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ABSTRACT 
Bag-of-Words (BoW) model based on SIFT has been widely used 
in large scale image retrieval applications. Feature quantization 
plays a crucial role in BoW model, which generates visual words 
from the high dimensional SIFT features, so as to adapt to the 
inverted file structure for indexing. Traditional feature 
quantization approaches suffer several problems: 1) high 
computational cost—visual words generation (codebook 
construction) is time consuming especially with large amount of 
features; 2) limited reliability—different collections of images 
may produce totally different codebooks and quantization error is 
hard to be controlled; 3) update inefficiency—once the codebook 
is constructed, it is not easy to be updated.  In this paper, a novel 
feature quantization algorithm, scalar quantization, is proposed. 
With scalar quantization, a SIFT feature is quantized to a 
descriptive and discriminative bit-vector, of which the first tens of 
bits are taken out as code word. Our quantizer is independent of 
collections of images. In addition, the result of scalar quantization 
naturally lends itself to adapt to the classic inverted file structure 
for image indexing. Moreover, the quantization error can be 
flexibly reduced and controlled by efficiently enumerating nearest 
neighbors of code words.   

The performance of scalar quantization has been evaluated in 
partial-duplicate Web image search on a database of one million 
images. Experiments reveal that the proposed scalar quantization 
achieves a relatively 42% improvement in mean average precision 
over the baseline (hierarchical visual vocabulary tree approach), 
and also outperforms the state-of-the-art Hamming Embedding 
approach and soft assignment method.  

Categories and Subject Descriptors 
I.2.10 [Vision and Scene Understanding]: VISION 

General Terms 
Algorithms, Experimentation, Verification 

Keywords 
Large-scale image retrieval, scalar quantization, SIFT. 

1. INTRODUCTION 
The last decade has witnessed the great advance in content-based 
image retrieval on large-scale database. Most state-of-the-art 
approaches utilize SIFT features [1] to represent images and 

leverage the BoW model [2] to index large-scale image dataset for 
scalable retrieval. Some post-processing techniques, such as 
spatial verification [3] [4] and query expansion [5] [24], are also 
explored to further boost the retrieval accuracy. Of them, one of 
the key steps is feature quantization, which first generates visual 
words from the high dimensional SIFT features, and then quantize 
features to the corresponding visual words for indexing.   

The most popular feature quantization method is vector 
quantization. Originally used in lossy data compression, vector 
quantization divides a large set of training SIFT features into 
groups. Each group corresponds to a sub-space in the feature 
space, and is represented by its center, which is called visual word 
[2]. All visual words constitute a visual codebook. Then, given a 
novel feature, vector quantization assigns it the visual word ID of 
the sub-space where the feature falls in. The most popular visual 
codebook generation approach is k-means [2] clustering. When 
the visual codebook size becomes very large (e.g. 1 million), it is 
infeasible to train the codebook with k-means, and hierarchical k-
means [6] is more preferred to improve codebook generation 
speed and enhance feature quantization efficiency.  

Traditional vector quantization suffers several problems. 1) High 
computational cost: visual codebook generation is 
computationally expensive especially with a large amount of 
features. For example, in order to train a large visual codebook 
containing 1 million visual words, usually about 50 million SIFT 
features may need, considering both feature coverage and 
affordable memory size. However, for the SIFT descriptor space 
with as large as 128 dimensions, it is still unknown whether 50 
million SIFT features are enough to capture the feature 
distribution. Even if the memory would afford several orders of 
magnitude more training features, it would take intolerable time 
cost to finish the clustering for codebook generation. 2) Limited 
reliability: codebook construction in vector quantization relies on 
the collection of image features and codebook generation methods. 
Different collections of image features may produce totally 
different codebooks. Even with the same collection of images and 
the same clustering methods, generated codebook may be still 
different due to the variability of k-means. Therefore, quantization 
error is hard to be controlled. 3) Update inefficiency: with many 
new features collected, the codebook/quantizer should be updated 
accordingly. However, the codebook updating needs lots of effort. 
The huge amount of features have to be re-clustered, which is 
computationally inefficient.  

To address the above problems, in this paper, a novel quantization 
strategy, scalar quantization, is proposed. Distinguished from the 
traditional vector quantization methods, the proposed scalar 
quantization approach does not involve any form of visual 
codebook training or clustering. Instead, it transforms each feature 
to a bit-vector with a quantizer, which is independent of 
collections of image features. Our quantization operation is very 
simple and requires low computational cost. The bit-vector 
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generated by scalar quantization achieves more compact 
representation of the original SIFT descriptors, but still keeps the 
discriminative power of SIFT feature. Since our quantization 
method is independent of collections of images, even with new 
collected features, there is no need to update our quantizer. 

Moreover, scalar quantization can index features to the classic 
inverted file structure easily by extracting the first tens of bits 
from the quantized bit-vector to generate code word. And the 
remaining bits of the quantized bit-vector are stored in the 
inverted file list for matching verification.  Furthermore, a novel 
soft quantization strategy is applied in scalar quantization to 
address the quantization loss by enumerating the nearest 
neighbors of the code word. Consequently, more candidate 
matches are included for matching verification, which greatly 
boost the retrieval accuracy in large-scale image database. 

