
Scalar Quantization for Large Scale Image Search
Wengang Zhou1, Yijuan Lu2, Houqiang Li3, Qi Tian1

Dept. of Computer Science, University of Texas at San Antonio1, Texas, TX 78249
Dept. of Computer Science, Texas State University2, Texas, TX 78666

Dept. of EEIS, University of Science and Technology of China3, Hefei, P.R. China
wengang.zhou@utsa.edu1, yl12@txstate.edu2, lihq@ustc.edu.cn3, qitian@cs.utsa.edu1

ABSTRACT
Bag-of-Words (BoW) model based on SIFT has been widely used
in large scale image retrieval applications. Feature quantization
plays a crucial role in BoW model, which generates visual words
from the high dimensional SIFT features, so as to adapt to the
inverted file structure for indexing. Traditional feature
quantization approaches suffer several problems: 1) high
computational cost—visual words generation (codebook
construction) is time consuming especially with large amount of
features; 2) limited reliability—different collections of images
may produce totally different codebooks and quantization error is
hard to be controlled; 3) update inefficiency—once the codebook
is constructed, it is not easy to be updated. In this paper, a novel
feature quantization algorithm, scalar quantization, is proposed.
With scalar quantization, a SIFT feature is quantized to a
descriptive and discriminative bit-vector, of which the first tens of
bits are taken out as code word. Our quantizer is independent of
collections of images. In addition, the result of scalar quantization
naturally lends itself to adapt to the classic inverted file structure
for image indexing. Moreover, the quantization error can be
flexibly reduced and controlled by efficiently enumerating nearest
neighbors of code words.

The performance of scalar quantization has been evaluated in
partial-duplicate Web image search on a database of one million
images. Experiments reveal that the proposed scalar quantization
achieves a relatively 42% improvement in mean average precision
over the baseline (hierarchical visual vocabulary tree approach),
and also outperforms the state-of-the-art Hamming Embedding
approach and soft assignment method.

Categories and Subject Descriptors
I.2.10 [Vision and Scene Understanding]: VISION

General Terms
Algorithms, Experimentation, Verification

Keywords
Large-scale image retrieval, scalar quantization, SIFT.

1. INTRODUCTION
The last decade has witnessed the great advance in content-based
image retrieval on large-scale database. Most state-of-the-art
approaches utilize SIFT features [1] to represent images and

leverage the BoW model [2] to index large-scale image dataset for
scalable retrieval. Some post-processing techniques, such as
spatial verification [3] [4] and query expansion [5] [24], are also
explored to further boost the retrieval accuracy. Of them, one of
the key steps is feature quantization, which first generates visual
words from the high dimensional SIFT features, and then quantize
features to the corresponding visual words for indexing.

The most popular feature quantization method is vector
quantization. Originally used in lossy data compression, vector
quantization divides a large set of training SIFT features into
groups. Each group corresponds to a sub-space in the feature
space, and is represented by its center, which is called visual word
[2]. All visual words constitute a visual codebook. Then, given a
novel feature, vector quantization assigns it the visual word ID of
the sub-space where the feature falls in. The most popular visual
codebook generation approach is k-means [2] clustering. When
the visual codebook size becomes very large (e.g. 1 million), it is
infeasible to train the codebook with k-means, and hierarchical k-
means [6] is more preferred to improve codebook generation
speed and enhance feature quantization efficiency.

Traditional vector quantization suffers several problems. 1) High
computational cost: visual codebook generation is
computationally expensive especially with a large amount of
features. For example, in order to train a large visual codebook
containing 1 million visual words, usually about 50 million SIFT
features may need, considering both feature coverage and
affordable memory size. However, for the SIFT descriptor space
with as large as 128 dimensions, it is still unknown whether 50
million SIFT features are enough to capture the feature
distribution. Even if the memory would afford several orders of
magnitude more training features, it would take intolerable time
cost to finish the clustering for codebook generation. 2) Limited
reliability: codebook construction in vector quantization relies on
the collection of image features and codebook generation methods.
Different collections of image features may produce totally
different codebooks. Even with the same collection of images and
the same clustering methods, generated codebook may be still
different due to the variability of k-means. Therefore, quantization
error is hard to be controlled. 3) Update inefficiency: with many
new features collected, the codebook/quantizer should be updated
accordingly. However, the codebook updating needs lots of effort.
The huge amount of features have to be re-clustered, which is
computationally inefficient.

To address the above problems, in this paper, a novel quantization
strategy, scalar quantization, is proposed. Distinguished from the
traditional vector quantization methods, the proposed scalar
quantization approach does not involve any form of visual
codebook training or clustering. Instead, it transforms each feature
to a bit-vector with a quantizer, which is independent of
collections of image features. Our quantization operation is very
simple and requires low computational cost. The bit-vector

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’12, October 29–November 2, 2012, Nara, Japan.
Copyright 2012 ACM 978-1-4503-1089-5/12/10...$15.00.

169Area Chair: Lei Zhang

generated by scalar quantization achieves more compact
representation of the original SIFT descriptors, but still keeps the
discriminative power of SIFT feature. Since our quantization
method is independent of collections of images, even with new
collected features, there is no need to update our quantizer.

Moreover, scalar quantization can index features to the classic
inverted file structure easily by extracting the first tens of bits
from the quantized bit-vector to generate code word. And the
remaining bits of the quantized bit-vector are stored in the
inverted file list for matching verification. Furthermore, a novel
soft quantization strategy is applied in scalar quantization to
address the quantization loss by enumerating the nearest
neighbors of the code word. Consequently, more candidate
matches are included for matching verification, which greatly
boost the retrieval accuracy in large-scale image database.

