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Abstract

In this paper we introduce a novel image descriptor en-
abling accurate object categorization even with linear mod-
els. Akin to the popular attribute descriptors, our feature
vector comprises the outputs of a set of classifiers evaluated
on the image. However, unlike traditional attributes which
represent hand-selected object classes and predefined vi-
sual properties, our features are learned automatically and
correspond to “abstract” categories, which we name meta-
classes. Each meta-class is a super-category obtained by
grouping a set of object classes such that, collectively, they
are easy to distinguish from other sets of categories. By us-
ing “learnability” of the meta-classes as criterion for fea-
ture generation, we obtain a set of attributes that encode
general visual properties shared by multiple object classes
and that are effective in describing and recognizing even
novel categories, i.e., classes not present in the training
set. We demonstrate that simple linear SVMs trained on
our meta-class descriptor significantly outperform the best
known classifier on the Caltech256 benchmark. We also
present results on the 2010 ImageNet Challenge database
where our system produces results approaching those of the
best systems, but at a much lower computational cost.

1. Introduction
In this work we consider the problem of object class

recognition in large image databases. Over the last few
years this topic has received a growing amount of atten-
tion in the vision community [9, 27]. We argue, however,
that nearly all proposed systems have focused on a sce-
nario involving two restrictive assumptions: the first, is that
the recognition problem involves a fixed set of categories,
known before the creation of the database; the second, is
that there are no constraints on the learning and testing time
of the object classifiers, besides the requirement that train-
ing and testing must be feasible. This is clearly reflected in
the benchmarks of this field [13, 3], which measure the per-
formance of recognition systems solely in terms of classifi-

cation accuracy over a predefined set of classes, and without
consideration of the computational costs of the recognition.

We believe that these two assumptions do not meet the
requirements of modern applications of large-scale object
categorization. For example, test-recognition efficiency is a
fundamental requirement to be able to scale object classi-
fication to Web photo repositories, such as Flickr, which
are growing at rates of several millions new photos per
day. Furthermore, while a fixed set of object classifiers can
be used to annotate pictures with a set of predefined tags,
the interactive nature of searching and browsing large im-
age collections calls for the ability to allow users to define
their own personal query categories to be recognized and
retrieved from the database, ideally in real-time. Depend-
ing on the application, the user can define the query cat-
egory either by supplying a set of image examples of the
desired class, by performing relevance feedback on images
retrieved for predefined tags, or perhaps by bootstrapping
the recognition via text-to-image search. In all these cases,
the classifiers cannot be precomputed during an offline stage
and thus both training and testing must occur efficiently at
query-time in order to be able to provide results in reason-
able time to the user.

In this paper we consider the problem of designing a sys-
tem that can address these requirements: our goal is to de-
velop an approach that enables accurate real-time search
and recognition of arbitrary categories in gigantic image
collections, where the classes are not known at the time of
the creation of the database. We propose to achieve this goal
by means of a novel image descriptor enabling good recog-
nition accuracy even with simple linear classifiers, which
can be trained efficiently and – perhaps even more crucially
– can be tested in just a few seconds even on databases con-
taining millions of images. Rather than optimizing classifi-
cation accuracy for a fixed set of classes, our aim is to learn
a general image representation which can be used to de-
scribe and recognize arbitrary categories, even novel classes
not present in the training set used to learn the descriptor.
Furthermore, we show that our feature vector can be bina-
rized with little loss of recognition accuracy to produce a
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compact binary code that allows even gigantic image col-
lections to be kept in memory for more efficient testing.

Finally, while multiclass recognition of a fixed set of cat-
egories is not our main motivating application, nevertheless
we show that our approach achieves excellent performance
even on this task. On the Caltech256 benchmark, a sim-
ple linear SVM trained on our representation outperforms
the state-of-the-art LP-β classifier [12] trained on the same
low-level features used to learn our descriptor. On the 2010
ImageNet Challenge (ILSVRC2010) database, linear clas-
sification with our meta-class features achieves recognition
accuracy only 10.3% lower than the winner of the competi-
tion [20], which is a system that was trained for a week us-
ing a powerful cluster of machines, a specialized hardware
architecture for memory sharing, and a file system capable
of handling terabytes of data; instead, our approach allows
use to fit the entire ILSVRC2010 training and testing set in
the RAM of a standard computer and produce results within
a day using a budget PC.