In this paper, we only focus on the feature quantization step. To 
further improve the image retrieval performance, our approach 
can also be flexibly integrated with many other algorithms, such 
as weak geometric consistency [15], fast spatial matching [3], 
geometric verification [4] [17], and query expansion [5], etc.  

To summarize, the main contributions of this paper lie in three 
aspects: 

(1) We propose a new scalar quantization method to quantize the 
SIFT descriptor to a compact bit-vector, with the 
discriminative power kept. No visual codebook is needed to 
be trained in our quantization scheme. 

(2) We adapt the quantized bit-vectors to the popular inverted 
index file structure for scalable image search. 

(3) We propose a soft quantization scheme based on our 
indexing structure to reduce the quantization error. 

The rest of the paper is organized as follows. Section 2 reviews 
related work in large-scale image search. Section 3 discusses the 
proposed algorithm in details. Experimental results are given in 
Section 4. Section 5 makes discussions on three issues. Finally, 
the conclusion is provided in Section 6. 

2. RELATED WORK 
In large-scale content-based image search applications, Bag-of-
Words (BoW) model based on local features has been widely 
adopted. Generally, in those BoW-based approaches, there are 
four major key components: local feature representation, feature 
quantization, index strategy, and post-processing. In this section, 
we make a review of related work in each component.  

Local Feature Representation  Extraction of local feature 
usually involves two steps, i.e. interest point detection and feature 
description. The detected interest points are expected to have high 
repeatability over various changes. Popular detectors include 
Difference of Gaussian (DoG) [1], MSER [7], and Hessian affine 
[8]. After interest point detection, a descriptor is extracted to 
represent the visual appearance of the local region centered at the 
interest point. Usually, the descriptor should be invariant to 
rotation and scale, and also robust to affine distortion, addition of 
noise, and illumination changes, etc. The most popular choice 
with the above merits is SFIT feature [1]. As a variation, SURF [9] 
demonstrates good performance but achieves better efficiency. 
Recently, a binary feature BRIEF [10] and its variation ORB [11] 
have been proposed and attracted lots of attention. 

Feature Quantization  Usually, several hundred or thousand 
local features are extracted from a single image. To achieve a 

compact representation, high-dimensional local features are 
quantized to visual words, and an image can be represented as a 
“bag” of visual words. Therefore, a visual codebook containing 
visual words needs to be generated first. The most intuitive visual 
codebook generation method is k-means [2] or hierarchical k-
means [6] for large size visual codebook generation.  

With visual codebook defined, feature quantization is to assign a 
visual word ID to each feature. The most naive choice is finding 
the closest (the most similar) visual word of a given feature by 
linear scan, which, however, suffers expensive computational 
cost. Usually, approximate nearest neighbor (ANN) search 
methods are adopted to speed up the searching process, with 
sacrifice of accuracy to some extent. In [1], a k-d tree [21] is 
utilized with a best-bin-first modification to find approximate 
nearest neighbors to the descriptor vector of the query. In [6], 
based on hierarchical vocabulary tree, an efficient approximate 
nearest neighbor search is achieved by propagating the query 
feature vector from the root node down the tree by comparing the 
corresponding child nodes and choosing the closest one.  In [12], 
a k-d forest approximation algorithm is proposed with reduced 
time complexity. To reduce the quantization loss, a descriptor-
dependent soft assignment scheme [13] is proposed to map a 
feature vector to a weighted combination of several visual words. 
In [14], the high dimensional SIFT descriptor space is partitioned 
into regular lattices. Although demonstrated to work well in image 
classification, in [13], regular lattice quantization is reported 
working significant worse than [6][13] in large-scale image search. 
In [27], a novel scheme is proposed to jointly optimize the 
dimension reduction and indexing. In [28], a compact image 
signature, called Residual Enhanced Visual Vector, is designed 
via quantization residue aggregation and classification-aware 
dimensionality reduction. In [29] and [30], descriptive and 
contextual visual vocabularies are generated respectively for 
large-scale image applications, such as image search.  

In [15], for each feature quantized to a visual word, feature 
dimension is further performed and a binary signature is generated 
with a pre-trained median vector. Such binary signature will be 
used for feature matching verification in on-line retrieval.  In [26], 
a variation of Hamming Embedding [15], i.e., the Asymmetric 
Hamming Embedding scheme, is proposed to better exploit the 
information conveyed by the binary signature.    

Index Strategy  Inspired by the success of text search engines, 
inverted file structure [23] has been successfully used for large-
scale image search [2][3][4][5][6][13][15][16]. In essence, 
inverted file structure is a compact representation of a sparse 
matrix, whose row and column denote visual word and image, 
respectively. In on-line retrieval, only those images sharing 
common visual words with the query image need to be checked. 
Therefore, the number of candidate images to be compared is 
greatly reduced, achieving efficient response. 

