*}
\]

\[
\text{min SSD} = 18 \quad \Rightarrow \quad \text{take match windows:}
\]

- **Sensitive to outliers**

- **Sum of absolute errors (SAE) or sum of absolute differences (SAD)**

\[
\text{SAE} = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} |C_{ij} - R_{ij}|
\]

- Less sensitive wrt outliers wrt SSD
SSD vs. SAD

SSD:

7 9 8 5 4 6 9 8 2
versus 6 5 4 10 7 1

7 9 8 5 4 6 9 8 2
versus 6 5 4 2 0 2

SSD = 18

SSD:

7 9 8 5 4 6 9 8 2
versus 6 5 4 10 7 2 0 2

SSD = 40,017

Outlier

SAD:

7 9 8 5 4 6 9 8 2
versus 6 5 4 10 7 2 0 2

SAD = 211
Fast search methods

• Several methods that employ a reduced number of comparisons wrt full search
 – full search detects the global minimum of SAE
 – fast search may fall into local minima; several solutions:
 • Three step search (TSS)
 • Logarithmic Search
 • One-at-a-Time Search
 • Nearest Neighbours Search
Three step search (TSS)

1. Start search from (0, 0).
2. Set $S = 2^{N-1}$ (step size).
3. Look within 8 locations at +/-S pixel distance around (0, 0).
4. Select minimum SAE location between the 9 that have been analyzed.
5. This location is the center for the new search.
7. Repeat from 3 to 5 until $S = 1$.

Three-step search (TSS)
Logarithmic Search

1. Start search from (0, 0).
2. Search in the 4 adjacent positions in the horizontal and vertical directions, at S pixel distance from (0,0) (S search step). The 5 positions model a ‘+’.
3. Set the new origin at the best match. If best match is in the central position of ‘+’ then $S = S/2$, otherwise S is not changed.
4. If $S = 1$ go to 5, otherwise go to 2.
5. Look for the 8 positions around the best match. Final result is the best match between the 8 positions and the central position.
One-at-a-Time Search

1. Start from (0, 0).
2. Search at the origin and in the nearest positions horizontally.
3. If origin has the lowest SAD then go to 5, otherwise.
4. Set origin at the lowest SAD horizontally and search in the nearest position not yet checked and go to 3.
5. Repeat from 2 to 4 vertically.

One-at-a-time search
Nearest Neighbours Search

- Used in H.263 e MPEG-4: motion vectors are predicted by the near vectors already coded. Assumes that near macroblocks have similar motion vectors.

1. Start from (0, 0).
2. Set origin in the position of the predicted vector and start from there.
3. Search in the nearest ‘+’.
4. If the origin is the best then take this position as the correct one. Otherwise take the best match and proceed.
5. Stop when the best match is at the center of ‘+’ or at the border of the window.
Block matching algorithms comparison

- Logarithmic search, cross-search e one-at-a-time have low computational complexity and low matching performance as well.

- Nearest-neighbours search, has good performance, similar to full search, and moderate computational complexity
Sub pixel motion estimation

• In some cases matching is improved if search is performed in a (artificially generated) region that is obtained by interpolating the pixels of the original region. In this case accuracy is sub-pixel.

• Searching is performed as follows:
 1. Pixels are interpolated in the image search area so that a region is created with higher resolution than the original.
 2. Best match search is performed using both pixel and subpixel locations in the interpolated region
 3. Samples of the best matched region (full- or sub-pixel) are subtracted from the samples of the current block to obtain the error block.
Half pixel interpolation
• Motion compensation with half-pixel accuracy is supported in H.263, MPEG-1 and MPEG-2 standard.

• Half-pixel interpolation is used in MPEG-4. Higher interpolation (>1/4 pixel) is proposed for H.26L/H.264 standard.

• As sub-pixel interpolation grows a better block matching performance is obtained at the expense of higher computational cost. Usually best matching is searched at integer position (full pixel) and hence refined at sub-pixel in the neighbourhood.
MPEG encoding – decoding

• In Mpeg pictures are coded and decoded in a different order than they are displayed. This is due to bidirectional prediction for B pictures. The encoder needs to reorder pictures because B-frames always arrive late.