In our approach we use as entries of our image descriptor
the outputs of a predefined set of nonlinear classifiers eval-
uated on low-level features computed from the photo. This
implies that a simple linear classification model applied to
this descriptor effectively implements a nonlinear function
of the original low-level features. As demonstrated in re-
cent literature on object categorization [30, 12], these non-
linearities are critical to achieve good categorization accu-
racy with low-level features. The advantage of our approach
is that our classification model, albeit nonlinear in the low-
level features, remains linear in our descriptor and thus it
enables efficient training and testing. We are not the first
to propose the idea of using the scores of nonlinear classi-
fiers as features to achieve good recognition accuracy at low
cost [29, 19]. However, the fundamental difference with
our work is that in these prior systems the individual classi-
fiers defining the descriptor are trained to recognize a hand-
selected set of classes or visual properties. Our contribution
is to replace these subjectively-chosen classes with learned
“abstract” categories, i.e., categories that do not necessarily
exist in the real-world but that capture salient common vi-
sual properties shared among many object classes. We refer
to these abstract categories as “meta-classes”.

Intuitively, we want our meta-class classifiers to be “re-
peatable” (i.e., they should produce similar outputs on im-
ages of the same object category) and to capture properties
of the image that are useful for categorization. We formal-
ize this intuition by defining each meta-class to be a set of
object classes in the training set. Specifically, we hierar-
chically partition the set of training object classes into sub-
sets such that each meta-class subset can be easily recog-
nized from the others. This criterion forces the classifiers
trained on the meta-classes to be repeatable. At the same
time, since the meta-classes are superclasses of the original

training categories, by definition the classifiers trained on
them will capture common visual properties shared by sim-
ilar classes while being effective to discriminate visually-
dissimilar object classes. We demonstrate that our meta-
class features greatly outperform classifier-based descrip-
tors defined in terms of hand-selected classes [29], precisely
because our abstract categories encode properties shared by
many object classes and thus can produce better general-
ization on novel categories. Furthermore, we present for
the first time categorization results using classifier-based
descriptors on the large-scale ILSVRC2010 database and
study their efficiency advantages compared to prior work.

2. Related Work
The problem of object class recognition in large datasets

has been the subject of much recent work. While nonlin-
ear classifiers are recognized as the state-of-the-art in terms
of categorization accuracy [12], they are difficult to scale to
large training sets. Thus, much more efficient linear mod-
els are typically adopted in recognition settings involving a
large number of object classes, with many image examples
per class [9]. As a result, much work in the last few years
has focused on methods to retain high recognition accuracy
even with linear classifiers. We can loosely divide these
methods in three categories.

The first category comprises techniques to approximate
nonlinear kernel distances via explicit feature maps [22,
31]: for many popular kernels in computer vision, these
methods provide analytical mappings to slightly higher-
dimensional feature spaces where inner products approxi-
mate the kernel distance. This permits to achieve results
comparable to those of the best nonlinear classifiers with
simple linear models. However, these approaches are dif-
ficult to use when the training and test sets are very large,
due to the high storage costs caused by the dimensionality
of the data in the “lifted-up” space.

A second line of work involves the use of high-
dimensional feature vectors to produce a higher degree of
linear separability [27]: this idea is similar to the one behind
the use of explicit feature maps, with the difference that
these high-dimensional signatures are not produced with
the intent of approximating kernel distances between lower-
dimensional features but rather to yield higher accuracy
with linear models. Since large datasets represented with
these high-dimensional descriptors cannot be kept in mem-
ory, the feature vectors are often stored in compressed form
and they are decompressed on the fly “one at a time” during
training and testing [27, 15]. An exception is the work of
Lin et al. [20] where the high storage and I/O costs caused
by their high-dimensional descriptor were absorbed by a
large system infrastructure consisting of Apache Hadoop to
distribute computation and storage over many machines.