In inverted file structure, each visual word is followed by an 
inverted file list of entries. Each entry stores the ID of image 
where the visual word appears, and some other clues for 
verification or similarity measurement. For instance, Hamming 
Embedding [15] generates a 64-bit Hamming code for each 
feature to verify descriptor matching. Bundled Feature [16] stores 
the x-order and y-order of each SIFT feature located in the 
bundled area. The geometric clues, such as feature position, scale, 
and orientation, are also stored in inverted file list for verification 
of geometric consistency [3][4][15][16][17].  
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To further reduce the memory cost of inverted file structure, a 
visual word vector is mapped to a low-dimensional representation 
by a group of min-hash functions [18] [19]. Consequently, only a 
small constant amount of data per image needs to be stored. 

Post Processing  The initially returned result list can be further 
refined by exploring the spatial context or enhancing the original 
query. Spatial verification [3] [4] [15] [17] [19] and query 
expansion [5] [24] are two of the most successful post-processing 
techniques to boost the accuracy of large-scale image search.  

Spatial context is an important clue to remove false positive visual 
matches. Lots of work has been done on spatial verification. In [2], 
locally spatial consistency is imposed to filter visual-word 
matches with low support. In [15], weak geometric consistency on 
scale and orientation is imposed to quickly filter potential false 
matches. In [3], global spatial verification is performed based on a 
variation of RANSAC [20]. An affine model is estimated to filter 
local matches that fail to fit the model. In [4] [17], the geometric 
context among local features is encoded into binary maps. And 
then it recursively removes geometrically inconsistent matches by 
analyzing those coding maps. 

Query expansion, leveraged from text retrieval, reissues the initial 
highly-ranked results to generate new queries. Some relevant 
features, which are not present in the original query, can be used 
to enrich the original query to further improve the recall 
performance. Several strategies, such as average query expansion, 
transitive closure expansion, recursive expansion, intra-expansion, 
and inter-expansion, etc. have been discussed in [5] [24].  

3. METHOD 
In this paper, we focus on feature quantization, which plays a key 
role of BoW model. We first introduce our scalar quantization 
strategy in Section 3.1. Then, in Section 3.2, we discuss how to 
adapt the scalar quantization result to the classic inverted file 
structure for scalable image search. In Section 3.3, we discuss a 
soft quantization scheme to further reduce the quantization error 
in on-line query stage. Finally, a summary of our quantization 
algorithm is given in Section 3.4.  

3.1 Scalar Quantization 
High dimensional SIFT descriptors (L2-normalized 128-D vectors 
[1]) are extracted from images for discrimination. Each dimension 
of the descriptor vector corresponds to a bin of concatenated 
orientation histograms. Generally, similar SIFT features have 
relatively smaller distances than different features. Features from 
the same source, e.g. image patch, may not be exactly same due to 
image noise. But their values on the 128 bins usually share some 
common patterns, e.g., the pair-wise differences between most of 
bins are similar and stable. Therefore, it can be easily extended 
that the differences between bins and a predefined threshold are 
stable for most bins. Based on such observation, we propose a 
scalar quantization strategy.  

Given a high dimensional feature vector
dT
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where f̂  is a threshold determined by vector f .  

The threshold f̂  is an important parameter, which determines the 
discriminative power of the quantization results. If the 
discriminative power of SIFT is well kept in scalar quantization, 
the Hamming distance between scalar vectors b  should be 
consistent with the L2 distance between original feature vectors f. 

There are many methods to choose the threshold f̂ . In this paper, 

we choose f̂  as the median value of vector f .  The philosophy 
behind it is that, the median value is relatively stable to changes in 
some bins of a long vector. The quantization function )(q  is a 
kind of hashing. Unlike classic LSH methods involving many 
hashing tables and functions [8] [19], our scheme needs only one 
hash function and therefore is much simpler and more efficient.  

With each high dimension feature quantized to a bit-stream 
vector, the feature comparison is transformed to the comparison of 
binary vectors, which can be efficiently accomplished by 
exclusive-OR operation and measured by Hamming distance. 

 
(a) 

 
(b) 

 
 (c) 

Figure 1. The statistics on 111008.4  pairs of SIFT descriptors. 
(a) Descriptor pair frequency vs. Hamming distance; (b) The 
average L2-distance vs. Hamming distance; (c) The average 
standard deviation vs. Hamming distance.  
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To demonstrate the discriminative power of SIFT descriptors is 
well kept in our scalar quantization, we have made a statistical 

study on 111008.4   SIFT descriptor pairs, which include every 
SIFT pair extracted from image pairs randomly sampled from a 
large image dataset. For each descriptor pair, its L2 distance before 
scalar quantization and Hamming distance after scalar 
quantization are calculated. As shown in Fig. 1(a), the distribution 
of Hamming distances between these descriptors exhibits a 
Gaussian-like distribution. From Fig. 1 (b) and Fig. 1(c), it is 
observed that the Hamming distance between our quantized bit-
vectors is consistent with the average L2-distance, with relatively 
small standard deviation (computed on the unit-normalized 
descriptors). To further reduce the deviation, we use a variation of 
Eq. (1) and transform the descriptor vector to a 256-bit vector, 
which will be discussed at the end of this section. 