In this paper, we only focus on the feature quantization step. To
further improve the image retrieval performance, our approach
can also be flexibly integrated with many other algorithms, such
as weak geometric consistency [15], fast spatial matching [3],
geometric verification [4] [17], and query expansion [5], etc.

To summarize, the main contributions of this paper lie in three
aspects:

(1) We propose a new scalar quantization method to quantize the
SIFT descriptor to a compact bit-vector, with the
discriminative power kept. No visual codebook is needed to
be trained in our quantization scheme.

(2) We adapt the quantized bit-vectors to the popular inverted
index file structure for scalable image search.

(3) We propose a soft quantization scheme based on our
indexing structure to reduce the quantization error.

The rest of the paper is organized as follows. Section 2 reviews
related work in large-scale image search. Section 3 discusses the
proposed algorithm in details. Experimental results are given in
Section 4. Section 5 makes discussions on three issues. Finally,
the conclusion is provided in Section 6.

2. RELATED WORK
In large-scale content-based image search applications, Bag-of-
Words (BoW) model based on local features has been widely
adopted. Generally, in those BoW-based approaches, there are
four major key components: local feature representation, feature
quantization, index strategy, and post-processing. In this section,
we make a review of related work in each component.

Local Feature Representation Extraction of local feature
usually involves two steps, i.e. interest point detection and feature
description. The detected interest points are expected to have high
repeatability over various changes. Popular detectors include
Difference of Gaussian (DoG) [1], MSER [7], and Hessian affine
[8]. After interest point detection, a descriptor is extracted to
represent the visual appearance of the local region centered at the
interest point. Usually, the descriptor should be invariant to
rotation and scale, and also robust to affine distortion, addition of
noise, and illumination changes, etc. The most popular choice
with the above merits is SFIT feature [1]. As a variation, SURF [9]
demonstrates good performance but achieves better efficiency.
Recently, a binary feature BRIEF [10] and its variation ORB [11]
have been proposed and attracted lots of attention.

Feature Quantization Usually, several hundred or thousand
local features are extracted from a single image. To achieve a

compact representation, high-dimensional local features are
quantized to visual words, and an image can be represented as a
“bag” of visual words. Therefore, a visual codebook containing
visual words needs to be generated first. The most intuitive visual
codebook generation method is k-means [2] or hierarchical k-
means [6] for large size visual codebook generation.

With visual codebook defined, feature quantization is to assign a
visual word ID to each feature. The most naive choice is finding
the closest (the most similar) visual word of a given feature by
linear scan, which, however, suffers expensive computational
cost. Usually, approximate nearest neighbor (ANN) search
methods are adopted to speed up the searching process, with
sacrifice of accuracy to some extent. In [1], a k-d tree [21] is
utilized with a best-bin-first modification to find approximate
nearest neighbors to the descriptor vector of the query. In [6],
based on hierarchical vocabulary tree, an efficient approximate
nearest neighbor search is achieved by propagating the query
feature vector from the root node down the tree by comparing the
corresponding child nodes and choosing the closest one. In [12],
a k-d forest approximation algorithm is proposed with reduced
time complexity. To reduce the quantization loss, a descriptor-
dependent soft assignment scheme [13] is proposed to map a
feature vector to a weighted combination of several visual words.
In [14], the high dimensional SIFT descriptor space is partitioned
into regular lattices. Although demonstrated to work well in image
classification, in [13], regular lattice quantization is reported
working significant worse than [6][13] in large-scale image search.
In [27], a novel scheme is proposed to jointly optimize the
dimension reduction and indexing. In [28], a compact image
signature, called Residual Enhanced Visual Vector, is designed
via quantization residue aggregation and classification-aware
dimensionality reduction. In [29] and [30], descriptive and
contextual visual vocabularies are generated respectively for
large-scale image applications, such as image search.

In [15], for each feature quantized to a visual word, feature
dimension is further performed and a binary signature is generated
with a pre-trained median vector. Such binary signature will be
used for feature matching verification in on-line retrieval. In [26],
a variation of Hamming Embedding [15], i.e., the Asymmetric
Hamming Embedding scheme, is proposed to better exploit the
information conveyed by the binary signature.

Index Strategy Inspired by the success of text search engines,
inverted file structure [23] has been successfully used for large-
scale image search [2][3][4][5][6][13][15][16]. In essence,
inverted file structure is a compact representation of a sparse
matrix, whose row and column denote visual word and image,
respectively. In on-line retrieval, only those images sharing
common visual words with the query image need to be checked.
Therefore, the number of candidate images to be compared is
greatly reduced, achieving efficient response.

In inverted file structure, each visual word is followed by an
inverted file list of entries. Each entry stores the ID of image
where the visual word appears, and some other clues for
verification or similarity measurement. For instance, Hamming
Embedding [15] generates a 64-bit Hamming code for each
feature to verify descriptor matching. Bundled Feature [16] stores
the x-order and y-order of each SIFT feature located in the
bundled area. The geometric clues, such as feature position, scale,
and orientation, are also stored in inverted file list for verification
of geometric consistency [3][4][15][16][17].

170

To further reduce the memory cost of inverted file structure, a
visual word vector is mapped to a low-dimensional representation
by a group of min-hash functions [18] [19]. Consequently, only a
small constant amount of data per image needs to be stored.

Post Processing The initially returned result list can be further
refined by exploring the spatial context or enhancing the original
query. Spatial verification [3] [4] [15] [17] [19] and query
expansion [5] [24] are two of the most successful post-processing
techniques to boost the accuracy of large-scale image search.

Spatial context is an important clue to remove false positive visual
matches. Lots of work has been done on spatial verification. In [2],
locally spatial consistency is imposed to filter visual-word
matches with low support. In [15], weak geometric consistency on
scale and orientation is imposed to quickly filter potential false
matches. In [3], global spatial verification is performed based on a
variation of RANSAC [20]. An affine model is estimated to filter
local matches that fail to fit the model. In [4] [17], the geometric
context among local features is encoded into binary maps. And
then it recursively removes geometrically inconsistent matches by
analyzing those coding maps.