• Example: (a 12 picture long GOP)

 − Source order and encoder input order:

 \[I(1) \ B(2) \ B(3) \ P(4) \ B(5) \ B(6) \ P(7) \ B(8) \ B(9) \ P(10) \ B(11) \ B(12) \ I(13) \]

 − Encoding order and order in the coded bitstream:

 \[I(1) \ P(4) \ B(2) \ B(3) \ P(7) \ B(5) \ B(6) \ P(10) \ B(8) \ B(9) \ I(13) \ B(11) \ B(12) \]

 − Decoder output order and display order:

 \[I(1) \ B(2) \ B(3) \ P(4) \ B(5) \ B(6) \ P(7) \ B(8) \ B(9) \ P(10) \ B(11) \ B(12) \ I(13) \]
The MPEG encoder

- Preprocessing
- Frame Memory
- Motion Estimation
- Motion Compensation
- DCT
- Quantizer (Q)
- IDCT
- Frame Memory
- Regulator
- VLC Encoder
- Buffer
- Output
- Predictive frame
- Input
- Motion vectors

P macroblock
B macroblock

In the diagram, the process starts with pre-processing, followed by frame memory. The frame is then subjected to motion estimation and compensation, leading to the DCT process. The output of the DCT is quantized and then encoded using VLC (Variable Length Coding). The encoded data is stored in the buffer and can be output as needed. The diagram also illustrates the concept of motion vectors and how they are used in the encoding process.
• Frame N to be encoded

• Frame at $t = N-1$ used to predict content of frame N
- Prediction error without motion compensation.

- Prediction error with motion compensation
Macroblock coding

- Macroblock information is encoded into a string:

```
<table>
<thead>
<tr>
<th>Luminance Blocks</th>
<th>U Block</th>
<th>V Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Pattern (3-9 bit)</td>
<td>Motion Vector (variable)</td>
<td>Q Scale (5 bit)</td>
</tr>
<tr>
<td>Macroblock Type (1-6 bit)</td>
<td>Macroblock Address Increment (variable)</td>
<td></td>
</tr>
</tbody>
</table>
```
Address Increment

- Every macroblock has its own address:
 - \(MB_ADDR = MB_ROW \times MB_WIDTH + MB_COL \)
 - \(MB_WIDTH = \) luminance width / 16
 - \(MB_ROW = \) # row top left pixel / 16
 - \(MB_COL = \) # column top left row / 16

- Decoder maintains the address of the preceding macroblock PREV_MBADDR.
 - Set to \(-1\) at the start of each frame
 - Set to \((SLICE_ROW \times MB_WIDTH-1)\) at the start of each slice.

- The increment address is summed up to PREV_MBADDR to obtain the address of the current macroblock
• Address Increment is encoded with Huffman, based on a predefined table (the same used for I frame):
 – 33 codes (1-33).
 • 1 the smallest (1-bit)
 • 33 the largest (11-bit)
 – 1 ESCAPE code
 • ESCAPE: add 33 to the following increment address (several ESCAPE can be used)
Macroblock Type

- Macroblock Type indicated whether macroblock is Intra or not if Q Scale, Motion Vector, and Block Pattern exist. It is coded with Huffman.

- 8 possible macroblock type (1 - 6 bit).
Quantization Scale

- Quantization scale has value 1 - 31 that are interpreted as 2 - 62 (only even values). 5 bit.
- Decoder uses the current Q-scale unless specified.
Motion Vector

- Motion Vector is used to define a predictive base for the current macroblock from the reference image.

- Prediction is used to determine motion vectors. Difference between the predicted value and the actual value is encoded with Huffman
• Block Pattern indicates which blocks have high error wrt the reference block so to be compensated. Block compensation is necessary to have a predictive base that is as much similar as possible to the current macroblock.