 

 
(a) 

 
(b) 

Figure 2. Example of feature matches. (a) A local match 
between two images. The endpoints of the green line denote 
the key point positions of two SIFT features. The radius of the 
red circle centered at the key points is proportional to the 
SIFT feature’s characteristic scale. (b) top: the 128-D 
descriptor of the matched SIFT feature in the left image;  
middle: the 128-D descriptor of the matched SIFT feature in 
the right image; bottom: the XOR result of the binary SIFT 
features from the two matched SIFT features. The red 
horizontal lines in the “top” and “bottom” figure denote the 
median values of the two SIFT descriptors, respectively.  

It should be noted that our approach is different from the SIFT 
quantization methods proposed in lattice quantization [14] and 
Hamming Embedding [15]. In [14], the descriptor space is 
arbitrarily split along dimension axes into regular lattice. In [15], 
for each bin/dimension, a median value of all training features on 
that bin in the reduced dimensional space is computed for 
binarizing the corresponding dimension. Both two approaches 
ignore the unique property of every individual SIFT descriptor. 

As shown in Fig. 1, the original features’ difference in Euclidean 
distance can be well captured by their Hamming distance after 
scalar quantization. Fig. 2 shows a real instance of local descriptor 
match across two images with scalar quantization. From Fig. 2(b), 
it can be observed that these two SIFT descriptors have similar 
magnitude in the corresponding bins with some small variations 
before quantization. After scalar quantization, they differ from 
each other in six bins. With a proper threshold, it can be easily 
determined whether the local match is true or false just by the 
exclusive-OR (XOR) operation between the quantized bit-vectors. 
Obviously, the error in the exclusive-OR result is likely to occur 
in those bins with magnitude around the median value. Intuitively, 
the median threshold could be increased to some upper level, 
which can make the Hamming distance between similar SIFT 
descriptors smaller. However, such modification will also reduce 
the Hamming distance between irrelevant descriptors and cause 
false descriptor matches. 

 
(a) 

 
 (b) 

Figure 3.  Statistics of SIFT descriptors. (a) A typical SIFT 
descriptor with bins sorted by magnitude in each dimension; 
(b) The frequency distribution of median value of the 
descriptor vector among 100 million SIFT descriptors. 
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Another statistical study on the distribution of median value of 
SIFT descriptor is also performed. 100 million SIFT descriptors 
are sampled from a large dataset, and the median value of each 
128-D descriptor vector is computed. As shown in Fig. 3, the 
median value of most SIFT descriptors is relatively small, around 
10, but the maximum magnitude in some bins still can reach more 
than 140. This may incur potential quantization loss since those 
bins with magnitude above the median are not well distinguished. 
To address this issue, the same scalar quantization strategy could 
be conducted again on those bins with magnitude above the 
median. Intuitively, such operation can be performed recursively. 
However, it will cause additional storage cost. In our 
implementation, we only perform the scalar quantization twice, 
i.e., first on the whole 128 elements, and second on those 
elements with magnitude above the median value. Consequently, 

a SIFT descriptor 128
12821 ),,,( Rffff T    is quantized to a 

256-bit vector Tbbbb ),,,(
~

25621  , as follows:  
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sorted vector from ),,,( 12821 fff   in descending order. With Eq. 

(2), each dimension of SIFT descriptor is divided into three parts, 
and two bits are used to encode each part.  

With scalar quantization by Eq. (2), the comparison of SIFT 
descriptors in L2-distance is captured by the Hamming distance of 
the corresponding 256-bit vectors. Since our target is large-scale 
image search, how to adapt our scalar quantization result to the 
classic inverted file structure for scalable image search needs to be 
explored.  

3.2 Indexing with Inverted File Structure 
In image search, the problem of feature matching between images 
can be regarded as finding feature’s nearest or approximate-
nearest neighbors. When the feature amount becomes very large, 
say, over one billion, it is too computationally expensive to find 
the nearest neighbors by linearly comparing all features’ binary 
vectors. To address this problem, leveraged from text retrieval, 
inverted file structure can be used for scalable indexing of large-
scale image dataset.  

In traditional inverted file structure for image search, a group of 
visual words are pre-trained. And each visual word is followed 
with an entry list of image features, which are quantized to this 
followed visual word. Each indexed feature in the list records its 
image ID and some other clues.  

To adapt to the classic inverted file structure to index image 
features, we define code word1 by the first t  bits of the binary 
code generated by scalar quantization result. Then, the rest bits of 
features are recorded in the entry list of the corresponding code 
word. In fact, any other t  bits of the binary code are expected to 
be equivalent. A toy example is shown in Fig. 4. Intuitively, if a 
code word is represented with t bits, the total number of code 

                                                                 
1  It should be noted that our code word is different from the 

traditional visual word [2] [6]. 

words could be amounted up to t2 . However, it is found from 
experiments that, when t increases above 20, the amount of non-

empty code words becomes much smaller than t2 , as shown in 
Fig. 5. For example, when t increases to 32, the total number of 

code words could be up to 932 1042   (4 billion). However, the 
number of unique code words generated by scalar quantization 

(on one million image database) is even much less than 810 . 