Query expansion, leveraged from text retrieval, reissues the initial
highly-ranked results to generate new queries. Some relevant
features, which are not present in the original query, can be used
to enrich the original query to further improve the recall
performance. Several strategies, such as average query expansion,
transitive closure expansion, recursive expansion, intra-expansion,
and inter-expansion, etc. have been discussed in [5] [24].

3. METHOD
In this paper, we focus on feature quantization, which plays a key
role of BoW model. We first introduce our scalar quantization
strategy in Section 3.1. Then, in Section 3.2, we discuss how to
adapt the scalar quantization result to the classic inverted file
structure for scalable image search. In Section 3.3, we discuss a
soft quantization scheme to further reduce the quantization error
in on-line query stage. Finally, a summary of our quantization
algorithm is given in Section 3.4.

3.1 Scalar Quantization
High dimensional SIFT descriptors (L2-normalized 128-D vectors
[1]) are extracted from images for discrimination. Each dimension
of the descriptor vector corresponds to a bin of concatenated
orientation histograms. Generally, similar SIFT features have
relatively smaller distances than different features. Features from
the same source, e.g. image patch, may not be exactly same due to
image noise. But their values on the 128 bins usually share some
common patterns, e.g., the pair-wise differences between most of
bins are similar and stable. Therefore, it can be easily extended
that the differences between bins and a predefined threshold are
stable for most bins. Based on such observation, we propose a
scalar quantization strategy.

Given a high dimensional feature vector
dT

d Rffff ),,,(21  , where),,2,1(, diRfi  , and d

denotes the feature dimension size. For SIFT descriptor, 128d .
We define a quantization function)(q to transform f to a bit

vector T
dbbbb),,,(21  , as follows:










ff

ff
b

i

i
i ˆ if0

ˆ if1
),,2,1(di  (1)

where f̂ is a threshold determined by vector f .

The threshold f̂ is an important parameter, which determines the
discriminative power of the quantization results. If the
discriminative power of SIFT is well kept in scalar quantization,
the Hamming distance between scalar vectors b should be
consistent with the L2 distance between original feature vectors f.

There are many methods to choose the threshold f̂ . In this paper,

we choose f̂ as the median value of vector f . The philosophy
behind it is that, the median value is relatively stable to changes in
some bins of a long vector. The quantization function)(q is a
kind of hashing. Unlike classic LSH methods involving many
hashing tables and functions [8] [19], our scheme needs only one
hash function and therefore is much simpler and more efficient.

With each high dimension feature quantized to a bit-stream
vector, the feature comparison is transformed to the comparison of
binary vectors, which can be efficiently accomplished by
exclusive-OR operation and measured by Hamming distance.

(a)

(b)

 (c)

Figure 1. The statistics on 111008.4  pairs of SIFT descriptors.
(a) Descriptor pair frequency vs. Hamming distance; (b) The
average L2-distance vs. Hamming distance; (c) The average
standard deviation vs. Hamming distance.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
x 10

10

Hamming distance

fr
eq

ue
nc

y
of

 S
IF

T
 d

es
cr

ip
to

r
pa

ir

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Hamming distance

av
er

ag
e

L2
 d

is
ta

ne

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

Hamming distance

av
er

ag
e

st
an

da
rd

 d
ev

ia
tio

n

171

To demonstrate the discriminative power of SIFT descriptors is
well kept in our scalar quantization, we have made a statistical

study on 111008.4  SIFT descriptor pairs, which include every
SIFT pair extracted from image pairs randomly sampled from a
large image dataset. For each descriptor pair, its L2 distance before
scalar quantization and Hamming distance after scalar
quantization are calculated. As shown in Fig. 1(a), the distribution
of Hamming distances between these descriptors exhibits a
Gaussian-like distribution. From Fig. 1 (b) and Fig. 1(c), it is
observed that the Hamming distance between our quantized bit-
vectors is consistent with the average L2-distance, with relatively
small standard deviation (computed on the unit-normalized
descriptors). To further reduce the deviation, we use a variation of
Eq. (1) and transform the descriptor vector to a 256-bit vector,
which will be discussed at the end of this section.

(a)

(b)

Figure 2. Example of feature matches. (a) A local match
between two images. The endpoints of the green line denote
the key point positions of two SIFT features. The radius of the
red circle centered at the key points is proportional to the
SIFT feature’s characteristic scale. (b) top: the 128-D
descriptor of the matched SIFT feature in the left image;
middle: the 128-D descriptor of the matched SIFT feature in
the right image; bottom: the XOR result of the binary SIFT
features from the two matched SIFT features. The red
horizontal lines in the “top” and “bottom” figure denote the
median values of the two SIFT descriptors, respectively.

It should be noted that our approach is different from the SIFT
quantization methods proposed in lattice quantization [14] and
Hamming Embedding [15]. In [14], the descriptor space is
arbitrarily split along dimension axes into regular lattice. In [15],
for each bin/dimension, a median value of all training features on
that bin in the reduced dimensional space is computed for
binarizing the corresponding dimension. Both two approaches
ignore the unique property of every individual SIFT descriptor.

As shown in Fig. 1, the original features’ difference in Euclidean
distance can be well captured by their Hamming distance after
scalar quantization. Fig. 2 shows a real instance of local descriptor
match across two images with scalar quantization. From Fig. 2(b),
it can be observed that these two SIFT descriptors have similar
magnitude in the corresponding bins with some small variations
before quantization. After scalar quantization, they differ from
each other in six bins. With a proper threshold, it can be easily
determined whether the local match is true or false just by the
exclusive-OR (XOR) operation between the quantized bit-vectors.
Obviously, the error in the exclusive-OR result is likely to occur
in those bins with magnitude around the median value. Intuitively,
the median threshold could be increased to some upper level,
which can make the Hamming distance between similar SIFT
descriptors smaller. However, such modification will also reduce
the Hamming distance between irrelevant descriptors and cause
false descriptor matches.