• If block pattern is not present then matching between the current block and its corresponding block is sufficiently good and there is non need for coding
Part II - MPEG 2
Progress of Standards (1990-2010)

- **MPEG-1:** “Coding of moving pictures and associated audio for digital storage media”
 - VHS Quality at 1.5 MBits/s
 - Basis of Video-CD
 - MP3 (MPEG-1 Layer 3)

- **MPEG-2:** “Generic coding of Moving Pictures and Associated Audio”
 - Broadcasting and storage
 - Bitrates: 4-9 MBits/s
 - Satellite TV, DVD

- **MPEG-3?**
 - Aimed to do High Definition TV (HDTV)
 - Folded into MPEG-2

- **MPEG-4:** “Coding of audio-visual objects”
 - Started as very low-bitrate project
 - Turned out to be much more:
 - Coding of media objects
 - 64kbps to 240Mbps (Part 10/H.264)
 - Synthetic/Semi-synthetic objects
 - Intellectual Property Management
What MPEG defines

- MPEG defines the protocol of the bitstream between the encoder and the decoder
- The decoder is defined by implication. The encoder is left to the designer
MPEG2: why another standard

• MPEG-1 was suitable for storage media. Was aimed at VHS quality at 1.5 Mbps

• MPEG2 was designed as a superset of MPEG1 with support for broadcast video at 4-9 Mbps, HDTV up to 60 Mbps, CATV, S etc. Broadcast quality is obtained using fields instead of frames.
• MPEG2 is suitable for storage Media like DVD, set-top boxes

• MPEG2 supports higher bit rates and a larger number of applications:
 – Interlaced and progressive video (PAL and NTSC)
 – Different color sampling modes: 4:2:0, 4:2:2, 4:4:4
 – Predictive and interpolative coding (as in MPEG1)
 – Flexible quantization schemes (can be changed at picture level)
 – Scalable bit-streams
 – Profiles and levels
Color subsampling

- MPEG2 supports different color subsamplings:
 - 4:2:0 (as MPEG1)
 In MPEG1 chrominance samples are horizontally and vertically positioned in the center of a group of 4 luminance samples.
 In MPEG-2 chrominance samples co-located on luminance samples
 - 4:2:2, 4:4:4
 Allow professional quality
 Use different macroblocks
 Different quantization matrices for Y and CrCb can be used with 4:2:2 and 4:4:4 sampling
I, P, B frame encoding

• Same as MPEG1. I, P and B frames (pictures) are encoded on a macroblock basis. DCT coding is used.

• P-pictures have interframe predictive coding
 – Macroblocks may be coded with forward prediction from references made from previous I and P pictures or may be intra coded
 – For each macroblock the motion estimator produces the best matching macroblock
 – The prediction error is encoded using a block-based DCT

• B-pictures have interframe interpolative coding
 – The motion vector estimation is performed twice (forward and backward).
 – Macroblocks may be coded with:
 • forward (backward) prediction from past (future) I or P references;
 • interpolated prediction from past and future I or P references;
 • or may be intra coded (no prediction).
 – Backward prediction is done by storing pictures until the desired anchor picture is available before encoding the "current" (stored) frames.
 – The encoder forms a prediction error macroblock from either or their average
 – The prediction error is encoded using a block-based DCT

• No D pictures
The MPEG2 stream

Sequence (Display Order)

GOP (Display Order, N=12, M=3)

Picture

Slice

Y = Luma
Cr = Red-Y
Cb = Blue-Y

MacroBlock

Y Blocks

Cr Block

Cb Block

Y

Cr

Cb

16x16

8x8

8x8

martedì 23 aprile 2013
Discrete Cosine Transform and quantization scale

\[F(u,v) = \frac{C(u)C(v)}{4} \left[\sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y) \cos \left(\frac{(2x+1)u\pi}{16} \right) \cos \left(\frac{(2y+1)v\pi}{16} \right) \right], \quad u,v = 0,\ldots,7 \]

\[f(x,y) = \frac{1}{4} \left[\sum_{u=0}^{7} \sum_{v=0}^{7} C(u)C(v)F(u,v) \cos \left(\frac{(2x+1)u\pi}{16} \right) \cos \left(\frac{(2y+1)v\pi}{16} \right) \right], \quad x,y = 0,\ldots,7 \]
Multiple scanning options

- zig-zag scanning is accompanied with a different scanning that is better suited for interlaced frames
• MPEG-2 is widely used as the format of digital television signals that are broadcast by terrestrial, cable, and direct broadcast satellite TV systems. It also specifies the format of movies and other programs that are distributed on DVD and similar discs.