Finally, the third strand of related work involves the use



of image descriptors encoding categorical information as
features: the image is represented in terms of its relation
to a set of basis object classes [33, 29, 7] or as the response
map to a set of detectors [19]. Even linear models applied
to these high-level representations have been shown to pro-
duce good categorization accuracy. These descriptors can
be viewed as generalizing attributes [16, 11, 17], which are
semantic characteristics selected by humans as associated
to the classes to recognize.

Our approach is most closely related to this third line
of work, as we also represent images in terms of the out-
puts of classifiers learned for a set of basis classes. How-
ever, we demonstrate that better accuracy can be achieved
by learning the basis classes as abstract visual categories
useful for recognition rather than by hand-selecting them.
Our meta-classes are similar in spirit to PiCoDes [4], which
are binary descriptors also encoding a set of learned, ab-
stract attributes. However, the abstract classifiers of Pi-
CoDes are jointly computed via an expensive iterative opti-
mization, which in practice can be run only for very com-
pact dimensionalities (the largest PiCoDes contain 2048 bits
and required several weeks to be learned). Instead, our
meta-classes are efficiently defined via recursive application
of spectral clustering and the classifiers recognizing these
meta-classes can be trained in parallel. Thus, our approach
can easily scale to much larger descriptor sizes.

3. Technical Approach
In this section we provide a detailed description of the

procedure used to train our image descriptor. Our repre-
sentation is learned from a labeled dataset of images D =
{(x1, y1), . . . , (xN , yN )}, where xi denotes the i-th image
in the database and yi indicates the class label of the object
present in the photo.

3.1. The meta-class feature

We start by introducing the model of our meta-class fea-
ture. We indicate with h(x) = [h1(x), . . . , hC(x)]T our
C-dimensional meta-class descriptor extracted from an im-
age x. Each descriptor entry hc(x) is the output of a binary
classifier evaluated on x. The hypothesis hc is learned from
a training set Dc containing images of meta-class c as posi-
tive examples, and of other meta-classes as negative images.
In subsection 3.2, we discuss how the training set Dc is ob-
tained from the original set D for each meta-class c.

As classification model for hc, we use a variant of the
LP-β classifier [12], which has been shown to yield state-
of-the-art results on several categorization benchmarks. The
LP-β model is computed as a linear combination ofM non-
linear classifiers, each trained on a different low-level fea-
ture vector fm(x) for m = 1, . . . ,M . In our implemen-
tation we use M = 13 low-level features, which are de-
scribed in the experimental section of the paper. Note that

while extraction of the low-level features fm(x) is needed to
calculate the descriptor h(x) for an image, storage of these
low-level features is not necessary for the subsequent recog-
nition, which is done exclusively using the low-dimensional
vector h(x). While the original LP-β model of Gehler and
Nowozin employs kernels to render the classifier nonlinear,
in this work we approximate the kernel distances by adopt-
ing the “lifting” method of Vedaldi and Zisserman [31],
which allows us to obtain a more efficient scheme for train-
ing the meta-class classifiers with very little loss in accu-
racy: the idea of this approach is to lift each feature vector
fm(x) ∈ Rdm to a slightly higher-dimensional feature space
via an explicit map Ψm : Rdm −→ Rdm(2r+1) (where r is a
small positive integer) such that inner products in this space
approximate well the nonlinear kernel distance Km(), i.e.,
〈Ψm(fm(x)),Ψm(fm(x′))〉 ≈ Km(fm(x), fm(x′)). For
the family of additive kernels the map can be analytically
computed and good approximations can be obtained even
when setting r to small values (here we use r = 1). This
trick allows us to approximate the traditional LP-β classi-
fier, which is computationally very expensive to train, with
a linear combination of linear classifiers, which can be
learned much more efficiently. Each meta-class classifier
hc(x) is an instance of this efficient model:

hc(x) =

M∑
m=1

βm,c

[
wT

m,cΨm(fm(x)) + bm,c

]
(1)