(a)

 (b)

Figure 3. Statistics of SIFT descriptors. (a) A typical SIFT
descriptor with bins sorted by magnitude in each dimension;
(b) The frequency distribution of median value of the
descriptor vector among 100 million SIFT descriptors.

20 40 60 80 100 120
0

50

100

150

feature dimension

m
ag

ni
tu

de

20 40 60 80 100 120
0

50

100

150

feature dimension

m
ag

ni
tu

de

20 40 60 80 100 120
0

0.5

1

feature dimension

X
O

R
 r

es
ul

t

0 20 40 60 80 100 120
0

50

100

150

SIFT descriptor bin (sorted by magnitude)

m
ag

ni
tu

de

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7
x 10

6

median value

fr
eq

ue
nc

y
of

 S
IF

T
 f

ea
tu

re

172

Another statistical study on the distribution of median value of
SIFT descriptor is also performed. 100 million SIFT descriptors
are sampled from a large dataset, and the median value of each
128-D descriptor vector is computed. As shown in Fig. 3, the
median value of most SIFT descriptors is relatively small, around
10, but the maximum magnitude in some bins still can reach more
than 140. This may incur potential quantization loss since those
bins with magnitude above the median are not well distinguished.
To address this issue, the same scalar quantization strategy could
be conducted again on those bins with magnitude above the
median. Intuitively, such operation can be performed recursively.
However, it will cause additional storage cost. In our
implementation, we only perform the scalar quantization twice,
i.e., first on the whole 128 elements, and second on those
elements with magnitude above the median value. Consequently,

a SIFT descriptor 128
12821),,,(Rffff T   is quantized to a

256-bit vector Tbbbb),,,(
~

25621  , as follows:

 















1

21

2

128
ˆ if)0 ,0(

ˆˆ if)0 ,1(

ˆ if)1 ,1(

,

ff

fff

ff

bb

i

i

i

ii)128,,2,1(i (2)

where
2

ˆ ,
2

ˆ 3332
2

6564
1

gg
f

gg
f





 ,),,,(12821 ggg  is the

sorted vector from),,,(12821 fff  in descending order. With Eq.

(2), each dimension of SIFT descriptor is divided into three parts,
and two bits are used to encode each part.

With scalar quantization by Eq. (2), the comparison of SIFT
descriptors in L2-distance is captured by the Hamming distance of
the corresponding 256-bit vectors. Since our target is large-scale
image search, how to adapt our scalar quantization result to the
classic inverted file structure for scalable image search needs to be
explored.

3.2 Indexing with Inverted File Structure
In image search, the problem of feature matching between images
can be regarded as finding feature’s nearest or approximate-
nearest neighbors. When the feature amount becomes very large,
say, over one billion, it is too computationally expensive to find
the nearest neighbors by linearly comparing all features’ binary
vectors. To address this problem, leveraged from text retrieval,
inverted file structure can be used for scalable indexing of large-
scale image dataset.

In traditional inverted file structure for image search, a group of
visual words are pre-trained. And each visual word is followed
with an entry list of image features, which are quantized to this
followed visual word. Each indexed feature in the list records its
image ID and some other clues.

To adapt to the classic inverted file structure to index image
features, we define code word1 by the first t bits of the binary
code generated by scalar quantization result. Then, the rest bits of
features are recorded in the entry list of the corresponding code
word. In fact, any other t bits of the binary code are expected to
be equivalent. A toy example is shown in Fig. 4. Intuitively, if a
code word is represented with t bits, the total number of code

1 It should be noted that our code word is different from the

traditional visual word [2] [6].

words could be amounted up to t2 . However, it is found from
experiments that, when t increases above 20, the amount of non-

empty code words becomes much smaller than t2 , as shown in
Fig. 5. For example, when t increases to 32, the total number of

code words could be up to 932 1042  (4 billion). However, the
number of unique code words generated by scalar quantization

(on one million image database) is even much less than 810 .

Generally, the more code words are generated, the shorter the
average length of indexed feature list becomes, and the less the
time cost is needed to query a new feature. However, in our
method, we will introduce a soft quantization scheme (Section 3.3)
to expand more code words for each query feature. And the
number of expanded indexed feature lists is polynomial to t . To
make a tradeoff, in our experiments, we select 32t , and 46.5
million “code words” are obtained.

Fig. 6 shows the distribution of code word occurrence on one
million image database. It can be observed that, of the 46.5
million code words, only the top few thousand code words have
very high frequency. Those code words are prevalent in many
images, and their distinctive power is weak. As suggested by [2],
we apply a stop-list to ignore those high frequency code words
that occur in more than 0.11% of the total image dataset.
Experiments reveal that a proper stop-list may not affect the
search accuracy, but does avoid checking many code word lists
and achieves gain in efficiency.

CW (100) Indexed
Features

……

Code Word ID Indexed feature list for image database

Image ID (10101)

Figure 4. A toy example of image feature indexed with
inverted file structure. The scalar quantization result of the
indexed feature is an 8-bit vector (1001 0101). The first three
bits denote its code word ID (100), and the remaining 5 bits
(10101) are stored in the inverted file list.

Figure 5. The amount of unique code words (top t bits from
256-bit vector) for different t on 1-million image database.

16 18 20 22 24 26 28 30 32
10

4

10
5

10
6

10
7

10
8

bit number t

am
ou

nt
 o

f
un

iq
ue

 c
od

e
w

or
ds

173

Figure 6. Frequency of code words among one million images.