Generally, the more code words are generated, the shorter the 
average length of indexed feature list becomes, and the less the 
time cost is needed to query a new feature. However, in our 
method, we will introduce a soft quantization scheme (Section 3.3) 
to expand more code words for each query feature. And the 
number of expanded indexed feature lists is polynomial to t . To 
make a tradeoff, in our experiments, we select 32t , and 46.5 
million “code words” are obtained.  

Fig. 6 shows the distribution of code word occurrence on one 
million image database. It can be observed that, of the 46.5 
million code words, only the top few thousand code words have 
very high frequency. Those code words are prevalent in many 
images, and their distinctive power is weak. As suggested by [2], 
we apply a stop-list to ignore those high frequency code words 
that occur in more than 0.11% of the total image dataset. 
Experiments reveal that a proper stop-list may not affect the 
search accuracy, but does avoid checking many code word lists 
and achieves gain in efficiency.  

 

CW  (100) Indexed 
Features

……

Code Word ID Indexed feature list for image database

Image ID (10101)

 
Figure 4. A toy example of image feature indexed with 
inverted file structure. The scalar quantization result of the 
indexed feature is an 8-bit vector (1001 0101). The first three 
bits denote its code word ID (100), and the remaining 5 bits 
(10101) are stored in the inverted file list. 

 
Figure 5. The amount of unique code words (top t  bits from 
256-bit vector) for different t on 1-million image database.  
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Figure 6. Frequency of code words among one million images. 

Once all features of an image dataset have been indexed with the 
inverted file structure, given a new SIFT descriptor, it will be first 
quantized to a 256-bit vector with scalar quantization. Then 
through the top 32 bits, the corresponding code word can be 
located. And only the indexed features following the matched 
code word will be checked. Therefore, the searching space is 
greatly reduced.  Finally, the exclusive-OR operation is performed 
on the remained 224 bits of the query vector and those of indexed 
features recorded in the entry list of the matched code word. A 
threshold  on the Hamming distance between 256-bit vectors 
needs to be set for true-match judgment, such that those matches 
with Hamming distance no larger than   will be accepted as true 
matches. The impact of  will be studied in Section 4.1. 

 

CW0  (000)

CW1  (001)

CW2  (010)

CW3  (011)

CW4  (100)

CW5  (101)

CW6  (110)

CW7 (111)

……

……

……

……

……

……

……

……

Code Word ID Indexed feature list for image database

 
Figure 7. A toy example of soft quantization with bit-stream 
code words. There are eight code words, each represented 
with a three-bit vector. Each code word is followed by an 
indexed image feature list. (Best viewed in color PDF)  

 

3.3 Reduction of Quantization Error  
In Section 3.2, we define code word by the top 32 bits of the bit 
vector from scalar quantization. However, such simple processing 
will exclude some candidate features that have some flipping bits 
among the top 32 bits (e.g., 0 changes to 1) due to noise. To 
address this issue, we propose a soft strategy to reduce the 
quantization error. Assuming such flipping happens only to very 
few dimensions, features before and after the flipping should be 

still very similar, i.e., small Hamming distance. To identify these 
candidate features, it is desired to quickly enumerate all of its 
possible nearest neighbors within a predefined Hamming distance
d , just by alternatively flipping some bits. This is equivalent to a 
tolerant expansion of the original code word. The impact of 
expansion-bit number d will be studied in Section 4.1.    

As shown in the toy example in Fig. 7, the code word of a new 
query feature is a bit-vector 100, i.e., CW4 in pink color. To 
identify all of candidate features, its possible nearest neighbors 
(e.g., Hamming distance d =1) will be obtained by flipping one bit 
in turn, which generates three additional code words (in green 
color): CW0 (000), CW5 (101) and CW6 (110). These code words 
are nearest neighbors of CW4 in the Hamming space. Then, 
besides CW4, the indexed feature lists of these three expanded 
code words will be also considered as candidate true matches, and 
all features in these expanded lists will be further compared on 
their rest bit-codes.  
 

 
Figure 8. The general steps of off-line indexing with scalar 
quantization. 

 

 
Figure 9. The general steps of on-line querying with scalar 
quantization. 

 

3.4 Algorithm Summary 
Overall, the proposed scalar quantization consists of two stages: 
offline indexing and on-line querying. In this section, we 
summarize the general steps of these two stages in Fig. 8 and Fig. 
9, respectively. Given a query image, after looking up the index 
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On-line Querying with Scalar Quantization 

1) Given a 128-D SIFT descriptor in a query image, 
convert it to a 256-bit vector by Eq. (2); 

2) Identify its code word ID qV  by the first 32 bits of the 

256-bit vector. 