Following the customary training scheme of LP-β, we
first learn the parameters {wm,c, bm,c} for each feature
m independently by training the hypothesis hm,c(x) =[
wT

m,cΨm(fm(x)) + bm,c

]
using the traditional SVM

large-margin objective on training set Dc. In a second step,
we optimize over parameter vector βc = [β1,c, . . . , βm,c]

T

constraining
∑

m βm,c = 1 (see [12] for further details).
We found that approximating the kernel distance via ex-

plicit maps decreases the overall accuracy of the classifier
by only a few percentage points, but it allows us to speed up
the training procedure by several orders of magnitude.

3.2. Learning the meta-classes

In this section we describe the procedure to learn the
meta-classes. Our method is an instance of the algorithm for
label tree learning described in [2]. This algorithm learns a
tree-structure of classifiers (the label tree) and was proposed
to speed up categorization in settings where the number of
classes is very large. We adopt the label tree training proce-
dure from this prior work, but use it to learn meta-classes,
i.e, set of classes that can be easily recognized from oth-
ers. We provide below a review of the label tree algorithm,
contextualized for our objective.

Let `D be the set of distinct class labels in the training
set D. The label tree is generated in a top-down fashion
starting from the root of the tree. Each node has associated



a set of object class labels. The label set of the root node
is set equal to `D. Let us now consider a node with label
set `. We now describe how to generate its two children
(although the label tree can have arbitrary branching factor
at each node, in our work we use binary trees). The two
children define a partition of the label set of the parent: if
we denote with `L and `R the label sets of the two chil-
dren, then we want `L ∪ `R = ` and `L ∩ `R = ∅. Ideally,
we want to choose the partition {`L, `R} so that a binary
classifier h(`L,`R)(x) trained to distinguish these two meta-
classes makes as few mistakes as possible. Unfortunately
we do to know the accuracy of the classifier before training
it. In principle we could train a classifier for each of the pos-
sible (|`|(|`| − 1)/2− 1) non-trivial partitions of ` and then
measure accuracy on a separate validation set. However,
this would be prohibitively expensive. Instead, we can use
the confusion matrix of one-vs-the-rest classifiers learned
for the individual object classes to determine a good parti-
tion of `: intuitively, our goal is to include classes that tend
to be confused with each other in the same label subset.

More formally, let ĥ1, . . . , ĥ|`D| be the one-vs-the-rest
LP-β classifiers learned for the individual object classes us-
ing the training set D. Let A ∈ R|`D|×|`D| be the confusion
matrix of these classifiers evaluated on a separate validation
set Dval: Aij gives the number of samples of class i in Dval

that have been predicted to belong to class j1. Since this
matrix is not symmetric in general, we compute its sym-
metrized version as B = (A+AT )/2. Then, for each node
we propose to partition its label set ` into the subsets `L ⊂ `,
`R ≡ `− `L that maximize the following objective:

E(`L) =
∑

i,j∈`L
Bij +

∑
p,q∈`−`L

Bpq . (2)

The objective encourages to include within the same label
subset, classes that are difficult to tell apart, thus favor-
ing the creation of meta-classes containing common visual
properties. At the same time, maximizing this objective will
tend to produce meta-classes `L, `R that are easy to sepa-
rate from each other. Note that optimization of eq. 2 can be
formulated as a graph partitioning problem [32]. We com-
pute the solution `L by applying spectral clustering [23] to
the matrix B: this is equivalent to solving a relaxed, nor-
malized version of eq. 2 that penalizes unbalanced parti-
tions. Once the partition is computed, we train a classifier
of the model described in section 3.1 on the resulting bi-
nary classification problem. In other words, let I` denote
the indices of training examples having class labels in `.
Then, we form the labeled set D(`L,`R) = {(xi,+1) : i ∈
I`

L} ∪ {(xi,−1) : i ∈ I`R} and use it to train meta-class

1We assume the traditional winner-take-all strategy for multiclass clas-
sification, where each example is assigned to the class with the highest
classifier score

classifier h(`L,`R)(x). We repeat this process recursively on
each node until it contains a single class label, i.e., |`| = 1.

