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Abstract. Fully automatic Face Recognition Across Pose (FRAP) is
one of the most desirable techniques, however, also one of the most chal-
lenging tasks in face recognition field. Matching a pair of face images in
different poses can be converted into matching their pixels corresponding
to the same semantic facial point. Following this idea, given two images
G and P in different poses, we propose a novel method, named Mor-
phable Displacement Field (MDF), to match G with P ’s virtual view
under G’s pose. By formulating MDF as a convex combination of a num-
ber of template displacement fields generated from a 3D face database,
our model satisfies both global conformity and local consistency. We fur-
ther present an approximate but effective solution of the proposed MDF
model, named implicit Morphable Displacement Field (iMDF), which
synthesizes virtual view implicitly via an MDF by minimizing matching
residual. This formulation not only avoids intractable optimization of
the high-dimensional displacement field but also facilitates a constrained
quadratic optimization. The proposed method can work well even when
only 2 facial landmarks are labeled, which makes it especially suitable
for fully automatic FRAP system. Extensive evaluations on FERET, PIE
and Multi-PIE databases show considerable improvement over state-of-
the-art FRAP algorithms in both semi-automatic and fully automatic
evaluation protocols.

1 Introduction

Automatically recognizing faces in varying poses is one of the most desirable
techniques in face recognition field due to its great potentials in real world ap-
plications, such as video surveillance, person re-identification and face tagging.
To address the FRAP problem, a number of techniques have been proposed,
which can be grouped coarsely into two categories: 3D-based and 2D-based.
Please refer to the recent review paper [1] for a more detailed survey. Here we
only briefly review some techniques highly related to our method.
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In the category of 3D-based methods, aiming to handle pose variation by
geometrical transformation, 3D face model must be estimated from 2D image
at first. For instance, Blanz and Vetter [2] proposed a method to fit a full 3D
morphable model to one input face image based on a statistical model of 3D
human face samples. Then, obtained 3D representation was used as feature for
classification. Asthana et al. [3] presented a fully automatic FRAP system. After
fitting a View-based AAM [4], the input face was projected onto the aligned 3D
model, which was then rotated to render a frontal view for FRAP using LGBP
[5]. 3D-based methods reported impressive results on some databases. However,
as 3D face recovery itself is an ill-posed problem, how to extend them to real
world scenarios is still an open problem.

In the category of 2D-based methods, ill-posed 3D recovery problem was cir-
cumvented either by seeking for so-called pose-invariant features or learning to
predict a virtual view in assigned pose. Gross et al. [6] proposed an eigen light-
field model in which faces under different poses were represented as part of a
global model containing all available pose variations. The global model could
be estimated from partial model(i.e. face under some pose) and used as pose-
invariant feature for face recognition. Chai et al. [7] adopted linear regression
model to estimate densely sampled overlapping virtual frontal patches from cor-
responding non-frontal patches. Then, all virtual frontal patches were combined
by averaging the overlapping pixels to form the virtual frontal face image for
recognition. Prince et al. [8] exploited factor analysis model to represent faces in
varying pose. Factors in different poses were tied to construct a pose-invariant
“identity subspace” for final recognition.

Fundamentally speaking, the grand challenge in FRAP is an awful misalign-
ment problem caused by the complex 3D structure of human face, i.e., the same
facial point in 3D is projected to very different positions in the images of dif-
ferent poses in 2D. So, essentially, all FRAP methods implicitly or explicitly
handle pose variation by matching pixels in 2D face images of different poses to
the same semantic 3D facial points.

Recently, 2D image matching oriented FRAP methods shown great potential
in handling pose variation [9–11]. These methods directly learned spatial corre-
spondences across different poses. Ashraf et al. [9] described a data-driven ap-
proach to learn deformations between patches sampled from two different views
of a face. Arashloo and Kittler [10] used MRF model to describe the matching
process between two images. In their work, local patches were represented as
nodes of MRF model with 2D displacement vectors as their labels. The optimal
matching was found through MAP-MRF. Castillo et al. [11], employed dynamic
programming-based stereo matching algorithm to find correspondences between
frontal and non-frontal faces.

Although these image matching based methods achieved some success in han-
dling pose variation, as they did not consider the correspondences between a
pair of faces as a whole, correspondences obtained by these methods might not
be globally conforming. Mathematically, spatial correspondences between faces
in different poses can be described as a displacement field. In approach [9], as
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Fig. 1. Overview of the proposed method. Note that the occlusion mask is generated
using the set of template displacement fields.

the deformation of each patch was learned separately, neither global conformity
of displacement field over the whole face nor local consistency between adjacent
patches can be guaranteed. In [10], displacements of patches were modeled by
MRF model. Smooth term of MRF model did constrain neighborhood relation-
ship but did not guarantee the global rationality of obtained displacement field.
Dynamic programming-based stereo matching method introduced in Castillo et
al. [11] also guaranteed only local consistency.