• MPEG-2 Video is similar to MPEG-1, but also provides support for interlaced video format used by analog broadcast TV systems. MPEG-2 video is not optimized for low bit-rates (less than 1 Mbit/s), but outperforms MPEG-1 at 3 Mbit/s and above
Frame vs field-based coding

- MPEG2 supports both progressive and interlaced video.
 - Progressive frames are encoded as *frame pictures* with frame-based DCT coded macroblocks only and the 8x8 four blocks that compose the macroblock come from the same frame of video.
 - Interlaced frames may be coded as either a *frame picture* or as *two separately coded field pictures*. The encoder may decide on a frame by frame basis to produce a frame picture or two field pictures. Field-based DCT coding can be applied only to interlaced sequences.
 - In the case of a frame picture is produced, *frame or field-based DCT macroblock coding* can be used (on a macroblock-by-macroblock basis)
 - In the case of field pictures are produced, *field-based DCT macroblock coding is used* and all the blocks come from one field

Frame picture vs field pictures
Interlaced frame production: frame and field-based prediction

- For interlaced sequences with frame production it is possible to use either *frame-based* or *field-based* prediction:
 - *Frame prediction for frame-pictures*: Identical to MPEG-1 prediction methods. Frame-based prediction uses a single motion vector for each 16x16 macroblock.
 - *Field prediction for frame-pictures*: the top-field and bottom-field of a frame-picture are treated separately. Each 16 × 16 macroblock from the target frame-picture is split into two 16×8 parts, each coming from one field. Two motion vectors are used for each macroblock and are taken from either of the two most recently decoded anchor pictures. The first motion vector is used for the upper 16x8 region, the second for the lower 16x8 region. Each field is predicted separately with its motion vectors.

- Frame-based DCT is suited for macroblocks with little motion and high spatial activity. Field-based DCT is suited for high motion macroblocks.
Interlaced field production: field-based prediction

• For interlaced sequences, when field-production is selected at the encoder, field-based prediction must be used based on a macroblock of size 16 × 16 from field-pictures.

• Note that the size of 16×16 in the Field picture covers a size of 16×32 in the Frame picture. It is too big size to assume that behavior inside the block is homogeneous. Therefore, 16×8 size prediction was introduced in Field picture. Two Motion Vectors are used for each macroblock and come from the two most recent fields. The first Motion Vector is applied to the 16×8 block in the field 1 and the second Motion Vector is applied to the 16×8 block in field 2.

• The idea of Dual Prime adaptive motion prediction is to send minimal differential Motion Vector information for adjacent field Motion Vector data
Field prediction for P and B pictures
Interlaced frame/field production: dual-prime prediction

• Dual-Prime Prediction is a prediction mode in which two forward field-based predictions are averaged. The predicted block size is 16x16 luminance samples. Only one motion vector is encoded with a small differential motion correction.

• It is only used in interlaced P-pictures when there have been no B-pictures between the P-picture and its reference frame. This is the only mode that can be used for either frame-pictures or field-pictures.

• It avoids the frame re-ordering needed for bi-directional prediction but achieves similar coding efficiency.
• For field pictures, two motion vectors are derived from this data and are used to form two predictions from two reference fields. These two predictions are combined to form the final prediction.
• For frame pictures, this process is repeated for each of the two fields. Each field is predicted separately, giving rise to a total of four field predictions which are combined to form the final two predictions.

dual-prime prediction for field prediction for frame pictures
Half pixel interpolation for motion estimation

- MPEG2 uses half-pixel interpolation for motion vector estimation.