3) For each feature in the inverted image list linked to qV , 

compare its indexed 224-bit vector with the query 
feature. If the total Hamming distance in 256-bit is not 
greater than  , accept the indexed feature as true 
match. 

4) Expand the qV  to include its nearest code words 

 ,2,1  , iV i
q  with Hamming distance no greater 

than d .  

5) For each i
qV , repeat step (3). 

Off-line Indexing with Scalar Quantization 

1) Given a 128-D SIFT descriptor from an index image, 
convert it to a 256-bit vector by Eq. (2); 

2) Identify code word ID dV  by the first 32 bits of the 

256-bit vector. 

3) In the inverted image list of dV , store both the ID of 

the image where the feature appears, and the remaining 
224 bits of the quantized 256-bit vector.  
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file with the proposed on-line querying steps, we can obtain the 
matching results between the query image and target images. 
Finally, we formulate image retrieval as a voting problem and 
define the similarity between two images by the cardinality of 
matched feature set.  

4. EXPERIMENTS 
Our basic dataset is built by crawling one million images from the 
Web. We take the partial-duplicate image dataset released in [17] 
as the ground-truth dataset, which contains 1104 images from 33 
groups, including “Mona Lisa”, “KFC logo”, “American Gothic 
Painting”, “Seven-eleven logo”, etc. To evaluate the performance 
with respect to the size of dataset, we construct three smaller 
datasets (50K, 200K, and 500K) by sampling the basic dataset. 
From the ground truth dataset, 108 representative query images 
are randomly selected for evaluation comparison. Similar to 
[3][14][16], mean average precision (mAP) is selected to evaluate 
the accuracy performance of all methods. 

We use the standard SIFT feature [1] for image representation. 
Key points are detected with the Difference-of-Gaussian (DoG) 
detector. A 128-D orientation histogram (SIFT descriptor) is 
extracted to capture the visual appearance of local patch centered 
at each key point. Before feature extraction, large images are 
scaled to have a maximum axis size of 400. 

4.1 Parameter Analysis 
There are two parameters in our approach: Hamming distance 
threshold   and expansion-bit number  d.  To study the impact of 
these two parameters on search performance and computational 
cost, we compare the mAP performance and average time cost per 
query under different parameter settings of   and d on the 1-M 
image dataset. The results are shown in Fig. 10.   

From Fig. 10(a), it can be observed that when the Hamming 
distance threshold   increases, the mAP performance first 
increases and then keeps stable and gradually drops a little after it 
reaches the peak, where 24 . This is intuitive, since increasing 
  always includes more candidate true matches, but when  is 
too large, many noisy matches are also included and pollute the 
results. On the other hand, when expansion-bit number d increases, 
the mAP gradually increases. This is due to the fact that more 
candidate code word lists are involved in matching verification, 
and more true matches will be kept.   

In terms of efficiency, as shown in Fig. 10(b), the average time 
cost per query increases when   increases. This is due to that, 
when   is larger, we have to make more exclusive-OR operations, 
until the Hamming distance between two 224-bit vectors is above 
a threshold.  As d increases, the querying time cost rises 
significantly. This is because the expanded code word list number 
is exponential to the expansion-bit number  d.   

Considering the tradeoff between mAP performance and time cost, 
 is set as 24 and d  is set as 2 in the rest experiments.  

4.2 Evaluation 
Comparison Algorithms: We compare our approach with three 
state-of-the-art feature quantization algorithms in large-scale 
image search. The BoW approach with visual vocabulary tree [6] 
is selected as the “baseline” method. We test various sizes of 
visual word vocabulary, and the 1-million vocabulary gives the 
best overall performance. As suggested in [2][6], the stop-list 
strategy is also adopted to improve efficiency. To enhance the 
baseline, two other algorithms, i.e., soft assignment [13] and 
Hamming embedding [15], are also compared.  

 
(a) 

 
(b) 

Figure 10. (a)The mAP performance and (b) average time cost 
per query under different parameter settings of   and d on 
the 1-million image dataset.  

  

Soft assignment [13] identifies a local feature with a weighted 
combination of three nearby visual words. We use the default 
parameters as set in [13]. The “nearby” visual words for a given 
feature are found by the approximate nearest neighbor search 
algorithm k-d tree [21][25]. A public library for approximate 
nearest neighbor (ANN) searching [22] is used in our experiments. 
To make a tradeoff between accuracy and efficiency, we select the 
error bound parameter [22] as five.  

Hamming embedding [15] generates additional Hamming codes 
(64 bits) to filter more candidate features which are quantized to 
the same visual word but have large hamming distance to the 
query feature. We denote this method as “HE”. We have tested 
different thresholds for the Hamming distance in HE, and the best 
performance is achieved when the threshold is selected as 12. 
Since the focus of this paper is feature quantization, the weak 
geometric consistency scheme proposed in the Hamming 
embedding approach is not added in the experiments.   