The final meta-class descriptor is defined as the con-
catenation of all meta-class classifiers learned in the cre-
ation of the tree. Optionally, the one-vs-the-rest classifiers
ĥ1, . . . , ĥ|`D| can also be included as part of the descriptor:
unlike the meta-class classifiers, these are trained to rec-
ognize real object classes and are of the same form as the
“classeme” classifiers described in [29]. In our experiments
we demonstrate that meta-class features produce better gen-
eralization performance than classemes on novel categories,
probably due to their ability to capture properties shared by
many classes rather than attributes of individual categories.

4. Experiments
In this section we experimentally compare our approach

to several competing methods on the Caltech256 [13] and
ILSVRC2010 [3] benchmarks.

4.1. Implementation of meta-class feature learning

We begin by describing the setup used to learn our de-
scriptor. Our meta-class classifiers are based on the same
low-level features used in [29]: color GIST [24], oriented
and unoriented HOG [6], SSIM [28] and SIFT [21]. For
each feature, we compute a spatial pyramid histogram [18].
This yields a total of M = 13 pyramid levels, each treated
as a separate feature vector (for details, see [29]).

We “lift-up” each feature vector using the explicit fea-
ture map of Vedaldi and Zisserman [31] to approximate
the histogram intersection kernel, with parameter r = 1.
Thus, we can think of each nonlinear meta-class classifier
as a linear hypothesis learned in a space of dimensional-
ity D = d(2r + 1), where d =

∑M
m=1 dm is the dimen-

sionality of the features concatenated. In our experiments ,
d = 17360, and therefore D = 52080.

As training set for the descriptor learning we use a sub-
set of ImageNet [9] consisting of 8000 randomly sampled
synsets (which from now we also refer to as “classes”). In
order to avoid pre-learning the test classes in the descriptor,
we avoided picking as training synsets, categories belong-
ing to the ILSVRC2010 dataset or related to Caltech 256
(we perform sub-string matching comparison between the
synset tags and the Caltech 256 keywords, removing in to-
tal 711 ImageNet classes). This allows us to evaluate our
descriptor in a scenario where each test class to recognize is
effectively novel, i.e., not present in the training set used to
learn the descriptor. The number of examples for each train-
ing synset varies from a minimum of 40 to a maximum of
1000. We use an independent validation set of 80 examples
per class to learn the confusion matrix A. As described in
the previous section, we recursively apply spectral cluster-
ing to the confusion matrix creating a label tree consisting
of 7458 internal nodes. Then, for each node with label set
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Figure 1. Multiclass object categorization accuracy on Caltech256.
A simple linear SVM applied to our mc or mc-bit descriptor out-
performs the state-of-the-art LP-β classifier and is also orders of
magnitude faster to both train and test.

` we learn a meta-classifier h(`L,`R) that discriminates the
meta-classes of its children. In order to reduce the compu-
tational cost of the learning, we cap the number of training
examples for each meta-class at 2000. We also include in
the descriptor the outputs of the 8000 one-vs-the-rest clas-
sifiers ĥc (the classemes), thus producing a feature vector
containing a total of 15,458 entries for each image.

We convert the raw score of each hc into a probabilis-
tic output by means of Platt’s scaling [25], by replacing
hc(x) with σc(hc(x)) in the descriptor. We learn the two
parameters of the sigmoid function for each meta-class us-
ing the validation set. As already noted in [7], we found that
this sigmoidal normalization yields a considerable boost in
accuracy when using the outputs of classifiers as descrip-
tors for novel category recognition, probably as it makes
the range of classification scores more homogeneous and
reduces outlier values. We refer to this version of the meta-
class descriptor as mc. We have also tried to aggressively
quantize the descriptor by thresholding the raw outputs of
the meta-class classifiers at 0, i.e., using the information bit
[hc(x) > 0] as feature. We denote this binary descriptor as
mc-bit.