In this paper, we propose to build a statistical shape model to constrain the
rational matching parameter which can make sure the obtained displacement
field satisfying not only local consistency but also global conformity. To build
the statistical model, we first generate a set of real template displacement fields
from a 3D face database. Then we model target displacement field between a new
pair of faces as a convex combination of these predefined template displacement
fields. We name this model Morphable Displacement Field(abbr. as MDF). We
further prove that the proposed MDF model also guarantees local consistency.
Finally, we present an approximate but efficient solution of MDF model which
not only avoids intractable optimization of the high-dimensional displacement
field but also facilitates a constrained quadratic optimization. We term this solu-
tion of MDF model as implicit Morphable Displacement Field(abbr. as iMDF).
Extensive evaluations on FERET [12], PIE [13] and Multi-PIE [14] databases
show considerable improvement over state-of-the-art FRAP algorithms in both
semi-automatic and fully-automatic evaluation protocols.

2 Method Overview

The proposed FRAP method mainly consists of two parts: virtual view synthe-
sis via implicit Morphable Displacement Field(iMDF) and face recognition with
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Fig. 2. Virtual view synthesis with implicit Morphable Displacement Field (iMDF)

Ensemble Gabor Fisher Classifier (EGFC) [15] (see Fig. 1). As shown in Fig. 1
(a), the virtual image is synthesized by iMDF model which can be formulated as
implicit convex combination of a set of template displacement fields. Main steps
of this procedure are briefly described below. Details are illustrated in Section 3
(Readers can also refer to Fig. 2).

Generate Raw Synthesis Images. With template displacement fields de-
scribing dense pixel level correspondences between face in different poses, raw
synthesis image can be generated by directly taking the pixel intensity from the
non-frontal probe image. We generate N template displacement fields from N
3D face models in BJUT database [16], thus N raw synthesis images can be
obtained. (Detailed in section 3.1)

Prune Raw Synthesis Images. Considering computational cost, we keep only
K raw synthesis images whose visible parts (non-black regions in Fig. 2) are
similar to the gallery image. (Detailed in section 3.2)

Mend Undefined Parts. Raw synthesis images have some undefined parts
(black regions in Fig. 2) due to self-occlusion of human face. To wipe out the
influence of undefined parts, we mend these regions by directly taking corre-
sponding pixels from the gallery image and generateK fulfilled synthesis images.
(Detailed in section 3.2)

Synthesize Virtual Image. We formulate the expected virtual image as a
convex combination of K fulfilled synthesis images. Optimal combination coef-
ficients are obtained by minimizing the matching error between the expected
virtual image and gallery image. (Detailed in section 3.2)

After virtual image is synthesized, pose-specific occlusion masks generated
from template displacement fields are used to remove undefined regions of syn-
thesis virtual image. And FRAP is achieved by comparing masked gallery and
virtual probe image using EGFC [15], as shown in Fig. 1 (b). Detailed informa-
tion is presented in Section 4.
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3 Virtual View Synthesis with Implicit Morphable
Displacement Field

In this section, we illustrate how we derive the virtual view synthesis method
shown in Fig. 2 from the image matching point of view. The original idea is to
find an optimal displacement field T (z) to minimize the appearance difference
between gallery image I(z) and synthesis virtual image of probe image J(z):

argmin
T (z)

∑

z

‖ I(z)− J(z + T (z)) ‖2, (1)

where z is pixel coordinate, J(z+T (z)) is virtual image of probe image. Though
simple and plausible, expression (1) suffers from severe overfitting due to the
high dimensionality of displacement field T (z). In order to obtain realistic dis-
placement field between faces in different poses, proper restrictions must be
imposed on the eligible solutions. Previous works [10] and [11] mainly focus on
local consistency. In this paper, we argue that eligible solution of displacement
field should possess not only local consistency but also global conformity.

3.1 Morphable Displacement Field

To obtain displacement field satisfying global conformity, we resort to template
displacement fields. The template displacement field’s calculation procedure is
shown in Fig. 3. Note, only shape model of 3D face model is used. we draw full
3D face model including texture in Fig. 3 only for visualization purpose.