- Searching is performed as follows:
 - Pixels are interpolated in the image search area so that a region is created with higher resolution than the original.
 - Best match search is performed using both pixel and subpixel locations in the interpolated region.
 - Samples of the best matched region are subtracted from the samples of the current block to obtain the error block.
MPEG2 Enhancements

Frame and
Field-based DCT

Frame Memory

Preprocessing

Frame Memory

Motion Compensation

Motion Estimation

DCT

Quantizer

(IDCT)

Regulator

VLC Encoder

Buffer

Output

Alternate zigzag and VLC coding

Linear and Non-linear Q

Predictive frame

Inter and Intra Frame

Frame and
Field-based Prediction

Frame and
Field-based DCT

Frame and
Field-based Prediction

Martedì 23 aprile 2013
Scalability

• Scalability is the ability of decoding only part of the stream to obtain a video of the resolution desired. It is possible to have:
 – SNR scalability,
 – Spatial scalability
 – Temporal scalability

• Scalability mode permits interoperability between different systems (f.e. a HDTV stream is also visible with SDTV). A system that does not reconstruct video at higher resolution (spatial or temporal) can simply ignore data refinement and take the base version.
• SNR scalability (2 layers)
 – Suited for applications that require different degrees of quality
 – All layers have the same spatial resolution. The base layer provides the base quality, the enhancement layer provides quality improvements (with more precise data for DCT)
 – Permits “graceful degradation”
• Spatial scalability (2 layer)
 – Base layer at lower spatial resolution (MPEG1 can be used to encode the base layer)
 – Enhancement layer at higher resolution (obtained by spatial interpolation)
 – Upscaling is used to predict coding of the high resolution version. Prediction error is encoded in the enhancement layer bitstream

![Spatial Scalability Diagram]

• Temporal scalability
 – Similar to spatial scalability, but referred to time
Profiles and Levels

- In MPEG2 profiles and levels (profile@level) define the minimum capability required for the decoder:
 - Profiles: specify syntax and algorithms (define the compression rate and decoding complexity)
 - Levels: define parameters such as resolution, bitrate, etc.

- Simple Profile (4:2:0)
 - For videoconferencing
 - Corresponds to MPEG1 Main profile without B frame

- Main profile (4:2:0)
 - For videoprofessional SDTV (bitrate at 50 Mbps)
 - The most important; of general applicability

- Multiview profile
 - For multiple cameras filming the same scene.

- 4:2:2 profile
 - For video professional SDTV and HDTV (bitrate at 50 Mbps)

- SNR and Spatial Scalable profile (4:2:0)
 - Add SNR / spatial scalability SNR with different quality levels

- High 4:2:0 profile
 - Suitable for HDTV

- Low Level
 - MPEG1 CPB (Constrained Parameters Bitstream): max. 352x288 @ 30 fps

- Main Level
 - MPEG2 CPB (720x576 @ 30 fps)

- High-1440 and High Levels
 - Typical of HDTV
Profiles@levels

<table>
<thead>
<tr>
<th>Level</th>
<th>Simple 4:2:0</th>
<th>Main 4:2:0</th>
<th>SNR Scalable 4:2:0</th>
<th>Spatially Scalable 4:2:0</th>
<th>High 4:2:0 or 4:2:2</th>
</tr>
</thead>
<tbody>
<tr>
<td>High 1920x1152 (60 frames/s)</td>
<td>62.7 Ms/s 80 Mbit/s</td>
<td>47 Ms/s 60 Mbit/s</td>
<td>47 Ms/s 60 Mbit/s for 3 layers</td>
<td>100 Mbit/s for 3 layers</td>
<td></td>
</tr>
<tr>
<td>High-1440 1440x1152 (60 frames/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main 720x576 (30 frames/s)</td>
<td>10.4 Ms/s 15 Mbit/s</td>
<td>10.4 Ms/s 15 Mbit/s for 2 layers</td>
<td>10.4 Ms/s 15 Mbit/s for 3 layers</td>
<td>20 Mbit/s for 3 layers</td>
<td></td>
</tr>
<tr>
<td>Low 352x288 (30 frames/s)</td>
<td>3.04 Ms/s 4 Mbit/s</td>
<td>3.04 Ms/s 4 Mbit/s for 2 layers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MPEG2: Structure of the bit-stream

- **Sequence layer**: picture dimensions, pixel aspect ratio, picture rate, minimum buffer size, DCT quantization matrices
- **GOP layer**: will have one I picture, start with I or B picture, end with I or P picture, has closed GOP flag, timing info, user data
- **Picture layer**: temporal ref number, picture type, synchronization info, resolution, range of motion vectors
- **Slices**: position of slice in picture, quantization scale factor
- **Macroblock**: position, H and V motion vectors, which blocks are coded and transmitted
MPEG2 criticals