Once all features of an image dataset have been indexed with the
inverted file structure, given a new SIFT descriptor, it will be first
quantized to a 256-bit vector with scalar quantization. Then
through the top 32 bits, the corresponding code word can be
located. And only the indexed features following the matched
code word will be checked. Therefore, the searching space is
greatly reduced. Finally, the exclusive-OR operation is performed
on the remained 224 bits of the query vector and those of indexed
features recorded in the entry list of the matched code word. A
threshold  on the Hamming distance between 256-bit vectors
needs to be set for true-match judgment, such that those matches
with Hamming distance no larger than  will be accepted as true
matches. The impact of  will be studied in Section 4.1.

CW0 (000)

CW1 (001)

CW2 (010)

CW3 (011)

CW4 (100)

CW5 (101)

CW6 (110)

CW7 (111)

……

……

……

……

……

……

……

……

Code Word ID Indexed feature list for image database

Figure 7. A toy example of soft quantization with bit-stream
code words. There are eight code words, each represented
with a three-bit vector. Each code word is followed by an
indexed image feature list. (Best viewed in color PDF)

3.3 Reduction of Quantization Error
In Section 3.2, we define code word by the top 32 bits of the bit
vector from scalar quantization. However, such simple processing
will exclude some candidate features that have some flipping bits
among the top 32 bits (e.g., 0 changes to 1) due to noise. To
address this issue, we propose a soft strategy to reduce the
quantization error. Assuming such flipping happens only to very
few dimensions, features before and after the flipping should be

still very similar, i.e., small Hamming distance. To identify these
candidate features, it is desired to quickly enumerate all of its
possible nearest neighbors within a predefined Hamming distance
d , just by alternatively flipping some bits. This is equivalent to a
tolerant expansion of the original code word. The impact of
expansion-bit number d will be studied in Section 4.1.

As shown in the toy example in Fig. 7, the code word of a new
query feature is a bit-vector 100, i.e., CW4 in pink color. To
identify all of candidate features, its possible nearest neighbors
(e.g., Hamming distance d =1) will be obtained by flipping one bit
in turn, which generates three additional code words (in green
color): CW0 (000), CW5 (101) and CW6 (110). These code words
are nearest neighbors of CW4 in the Hamming space. Then,
besides CW4, the indexed feature lists of these three expanded
code words will be also considered as candidate true matches, and
all features in these expanded lists will be further compared on
their rest bit-codes.

Figure 8. The general steps of off-line indexing with scalar
quantization.

Figure 9. The general steps of on-line querying with scalar
quantization.

3.4 Algorithm Summary
Overall, the proposed scalar quantization consists of two stages:
offline indexing and on-line querying. In this section, we
summarize the general steps of these two stages in Fig. 8 and Fig.
9, respectively. Given a query image, after looking up the index

10
0

10
2

10
4

10
6

10
8

0

0.5

1

1.5

2
x 10

5

code word rank (sorted by frequency)

co
de

 w
or

d
fr

eq
ue

nc
y

On-line Querying with Scalar Quantization

1) Given a 128-D SIFT descriptor in a query image,
convert it to a 256-bit vector by Eq. (2);

2) Identify its code word ID qV by the first 32 bits of the

256-bit vector.

3) For each feature in the inverted image list linked to qV ,

compare its indexed 224-bit vector with the query
feature. If the total Hamming distance in 256-bit is not
greater than  , accept the indexed feature as true
match.

4) Expand the qV to include its nearest code words

 ,2,1 , iV i
q with Hamming distance no greater

than d .

5) For each i
qV , repeat step (3).

Off-line Indexing with Scalar Quantization

1) Given a 128-D SIFT descriptor from an index image,
convert it to a 256-bit vector by Eq. (2);

2) Identify code word ID dV by the first 32 bits of the

256-bit vector.

3) In the inverted image list of dV , store both the ID of

the image where the feature appears, and the remaining
224 bits of the quantized 256-bit vector.

174

file with the proposed on-line querying steps, we can obtain the
matching results between the query image and target images.
Finally, we formulate image retrieval as a voting problem and
define the similarity between two images by the cardinality of
matched feature set.

4. EXPERIMENTS
Our basic dataset is built by crawling one million images from the
Web. We take the partial-duplicate image dataset released in [17]
as the ground-truth dataset, which contains 1104 images from 33
groups, including “Mona Lisa”, “KFC logo”, “American Gothic
Painting”, “Seven-eleven logo”, etc. To evaluate the performance
with respect to the size of dataset, we construct three smaller
datasets (50K, 200K, and 500K) by sampling the basic dataset.
From the ground truth dataset, 108 representative query images
are randomly selected for evaluation comparison. Similar to
[3][14][16], mean average precision (mAP) is selected to evaluate
the accuracy performance of all methods.

We use the standard SIFT feature [1] for image representation.
Key points are detected with the Difference-of-Gaussian (DoG)
detector. A 128-D orientation histogram (SIFT descriptor) is
extracted to capture the visual appearance of local patch centered
at each key point. Before feature extraction, large images are
scaled to have a maximum axis size of 400.

4.1 Parameter Analysis
There are two parameters in our approach: Hamming distance
threshold  and expansion-bit number d. To study the impact of
these two parameters on search performance and computational
cost, we compare the mAP performance and average time cost per
query under different parameter settings of  and d on the 1-M
image dataset. The results are shown in Fig. 10.

From Fig. 10(a), it can be observed that when the Hamming
distance threshold  increases, the mAP performance first
increases and then keeps stable and gradually drops a little after it
reaches the peak, where 24 . This is intuitive, since increasing
 always includes more candidate true matches, but when  is
too large, many noisy matches are also included and pollute the
results. On the other hand, when expansion-bit number d increases,
the mAP gradually increases. This is due to the fact that more
candidate code word lists are involved in matching verification,
and more true matches will be kept.