4.2. Multiclass recognition on Caltech256

We now present experiments obtained with our descrip-
tor on the Caltech256 benchmark. We adopt a simple one-
vs-the-rest linear SVM as multi-class classifier, performing
prediction using the winner-take-all strategy. We use 5-fold
cross validation for model selection. We use a test set of 25
examples per class and, as customary, we calculate the ac-
curacy as the mean of the diagonal of the confusion matrix.
We compare our descriptor to the following approaches:
• the original classeme vector [29] which is defined by
2659 object classifiers trained on weakly-labeled images
obtained from an image search engine;

• PiCoDes [4], which contain the binary outputs of 2048
classifiers jointly optimized for linear classification accu-
racy using a portion of the ImageNet dataset as training set;
• the object bank descriptor [19], which includes spatial
pyramid histograms of the responses of a large set of object
detectors applied to the image. The dimensionality of this
vector is 44604, much larger than that of our descriptor;
• the state-of-the-art multiple kernel combiner LP-β [12]
trained with exact intersection kernel distances using our set
of 13 low-level features.

Figure 1 summarizes the results as a function of the num-
ber of training examples per class. We can see that our de-
scriptors greatly outperforms all the other representations.
The binarized version is only 1% worse than the real-valued
mc descriptor while being 32 times more compact (using 1
bit for each entry of the vector the storage size for mc-bit
is less than 2KB per image). In particular, we would like
to stress that our descriptor yields accuracy improvements
of up to +6% in absolute value over LP-β , which to the
best of our knowledge represents the best performing classi-
fier on Caltech256. Moreover this improvement is obtained
by using a simple linear model, which is very efficient to
train and – even more relevant for our motivating applica-
tion – it is more than two orders of magnitude faster at test-
time compared to LP-β as it involves only a dot-product in-
stead of expensive kernel distance computations. Note that
while one could adopt the explicit map trick to train and
test more efficiently the LP-β classifier on the Caltech256
classes, this would not solve the large storage problem: the
low-level features used by this approach would require 100
times more memory space than mc-bit. This prevents the
use of such an approach in large scale datasets, such as the
one considered in the next subsection.

4.3. Large-scale categorization on ILSVRC2010

We now move on to the problem of multiclass recogni-
tion on the ILSVRC2010 data set. This database includes
a subset of 1000 synsets. Again, we remind the reader that
these classes are disjoint from the training categories used
to learn the descriptor. The training set contains a variable
number of examples per class, from a minimum of 619 to
a maximum of 3047 yielding in total about 1.2M exam-
ples. The test set includes 150,000 images, with 150 ex-
amples per category, and the validation set consists of 50
images for each class. Such massive amount of data poses
new challenges and issues that are not present in smaller
databases, as already noted in [8, 27, 20]. Yet, our binary
mc-bit features render the learning on this database rela-
tively fast to accomplish even on a budget PC for the fol-
lowing reasons. First, since we need only one bit per di-
mension we can store the entire ILSVRC2010 training set
in only (15458 × 1.2M)/8 Bytes = 2.16 GigaBytes. This
low memory requirement allows us to use efficient software
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Figure 2. Top-1 multiclass recognition accuracy on ILSVRC2010
for different descriptors. From left to right: mc-bit-classemes is
the part of our binarized descriptor that contains the features gen-
erated by the one-vs-the-rest classemes classifiers; mc-bit-tree is
the part of our binarized descriptor that contains the features pro-
duced by the meta-class classifiers of the label tree; mc-bit: our
full binarized descriptor; LSH on lifted-up features: LSH ap-
plied to Ψ(f(x)); LSH on mc: LSH applied to our real-valued
descriptor.

for batch training of linear SVMs. In particular we had suc-
cess with LIBLINEAR [10], simply modifying the code to
support input data in bitmap format. Moreover with binary
data the dot-products between examples no longer require
floating-point calculations but only a logical AND and a
sparse summation. Again we use the one-vs-the-rest strat-
egy to perform multiclass classification. To speed-up the
learning we reduce the negative training set by sampling
n = 150 examples per class. According to our study, this
sampling does not cause a significant drop in performance.