• There are several conditions that are critical for MPEG2 compression:
 – Zooming
 – Rotations determine *mosquito noise*
 – Non-rigid motion

 – Dissolves and fades determines *blockiness*

 – Shadows
 – Smokes
 – Scene cuts
 – Panning across crows determine *wavy noise*
 – Abrupt brightness changes
 –

martedì 23 aprile 2013
Part III - MPEG 4
MPEG4

- MPEG4 has been designed for.
 - Real-time communication (videoconferencing)
 - Digital television
 - Interactive graphic applications (DVD, ITV);
 - World Wide Web applications

- Provides effective solutions for: authors, service providers, final users. To this end it:
 - adopts a object-based coding
 - allows higher compression ratio, but also supports digital video composition, manipulation, indexing, and retrieval
 - covers a wide range of bitrates between 5 kbps to 10 Mbps
 - Supports Very Low Bit-rate Video: algorithms and tools for applications at 5 e 64 kbits/s: sequences at low spatial resolution and low frame rate (up to 15 fps).
Distinguishing elements

- MPEG4 distinguishes:
 - Video-object Sequence (VS): delivers the complete MPEG-4 visual scene, which may contain 2D natural or 3D synthetic objects
 - Video Object (VO): an object in the scene, which can be of arbitrary shape corresponding to an object or background of the scene (must be tracked)
 - Video Object Layer (VOL): facilitates a way to support (multi-layered) scalable coding. A Video Object can have multiple VOLs under scalable coding or have a single VOL under non-scalable coding
 - Video Object Plane (VOP): a snapshot of a Video Object at a particular moment
 - Group of Video Object Planes (GOV): groups Video Object Planes together (optional level)
Main features on client and server sides

- MPEG4 includes technologies to support:
 - **server side**
 - Encoding based on and audio-visual objects. When a VOP is the rectangular frame it corresponds to MPEG2
 - Audio-visual objects manipulation
 - Hierarchical scene composition (audio-visual objects local coordinates, temporal synchronization..... described as an acyclic graph)
 - Multiplexing and synchronization of audio-visual objects and audio-visual objects transfer with appropriate QoS
 - **client side**
 - Audio-visual objects manipulation: display primitives to represent natural and artificial objects (2D and 3D, color, contrast change, talking 3D heads, head moving, 3D body animation..), syntethize speech from text, add objects, drop objects......
 - User interactivity (viewpoint change, object clicking...)
MPEG4 operations

Scene Segmentation

Encode

VOP 1

VOP 2

VOP 3

Decode

Content-based manipulation

martedì 23 aprile 2013
Scene composition (server side)

• Scene Composition permits to:
 – Drop, change the position of audio-visual objects in a scene
 – Cluster audio-visual objects and form composite audio-visual objects that can be manipulated as a single audio-visual object
 – Associate parameters (motion, appearance) to audio-visual object and modify their attributes in a personalized way
 – Change the viewpoint of a scene
MPEG4 encoding

• MPEG4 provides algorithms and tools to:
 – Compress images and video
 – Compress textures to be mapped onto 2D and 3D meshes
 – Compress geometric streams that change through time for 2D mesh animation
 – Access to any visual object
 – Manipulation of images and video sequences
 – Object-based coding of image and video content
 – Scalability based on content of textures of images and video
 – Spatial, temporal and quality scalability
Compression

- MPEG4 compression is the same as MPEG1 and MPEG2 compression. Rectangular frames at different:
 - Bitrate
 - Frame rate
 - Input format
 - Quality Scalability
 - Spatial Scalability
 - Temporal Scalability

- Specifically it supports:
 - Progressive and interlaced video
 - SQCIF/QCIF/CIF/4*CIF/CCIR 601, up to 2048*2048
 - YCbCr/Alpha
 - 4:2:0 color quantization (4:2:2 e 4:4:4 for studio quality)
 - Continuous variable frame rate
Object-based coding: 2D natural audiovisual objects