In terms of efficiency, as shown in Fig. 10(b), the average time
cost per query increases when  increases. This is due to that,
when  is larger, we have to make more exclusive-OR operations,
until the Hamming distance between two 224-bit vectors is above
a threshold. As d increases, the querying time cost rises
significantly. This is because the expanded code word list number
is exponential to the expansion-bit number d.

Considering the tradeoff between mAP performance and time cost,
 is set as 24 and d is set as 2 in the rest experiments.

4.2 Evaluation
Comparison Algorithms: We compare our approach with three
state-of-the-art feature quantization algorithms in large-scale
image search. The BoW approach with visual vocabulary tree [6]
is selected as the “baseline” method. We test various sizes of
visual word vocabulary, and the 1-million vocabulary gives the
best overall performance. As suggested in [2][6], the stop-list
strategy is also adopted to improve efficiency. To enhance the
baseline, two other algorithms, i.e., soft assignment [13] and
Hamming embedding [15], are also compared.

(a)

(b)

Figure 10. (a)The mAP performance and (b) average time cost
per query under different parameter settings of  and d on
the 1-million image dataset.

Soft assignment [13] identifies a local feature with a weighted
combination of three nearby visual words. We use the default
parameters as set in [13]. The “nearby” visual words for a given
feature are found by the approximate nearest neighbor search
algorithm k-d tree [21][25]. A public library for approximate
nearest neighbor (ANN) searching [22] is used in our experiments.
To make a tradeoff between accuracy and efficiency, we select the
error bound parameter [22] as five.

Hamming embedding [15] generates additional Hamming codes
(64 bits) to filter more candidate features which are quantized to
the same visual word but have large hamming distance to the
query feature. We denote this method as “HE”. We have tested
different thresholds for the Hamming distance in HE, and the best
performance is achieved when the threshold is selected as 12.
Since the focus of this paper is feature quantization, the weak
geometric consistency scheme proposed in the Hamming
embedding approach is not added in the experiments.

Accuracy: From Fig. 11, it can be observed that our approach
outperforms all the other three methods on large image databases.
On the 1-million dataset, The mAP of the baseline is 0.38. Our

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Hamming distance threshold 

m
A

P

d = 3

d = 2
d = 1

d = 0

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Hamming distance threshold 

av
ea

ge
 t

im
e

co
st

 p
er

 q
ue

ry
 (

se
co

nd
)

d = 3

d = 2
d = 1

d = 0

175

approach hits 0.54, a relatively 42.1% improvement. Since
Hamming codes can effectively filter false featurs, the Hamming
Embdding approach achieves a mAP of 0.43, but still 11% lower
than our approach. The mAP improvement of soft assignment
approach is higher than HE. It reaches a mAP of 0.48. Compared
with soft assignment, our approach still enjoys a relatively 12.5%
improvement. Such improvement stems from the distance based
thresholding for matching verification of our approach. It is
interesting to note that, when the database size decreases to 50 K,
our approach is worse than the soft assignment. This is due to our
tradeoff selection on the expansion bit number and efficiency.

Figure 11. Performance (mAP) comparison of different
methods with different database sizes.

Efficiency: The experiments are performed on a server with 3.4
GHz CPU and 16 GB memory. We compare efficiency in both
off-line indexing and on-line query. From Table 1, it can be
observed that our approach is the most efficient one in indexing
image features. It takes our approach 18.86 seconds to index one
million SIFT features, which is 2 times, 2.5 times, and 40 times
faster than the baseline, HE and soft assignment approach,
respectively. Fig. 12 shows the average time cost per query of all
four approaches. It should be noted that the time cost of SIFT
feature extraction is not included for all approaches. It takes the
baseline 0.12 second in average to perform one query. HE is the
most time-efficient one and costs only 0.05 second to finish one
query in average. Soft assignment is the most time-consuming
approach, consuming 0.52 second in average per query. Although
our approach costs more time than the baseline approach, it may
still meet user’s expectation of fast response time (average 0.48
second per query) but with much higher search accuracy. It is
slightly more efficient than the soft assignment approach, with
0.04 second less in average per query.

It should be noted that a distinctive characteristic of our approach
from other three comparison methods is that, no visual codebook
needed to be trained before feature quantization, which could save
a lot of computational time. As a contrast, all three comparison
algorithms have to train a large visual codebook containing as
many as one million visual words, which usually costs days of
time. In order to train a visual codebook of one million in size,
usually about 100 million SFIT descriptors are needed as training
samples. However, even with so many training samples, it is still
unclear whether these training samples are enough to generate
desired visual words to capture the sample distribution in the so

large 128-D descriptor space. Moreover, when more new
features are indexed, it may be necessary to update the visual
codebook accordingly (e.g., re-cluster all the features), which is
always time consuming and computationally expensive. On the
contrary, our scalar quantization just needs to incrementally add
new code words to the existing visual codebook (code word set).

Table 1. Time cost to index 1 million SIFT features for four
approaches in off-line stage.

Method baseline HE
soft

assignment
our

approach
Time cost
(second)

53.72 64.82 771.09 18.86

0.00

0.10

0.20

0.30

0.40

0.50

0.60

baseline HE soft assignment our approach

0.12

0.05

0.52
0.48

av
e
ra
ge

 ti
m
e
 c
o
st
 p
e
r
q
u
e
ry
(s
e
co
n
d
)

Figure 12. Comparison of average query time cost of different
methods on the 1M database. (Not including the time cost for
SIFT feature extraction)

Table 2. Memory cost for four approaches.