In figure 2 we analyze the performance obtained with our
descriptor on the ILSVRC2010 test set. We also provide
results achieved with the individual subcomponents of mc-
bit: “mc-bit-tree” which consists of the 7458 meta-class
classifiers learned for the inner nodes of the label tree, ver-
sus “mc-bit-classemes”, which contains the outputs of the
8000 one-vs-the-rest classeme classifiers. Note that the ac-
curacy obtained using only the label tree features is clearly
superior to the one generated by only the classeme features.
This indicates that the grouping of classes performed by the
label tree learning produces features that lead to better gen-
eralization on novel classes. However, the complete mc-bit
descriptor yields even higher accuracy (36.44%), suggest-
ing that there is value in using both subcomponents.

We also report a baseline corresponding to a binary de-
scriptor obtained by applying LSH [14] to the lifted-up low-
level features: we first apply PCA to Ψ(f(x)) ∈ R52080

compressing down the data to 9000 dimensions, and then
take 15458 random LSH projections to produce a binary
vector of the same length as our descriptor. As we can see,
for the same descriptor size, the resulting performance is
much lower than that produced with our method.

As we saw before in figure 1, the real-valued version

512 2000 4000 8000 15458
10

20

30

40

50

60

dimensionality

A
c
c
u

ra
c
y
 (

%
)

 

 
52%35%

39%

40%

40%

40%
40%

mc−bit + RFE

Figure 3. Multiclass recognition accuracy as a function of mc-
bit dimensionality on ILSVRC2010. We use Recursive Feature
Elimination to reduce the dimensionality of our mc-bit descriptor.
The percentage at each dimensionality indicates the proportion of
classeme features retained in the descriptor. Although initially the
full descriptor contains more classemes than meta-classes, the ma-
jority of features selected at each step are meta-classes.

of our descriptor tends to yield higher accuracy. To use
the additional information contained in the real values of
our descriptor while still exploiting the benefit of binary
features, we apply LSH to mc and train on the resulting
binary descriptor. Using 200, 000 random LSH projec-
tions the training set size for each class becomes 3.6 Gi-
gaBytes, when subsampling the negative examples as dis-
cussed above. Using this approach, our system achieves
an accuracy of 42.15%. The performance of our method
according to the top-5 accuracy measure of ILSVRC2010
is 64.01%, which is only 10.29% worse than the best pub-
lished result. Note that our system would have ranked 3rd in
the ILSVRC2010 challenge, just behind the systems of [27]
and [20], which are orders of magnitude more costly.

We would like to point out that the training and testing
of our system in this experiment can be done on a stan-
dard computer thanks to the low memory and training-time
requirements. Training a single one-vs-the-rest using our
binary meta-class descriptor takes on average 50 seconds.
So the entire multiclass training for ILSVRC2010 can be
accomplished in 14 hours on a single-core computer. In
practice the learning can be made highly parallel when mul-
tiple cores and machines are available. As a comparison,
the winning system of the ILSVRC2010 challenge [20] re-
quired a week of training with a powerful cluster of ma-
chines and specialized hardware.

To further study the relative importance of the meta-class
versus classeme features in our combined mc-bit descriptor,
we performed a feature selection experiment: starting from
the full binary descriptor size, we reduce the dimension-
ality by means of Recursive Feature Elimination [5] (RFE)
where at each iteration we remove 50% of the features. Fig-
ure 3 shows the resulting accuracy on the test set as a func-
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Figure 4. Object-class search on ILSVRC2010: accuracy in re-
trieving images of a novel class from a dataset of 150,000 pho-
tos. For each query class, the true positives are only 0.1% of
the database. Our descriptor significantly outperforms classemes,
which in [29] were also tested on such task.

tion of the dimensionality. For each feature elimination step
we display the proportion of features in the descriptor that
are one-vs-the-rest classemes. In agreement with the results
previously shown in figure 2, this plot suggests that meta-
class features are found to be more effective as the RFE pro-
cedure retains consistently more meta-class features than
classemes at each selection step.