Accuracy:  From Fig. 11, it can be observed that our approach 
outperforms all the other three methods on large image databases. 
On the 1-million dataset, The mAP of the baseline is 0.38. Our 
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approach hits 0.54, a relatively 42.1% improvement. Since 
Hamming codes  can effectively filter false featurs,  the Hamming 
Embdding approach achieves a mAP of 0.43, but still 11% lower 
than our approach. The mAP improvement of soft assignment 
approach is higher than HE. It reaches a mAP of 0.48. Compared 
with soft assignment, our approach still enjoys a relatively 12.5% 
improvement. Such improvement stems from the distance based 
thresholding for matching verification of our approach. It is 
interesting to note that, when the database size decreases to 50 K, 
our approach is worse than the soft assignment. This is due to our 
tradeoff selection on the expansion bit number and efficiency.  

 
Figure 11. Performance (mAP) comparison of different 
methods with different database sizes.  

 

Efficiency:  The experiments are performed on a server with 3.4 
GHz CPU and 16 GB memory. We compare efficiency in both 
off-line indexing and on-line query. From Table 1, it can be 
observed that our approach is the most efficient one in indexing 
image features. It takes our approach 18.86 seconds to index one 
million SIFT features, which is 2 times, 2.5 times, and 40 times 
faster than the baseline, HE and soft assignment approach, 
respectively. Fig. 12 shows the average time cost per query of all 
four approaches. It should be noted that the time cost of SIFT 
feature extraction is not included for all approaches.  It takes the 
baseline 0.12 second in average to perform one query. HE is the 
most time-efficient one and costs only 0.05 second to finish one 
query in average. Soft assignment is the most time-consuming 
approach, consuming 0.52 second in average per query.  Although 
our approach costs more time than the baseline approach, it may 
still meet user’s expectation of fast response time (average 0.48 
second per query) but with much higher search accuracy. It is 
slightly more efficient than the soft assignment approach, with 
0.04 second less in average per query.  

It should be noted that a distinctive characteristic of our approach 
from other three comparison methods is that, no visual codebook 
needed to be trained before feature quantization, which could save 
a lot of computational time. As a contrast, all three comparison 
algorithms have to train a large visual codebook containing as 
many as one million visual words, which usually costs days of 
time. In order to train a visual codebook of one million in size, 
usually about 100 million SFIT descriptors are needed as training 
samples. However, even with so many training samples, it is still 
unclear whether these training samples are enough to generate 
desired visual words to capture the sample distribution in the so 

large 128-D descriptor space.   Moreover, when more new 
features are indexed, it may be necessary to update the visual 
codebook accordingly (e.g., re-cluster all the features), which is 
always time consuming and computationally expensive. On the 
contrary, our scalar quantization just needs to incrementally add 
new code words to the existing visual codebook (code word set). 
 
Table 1. Time cost to index 1 million SIFT features for four 
approaches in off-line stage. 

Method baseline HE 
soft 

assignment 
our 

approach 
Time cost 
(second) 

53.72 64.82 771.09 18.86 
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Figure 12. Comparison of average query time cost of different 
methods on the 1M database. (Not including the time cost for 
SIFT feature extraction) 

 
Table 2. Memory cost for four approaches. 

 Memory cost per 
indexed feature (byte) 

Memory cost for 
quantizer (byte) 

baseline 8 142M 
HE 12 398M 
soft assignment 24 506M 
our approach 32 0 

 
Memory Cost:  We compare memory cost of all approaches on 
both indexed feature and quantizer, as listed in Table 2. In terms of 
memory cost per indexed feature, for each feature, the baseline 
approach needs 4 bytes to store image ID and another 4 bytes to 
store the tf-idf weight. The soft assignment has to store each indexed 
features in three visual word lists, therefore it costs 24 bytes, three 
times the memory cost of the baseline approach. In Hamming 
Embedding approach, it allocates 4 bytes on image ID and 8 bytes 
on the 64-bit Hamming code. Compared with the above three 
methods, our approach consumes more memory. It takes 4 bytes to 
store image ID and additional 28 bytes to store another 224 bits 
from quantization results. 

Besides indexed feature, all the three comparison methods have to 
load a large quantizer into main memory. A hierarchical visual 
vocabulary tree (about 142M bytes) is required for both the baseline 
and HE. Besides, HE has to store a 64-D median vector (floating 
point values) for each leaf node. As for soft assignment approach, 
besides the visual words (leaf nodes of the vocabulary tree, 128M 
bytes), it also needs to generate a k-d tree (about 378M bytes)to 
quantize features. As a contrast, our approach needs no memory 
cost on quantizer. 
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4.3 Sample Results 
In Fig. 13, a sample edited image “Apollo” is selected as a query 
to demonstrate the search performance of all four approaches on 
the 1-million dataset. For this query, compared with the baseline 
approach, our approach improves the mAP from 0.36 to 0.846, 
with relatively 135% improvement. Fig. 13 (c) and (d) show the 
top images returned by the baseline approach and our approach, 
respectively. Due to the poor quality of the query image, the 
returned results of the baseline are polluted by irrelevant images. 
As for our approach, more relevant images are ranked to the top. 