 Memory cost per
indexed feature (byte)

Memory cost for
quantizer (byte)

baseline 8 142M
HE 12 398M
soft assignment 24 506M
our approach 32 0

Memory Cost: We compare memory cost of all approaches on
both indexed feature and quantizer, as listed in Table 2. In terms of
memory cost per indexed feature, for each feature, the baseline
approach needs 4 bytes to store image ID and another 4 bytes to
store the tf-idf weight. The soft assignment has to store each indexed
features in three visual word lists, therefore it costs 24 bytes, three
times the memory cost of the baseline approach. In Hamming
Embedding approach, it allocates 4 bytes on image ID and 8 bytes
on the 64-bit Hamming code. Compared with the above three
methods, our approach consumes more memory. It takes 4 bytes to
store image ID and additional 28 bytes to store another 224 bits
from quantization results.

Besides indexed feature, all the three comparison methods have to
load a large quantizer into main memory. A hierarchical visual
vocabulary tree (about 142M bytes) is required for both the baseline
and HE. Besides, HE has to store a 64-D median vector (floating
point values) for each leaf node. As for soft assignment approach,
besides the visual words (leaf nodes of the vocabulary tree, 128M
bytes), it also needs to generate a k-d tree (about 378M bytes)to
quantize features. As a contrast, our approach needs no memory
cost on quantizer.

50K 200K 500K 1M
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

database size

m
A

P

our approach

soft assignment
HE

baseline

176

4.3 Sample Results
In Fig. 13, a sample edited image “Apollo” is selected as a query
to demonstrate the search performance of all four approaches on
the 1-million dataset. For this query, compared with the baseline
approach, our approach improves the mAP from 0.36 to 0.846,
with relatively 135% improvement. Fig. 13 (c) and (d) show the
top images returned by the baseline approach and our approach,
respectively. Due to the poor quality of the query image, the
returned results of the baseline are polluted by irrelevant images.
As for our approach, more relevant images are ranked to the top.

Fig. 14 shows a difficult image sample on which our method
works poorly. The query image is the first image with label rank-1
in Fig. 14(a). Since the query contains a large portion of patches
containing rich text, the returned results are polluted by many
screenshot images of documents or web pages. The matching
result between the query and the fifth returned image is shown in
Fig. 14(b). Although irrelevant in visual content, they still share
many local similar patterns. Such query is also very challenging
for the other three comparison methods. To filter such false
positives, spatial verification algorithms [3] [17] could be
combined with our scalar quantization to re-rank the results.

(a) (b)

(c)

(d)

Figure 13. Sample results comparing the baseline and our
approach. (a) Query image; (b) Comparison of the precision-
recall curves of all four approaches; (c) The top images (rank
11 to rank 20) returned by the baseline; (d) The top images
returned by our approach (rank 11 to rank 20). The first 10
images are true positive for both baseline and our approach
and therefore are not shown. The false positives are shown
with red dashed bounding boxes. (Best viewed in color PDF)

(a)

(b)

Figure 14. Retrieval examples. (a) Retrieval results of the
query (Rank 1). The number of local matches is shown in the
bracket below each image. (b) Feature matching between the
query and the rank 5 result. (Best viewed in color PDF)

5. DISCUSSION

5.1 Threshold in Quantization
In our scalar quantization, the threshold f̂ in Eq. (1) is selected
as the median value of the feature descriptor, so as in Eq. (2).
However, it is still an open question whether the median value is
the best choice. There are many alternatives for it, such as mean
value of vector f . Alternatively, we can also cluster the 128
elements of a SIFT descriptor into two clusters and choose the
cluster boundary as the threshold f̂ . For some specific
applications, f̂ can also be learned by training. For example,
some positive and negative matching pairs are manually labeled
beforehand. Then, the threshold f̂ can be learned to yield the best
classification performance for discrimination.

5.2 Dimension Reduction
Our approach consumes more memory to index each feature (28
bytes) than other three approaches. It is desired that the memory
cost can be further reduced without much sacrifice of search
accuracy. As discussed in Section 3.1, it can be inferred that the
size of scalar quantization result is proportional to the dimension
of SIFT descriptors. If SIFT descriptors can be reduced in
dimension, the quantization result will be more compact. There
are two possible ways to achieve this goal. One method is to
project SIFT descriptors to a low dimensional space by PCA. The
dimension-reduced features are expected to keep the
characteristics of the original SIFT descriptors, so that our scalar
quantization can be applied in the new feature space as well.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

our approach

soft assignment
HE

baseline

177

The second possible method is to change the formulation of SIFT
descriptors, instead of performing dimension reduction. The
original SIFT descriptor is designed as a combination of 8-D
orientation histogram on 16 (4 4) patches. It is possible to
reformulate it in a simple way, such as dividing the local region
into 3 3 patches instead of 4 4, and extracting an 8-D
orientation histogram on each patch. And SIFT descriptor
dimension will be reduced from 128 to 72. It is demonstrated by
Lowe [1] that, such a design only causes a small drop on the
closest neighbor matching. Its impact on large-scale image search
still needs to be further studied.

5.3 Extension to General Features
In this paper, we present our scalar quantization based on SIFT
descriptors. An intuitive question “can the proposed scalar
quantization algorithm be extended to general feature vectors?”
may be interesting. SIFT descriptors are very distinctive, with
most energy concentrated on relatively few bins, as shown by a
typical example in Fig. 3(a). Besides, it captures the local visual
appearance with very strict representation. Such property makes
our approach work well on SIFT descriptors. Therefore, our scalar
quantization can be generally extended to other features with
similar property as SIFT feature.