4.4. Object-class search on ILSVRC2010

Finally we present results for our motivating problem:
fast novel-class recognition in a large-scale database. For
this experiment we use again the ILSVRC2010 data set. For
each class we learn a binary linear SVM using as positive
examples all the images of that class in the ILSVRC2010
training set; as negative examples we use 4995 images ob-
tained by sampling 5 images from each of the other 999
categories. Then we use the classifier to rank the 150,000
images of the test set. We measure performance in terms
of mean precision at K, i.e., the average proportion of im-
ages of the relevant class in the top-K. Note that for each
class, the database contains only 150 positive examples and
149,850 distractors from the other classes. Figure 4 shows
the performance obtained with mc-bit, which on this task
outperforms by 15% the binary classeme vector of [29].

While the systems described in [27, 20] achieve
higher multiclass recognition accuracy than our method on
ILSVRC2010 where the classes are predefined, we point
out that they are not scalable in the context of object-class
search in large databases. Figure 5 reports the storage re-
quired by different methods for a database containing 10M
images. In their proposed form, [27] and [20] require to
store high-dimensional real-valued vectors: the feature vec-
tor dimensionality is 1.18M for the former and 524K for the
latter. Thus, a 10M data set would require 44TByte and 10
TByte, respectively. Even if splitting the data across differ-
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Figure 5. Storage requirements for 10M images with different fea-
ture representations (note the log scale). Our descriptors outper-
forms the top-method for ILSVRC2010 in terms of scalability to
large databases.
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Figure 6. Object-class search time as a function of the number of
images in the database, using a machine with 20 GB of memory.
Our approach is significantly faster than the competing approaches
and is the only one that allows large databases to be kept in the
memory of standard computers.

ent machines, these approaches remain clearly not scalable
in real scenarios. In [27], product quantization is used to
compress down the size of the data, at the expense of a drop
in accuracy of about 1%. With this compression, a 10M
database would require 610 GB. Our approach saves an or-
der of magnitude of storage, resulting in the most scalable
method in terms of memory utilization.

In addition, our system is also outperforming the other
competing methods in terms of recognition time. In figure 6
we show the average search time for a single object-class
query as a function of the number of images contained in
the database. For this experiment we used a computer with
a CPU Intel Xeon X5675@3.07GHz and 20 GB of mem-
ory. As shown in figure 5 only our representation allows the
entire ImageNet database to be kept in the memory of this
computer. The plot of figure 6 indicates that our method is
by far the fastest. The system proposed by [27], which was
relatively scalable in terms of storage, is the slowest one.



Our approach provides a 10-fold or greater speedup over
these systems and is the only one computing results in times
acceptable for interactive search. We also note that sparse
retrieval models and top-k ranking methods [26] could be
used with our binary code to achieve further speedups on
the problem of class-search.

5. Conclusions
We have introduced a novel image descriptor achieving

excellent recognition accuracy even with simple linear clas-
sifiers. The features of the descriptor are learned from la-
beled data and represent general visual properties shared by
many object classes. We demonstrate that they yield im-
proved recognition accuracy over hand-selected attributes.
Thanks to the compactness of this representation, it is pos-
sible to keep the entire ILSVRC2010 database in the mem-
ory of a budget PC, and train classifiers for all 1000 classes
in 14 hours on a single core machine. The resulting accu-
racy is 10% from the the state-of-the-art. We know of no
other method that can achieve this level of accuracy while
offering such efficiency and scalability to large data sets.

Additional material including software to extract our de-
scriptor from images may be obtained from [1].
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