Fig. 14 shows a difficult image sample on which our method 
works poorly. The query image is the first image with label rank-1 
in Fig. 14(a). Since the query contains a large portion of patches 
containing rich text, the returned results are polluted by many 
screenshot images of documents or web pages. The matching 
result between the query and the fifth returned image is shown in 
Fig. 14(b). Although irrelevant in visual content, they still share 
many local similar patterns. Such query is also very challenging 
for the other three comparison methods. To filter such false 
positives, spatial verification algorithms [3] [17] could be 
combined with our scalar quantization to re-rank the results.  

   
(a)                                                   (b) 

 
(c) 

 
(d) 

Figure 13. Sample results comparing the baseline and our 
approach. (a) Query image; (b) Comparison of the precision-
recall curves of all four approaches; (c) The top images (rank 
11 to rank 20) returned by the baseline; (d) The top images 
returned by our approach (rank 11 to rank 20). The first 10 
images are true positive for both baseline and our approach 
and therefore are not shown. The false positives are shown 
with red dashed bounding boxes.   (Best viewed in color PDF) 

 
(a) 

 
(b) 

Figure 14. Retrieval examples. (a) Retrieval results of the 
query (Rank 1). The number of local matches is shown in the 
bracket below each image. (b) Feature matching between the 
query and the rank 5 result. (Best viewed in color PDF)  

5. DISCUSSION 

5.1 Threshold in Quantization 
In our scalar quantization, the threshold f̂  in Eq. (1) is selected 
as the median value of the feature descriptor, so as in Eq. (2).  
However, it is still an open question whether the median value is 
the best choice. There are many alternatives for it, such as mean 
value of vector f . Alternatively, we can also cluster the 128 
elements of a SIFT descriptor into two clusters and choose the 
cluster boundary as the threshold f̂ . For some specific 
applications, f̂ can also be learned by training. For example, 
some positive and negative matching pairs are manually labeled 
beforehand. Then, the threshold f̂ can be learned to yield the best 
classification performance for discrimination.  

5.2 Dimension Reduction  
Our approach consumes more memory to index each feature (28 
bytes) than other three approaches. It is desired that the memory 
cost can be further reduced without much sacrifice of search 
accuracy. As discussed in Section 3.1, it can be inferred that the 
size of scalar quantization result is proportional to the dimension 
of SIFT descriptors. If SIFT descriptors can be reduced in 
dimension, the quantization result will be more compact. There 
are two possible ways to achieve this goal. One method is to 
project SIFT descriptors to a low dimensional space by PCA. The 
dimension-reduced features are expected to keep the 
characteristics of the original SIFT descriptors, so that our scalar 
quantization can be applied in the new feature space as well.  
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The second possible method is to change the formulation of SIFT 
descriptors, instead of performing dimension reduction. The 
original SIFT descriptor is designed as a combination of 8-D 
orientation histogram on 16 (4 4) patches. It is possible to 
reformulate it in a simple way, such as dividing the local region 
into 3  3 patches instead of 4 4, and extracting an 8-D 
orientation histogram on each patch. And SIFT descriptor 
dimension will be reduced from 128 to 72. It is demonstrated by 
Lowe [1] that, such a design only causes a small drop on the 
closest neighbor matching. Its impact on large-scale image search 
still needs to be further studied.   

5.3 Extension to General Features  
In this paper, we present our scalar quantization based on SIFT 
descriptors. An intuitive question “can the proposed scalar 
quantization algorithm be extended to general feature vectors?” 
may be interesting. SIFT descriptors are very distinctive, with 
most energy concentrated on relatively few bins, as shown by a 
typical example in Fig. 3(a). Besides, it captures the local visual 
appearance with very strict representation. Such property makes 
our approach work well on SIFT descriptors. Therefore, our scalar 
quantization can be generally extended to other features with 
similar property as SIFT feature.  

6. CONCLUSION 
In this paper, a novel quantization scheme “scalar quantization” is 
proposed on SIFT descriptors for large-scale image search. Scalar 
quantization quantizes a SIFT descriptor to a 256-bit vector, 
which can be easily adapted to the classic inverted file structure 
for indexing. Distinguished from the traditional vector 
quantization approaches, the proposed scalar quantization 
approach does not involve any kind of visual codebook training or 
clustering. The quantizer is defined by an individual feature itself 
and is independent of collections of images. Further, soft 
quantization is proposed to efficiently enumerate the nearest code 
words for quantization error reduction. Experiments on large-scale 
image search demonstrate the superiority of scalar quantization on 
retrieval accuracy over other state-of-the-art methods 

In the future, investigation will be performed on developing more 
compact bit-vector representation in scalar quantization. 
Moreover, the flipping behavior of bit-vectors of similar SIFT 
descriptors will be explored. Some insights are expected to be 
obtained from this study, which may be beneficial for searching 
space reduction in soft quantization step and consequently 
improve retrieval efficiency. Further, various choices for 
threshold selection in scalar quantization will be studied.  
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