6. CONCLUSION
In this paper, a novel quantization scheme “scalar quantization” is
proposed on SIFT descriptors for large-scale image search. Scalar
quantization quantizes a SIFT descriptor to a 256-bit vector,
which can be easily adapted to the classic inverted file structure
for indexing. Distinguished from the traditional vector
quantization approaches, the proposed scalar quantization
approach does not involve any kind of visual codebook training or
clustering. The quantizer is defined by an individual feature itself
and is independent of collections of images. Further, soft
quantization is proposed to efficiently enumerate the nearest code
words for quantization error reduction. Experiments on large-scale
image search demonstrate the superiority of scalar quantization on
retrieval accuracy over other state-of-the-art methods

In the future, investigation will be performed on developing more
compact bit-vector representation in scalar quantization.
Moreover, the flipping behavior of bit-vectors of similar SIFT
descriptors will be explored. Some insights are expected to be
obtained from this study, which may be beneficial for searching
space reduction in soft quantization step and consequently
improve retrieval efficiency. Further, various choices for
threshold selection in scalar quantization will be studied.

7. ACKNOWLEDGMENTS
This work was supported in part to Dr. Lu by Research
Enhancement Program (REP), start-up funding from the Texas
State University and DoD HBCU/MI grant W911NF-12-1-0057,
in part to Dr. Li by NSFC general project “Intelligent Video
Processing and Coding Based on Cloud Computing”, and in part
to Dr. Tian by ARO grant W911NF-12-1-0057, NSF IIS 1052851,
Faculty Research Awards by Google, NEC Laboratories of
America and FXPAL, UTSA START-R award, respectively.

8. REFERENCES
[1] D. Lowe. Distinctive image features form scale-invariant

keypoints. IJCV, 20(2): 91-110, 2004.
[2] J. Sivic and A. Zisserman. Video Google: a text retrieval

approach to object matching in videos. In Proc. ICCV, 2003.
[3] J. Philbin, et al. Object retrieval with large vocabularies and

fast spatial matching. In Proc. CVPR, 2007.

[4] W. Zhou, Y. Lu, H. Li, Y. Song, and Q. Tian. Spatial coding for
large scale partial-duplicate Web image search. In Proc. ACM
Multimedia, 2010.

[5] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total
recall: Automatic query expansion with a generative feature
model for object retrieval. In Proc. ICCV, 2007.

[6] D. Nister and H. Stewenius. Scalable recognition with a
vocabulary tree. In Proc. CVPR, 2006.

[7] J. Matas, et al. Robust wide baseline stereo from maximally
stable extremal regions. In Proc. BMVC, 2002.

[8] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest
point detectors. IJCV, 1(60):63–86, 2004.

[9] H. Bay, T. Tuytelaars, L. V. Gool. SURF: Speeded up robust
features. In Proc. ECCV, 2006.

[10] M. Calonder, et al. BRIEF: binary robust independent
elementary features. In Proc. ECCV, 2010.

[11] Ethan Rublee, et al. ORB: an efficient alternative to SIFT or
SURF. In Proc. ICCV, 2011.

[12] C. Silpa-Anan and R. Hartley. Localization using an image map.
In Australasian Conf. on Robo. and Auto., 2004.

[13] J. Philbin, O. Chum, M. Isard, J. Sivic and A. Zisserman. Lost in
quantization: Improving particular object retrieval in large scale
image databases. In Proc. CVPR, 2008.

[14] T. Tuytelaars, C. Schmid. Vector quantizing feature space with a
regular lattice. In Proc. ICCV, 2010.

[15] H. Jegou, M. Douze, and C. Schmid. Hamming embedding and
weak geometric consistency for large scale image search. In
Proc. ECCV, 2008.

[16] Z. Wu, Q. Ke, et al. Bundling features for large scale partial-
duplicate Web image search. In Proc. CVPR, 2009.

[17] W. Zhou, H. Li, Y. Lu, Q. Tian, Large scale image search with
geometric coding. In Proc. ACM Multimedia, 2011.

[18] O. Chum, J. Philbin, et al. Near duplicate image detection: min-
Hash and tf-idf weighting. In Proc. BMVC, 2008.

[19] O. Chum, M. Perdoch, and J. Matas. Geometric min-Hashing:
finding a (thick) needle in a haystack. In Proc. CVPR, 2009.

[20] M. A. Fischler, et al. Random Sample Consensus: A paradigm
for model fitting with applications to image analysis and
automated cartography. Comm. of the ACM, 24: 381–395, 1981.

[21] J. L. Bentley. K-d trees for semidynamic point sets. In Proc. 6th
Ann. ACM Sympos. Comput. Geom., pp. 187-197, 1990.

[22] S. Arya and D. Mount. Ann: Library for approximate nearest
neighbor searching. Available at
http://www.cs.umd.edu/~mount/ANN/.

[23] R. Baeza-Yates and B. Ribeiro-Neto. Modern information
retrieval. ACM Press, ISBN: 020139829, 1999.

[24] Y. Kuo, K. Chen, et al. Query expansion for hash-based image
object retrieval. In Proc. ACM Multimedia, 2009.

[25] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for
finding best matches in logarithmic expected time. ACM
Transactions on Mathematical Software, 3(3):209-226, 1977.

[26] M. Jain, H. Jégou and P. Gros. Asymmetric Hamming
embedding: taking the best of our bits for large scale image
search. In Proc. ACM Multimedia, 2011.

[27] H. Jégou, et al. Aggregating local descriptors into a compact
image representation. In Proc. CVPR, 2010.

[28] D. Chen, S. Tsai, et al. Residual enhanced visual vectors for on-
device image matching. In Asilomar Conference on Signals,
Systems, and Computers, 2011.

[29] S. Zhang, Q. Tian, G. Hua, Q. Huang, and W. Gao. Generating
descriptive visual words and visual phrases for large-scale image
applications. TIP, 20(9): 2664-2677, 2011.

[30] S. Zhang, et al. Building contextual visual vocabulary for large-
scale image applications. In Proc. ACM Multimedia, 2010.

178