- In MPEG4 video is regarded as a composition of 2D objects (they can be placed in a 3D space).
- In object-oriented coding 2D objects can be of any arbitrary shape and texture. Both shape and texture must be encoded.
- If shape is not considered, MPEG4 encoder is based on motion compensation as in MPEG1 and MPEG2, using macroblocks.
• **Shape coding**
 - Shape coding is still based on blocks. The object bounding box is used for shape encoding. It is eventually divided in 16x16 macroblocks. Shape can be encoded as 8 bit alpha channel or bitmask
 - Macroblocks inside object must be treated differently than boundary blocks (padding, different DCT etc)
 - Algorithms to detect the object shape are not defined (only the bitstream is defined); there can be used several algorithms (either automatic or assisted)

• **Texture coding**
 - Texture coding based on motion compensation and 8x8 DCT standard or shape adaptive
Comparison between block-based and object-based coding
Object-based coding: synthetic 3D Audio Visual Objects

- MPEG4 supports coding of 3D synthetic audiovisual objects:
 - Animated faces
 - Animated bodies
 - 2D meshes with animation

- It has allows special compression algorithms for 3D mesh compression and 2D texture mesh compression
Global motion compensation

- Background objects must be separated from foreground objects: to separate the foreground object from the background, sprite panorama images are considered i.e. a still image that describes the static background over a sequence of video frames.

Sprite panorama is encoded and sent to the decoder only once at the beginning of the video sequence.

When the decoder receives foreground objects (separately coded) and parameters of the camera movements, it can reconstruct the scene.
Server side

Global motion compensation for background images

Compression can be adapted for each object

DCT coding

Client side
MPEG4 Improvements

• Improvements in coding are obtained with appropriate object based motion prediction.
 – Compression can be adapted for each object
 – Motion compensation with ¼ di pixel interpolation for objects
 – Global motion compensation for background images
 – B-VOP motion prediction
 – DCT coding (as MPEG2 or with a different quantization)
 – Wavelet coding of images and textures that are applied to meshes
Profiles and levels

• MPEG4 profiles define resolution, bitrate and number of the objects that can be coded separately
 – *Simple profile*: for visual rectangular objects (suited for mobile terminals)
 – *Simple scalable profile*: like simple profile, but with temporal and spatial scalability (suited for internet services)
 – *Core profile*: with support of objects of any form with temporal scalability
 – Other profiles support: Facial animations; Audio; Meshes; Graphics...

• Levels define different degrees of computational complexity and quality
Profiles@levels

<table>
<thead>
<tr>
<th>Profile</th>
<th>Level</th>
<th>Typical picture size</th>
<th>Bit-rate (bits/sec)</th>
<th>Max number of objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>1</td>
<td>176 x 144 (QCIF)</td>
<td>64 k</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>352 x 288 (CIF)</td>
<td>128 k</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>352 x 288 (CIF)</td>
<td>384 k</td>
<td>4</td>
</tr>
<tr>
<td>Core</td>
<td>1</td>
<td>176 x 144 (QCIF)</td>
<td>384 k</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>352 x 288 (CIF)</td>
<td>2 M</td>
<td>16</td>
</tr>
<tr>
<td>Main</td>
<td>1</td>
<td>352 x 288 (CIF)</td>
<td>2 M</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>720 x 576 (CCIR601)</td>
<td>15 M</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1920 x 1080 (HDTV)</td>
<td>38.4 M</td>
<td>32</td>
</tr>
</tbody>
</table>
MPEG4 decoding
• The scene is demultiplexed and objects are separately decoded.
Interactive display of MPEG4 scene (client side)

• Users can interact with the scene displayed through:
 – Navigation of the scene
 – Dropping or changing the position of the objects
 – Start actions (select object, play video…)
 – Selecting the language associated to an object
Useful for

• MPEG4 is useful for:
 – Multimedia authors: permits to produce content with object-based flexibility wrt to single technologies such as digital television, graphic animation, web pages
 – Network providers: provides object and media-based information that can be appropriately processed and exploited
 – Final users: provides interactive object-based facilities, suited for real-time, surveillance, mobile applications

• Most of MPEG4 features are optional and their implementation is left to the developer. Most of the software for MPEG4-coded multimedia files do not support all the features. Profiles help to understand what features are supported.