(a) (b) (c) 

J 

I 

Fig. 3. Generation of template displacement field. (a) Original 3D face model; (b) Pose
specific normalized 3D face model; (c) Corresponding template displacement field

Given a 3D face shape model, shown in Fig. 3 (a), one can rotate the model
according to X or/and Z axis and project the rotated model onto X-Z plane to
get 2D face shape models in arbitrary pose. Then with 2 or more landmarks and
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assigned pose, one can further normalize the face shape models in X-Z plane using
similarity transformation in order that the obtained template displacement fields
and probe images are aligned. Combining 3D rotation according to X or/and Z
axes and similar transformation in X-Z plane, we can generate pose specific
normalized 3D face shape models, see Fig. 3 (b). Then the displacement caused
by pose variation of each vertex on 3D face shape model can be calculated simply
by coordinate subtraction of pose specific normalized 3D face shape models.
Finally, we use a 2D discrete displacement field to approximately depict the
vertices’ displacement in X-Z plane caused by viewpoint variation. Since all the
operators used in the calculation procedure of template displacement field Ti are
linear operator, the overall process can be describe as:

Ti ≈ LFrontal·Si − LPose·Si, (2)

where Si is 3D face shape vector. LFrontal and LPose are linear operators applied
to Si in order to get pose specific normalized 3D face models shown in Fig. 3(b).
Note, dense vertex-to-vertex alignment of 3D face shape model is done before
we calculate template displacement fields. Thus LFrontal and LPose respect to
different 3D face shape models are almost the same. That is to say the linear oper-
ator applied to 3D face shape model is pose-dependent but person-independent.
Once we get template displacement field set {Ti | i = 1, 2, . . . , N}, inspired by
Blanz et al. [2], we propose to build a morphable model of displacement field.
The morphable face model present in [2] is based on a vector space representa-
tion of faces that any convex combination of aligned shape vectors Si of a set of
exemplars describes a realistic face shape vector S:

S =

N∑

i=1

αiSi; s.t.

N∑

i=1

αi = 1, αi ≥ 0. (3)

According to literature [17], assuming 3D face shape vectors approximately con-
sist a linear object class. The coefficient αi of expression (3) will stay unchanged
when linear operator L (such as 3D rigid transformation and 3D to 2D projec-
tion) is applied to shape model S:

S′ =
N∑

i=1

αiS
′
i; s.t. S′ = L·S, S′

i = L·Si. (4)

Combining expression (2), (3) and (4), we find that realistic displacement field
between a new pair of face images can be approximately expressed as the convex
combination of predefined template displacement fields:

T = LFrontal·S − LPose·S

=

N∑

i=1

αi

[
LFrontal·Si − LPose·Si

]

≈
N∑

i=1

αiTi.

(5)
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We term this model as Morphable Displacement Field (MDF). Modeling the tar-
get displacement field as a convex combination of template displacement fields
ensures that the obtained displacement field falls in a rational parameter space.
Thus the proposed MDF model is globally conforming. As mentioned before,
rational displacement field should also guarantee local consistency. Local consis-
tency indicates that spatial relationship of neighborhood pixels stays unchanged,
which can be characterized as Local Order Preserving (LOP) property.

Theorem 1. Displacement field T (z) satisfies LOP property if for arbitrary
two neighboring facial pixels (corresponding to neighboring facial points in 3D)
z1 = (x1, y1) and z2 = (x2, y2), their corresponding displacement vectors T (z1) =
(�x1,�y1) and T (z2) = (�x2,�y2) holds:

x1 +�x1 ≤ x2 +�x2, if x1 ≤ x2;

x1 +�x1 ≥ x2 +�x2, if x1 ≥ x2;

y1 +�y1 ≤ y2 +�y2, if y1 ≤ y2;

y1 +�y1 ≥ y2 +�y2, if y1 ≥ y2;

(6)

Here we briefly prove that in the 2D image coordinate system morphable dis-
placement field model T (z) guarantees local consistency, i.e., LOP property.
Without loss of generality, we assume x1 ≤ x2. For other cases shown in expres-
sion (6), the proof is similar.

Proof. ∵ x1 ≤ x2 and all the template displacement fields Ti(z) satisfy LOP
property, thus:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 +�x1
1 ≤ x2 +�x1

2;

x1 +�x2
1 ≤ x2 +�x2

2;
...

x1 +�xN
1 ≤ x2 +�xN

2 ;

(7)

where Ti(z1) = (�xi
1,�yi1), Ti(z2) = (�xi

2,�yi2). And combining expression
(5) and (7) we derive that T (z1) = (�x1,�y1) and T (z2) = (�x2,�y2) holds:
x1 +�x1 ≤ x2 +�x2 �

Intuitively, template displacement fields possess LOP property naturally. And
morphable displacement field formulated as a convex combination of template
displacement fields also inherits LOP property. Thus the proposed morphable
displacement field model fulfills the task of generating displacement field satis-
fying global conformity and local consistency properties at the same time.

3.2 Implicit Morphable Displacement Field

By constraining obtained Displacement Field T (z) in the convex set of template
displacement fields, the objective of expression (1) can be reformulated as:

argmin
αi

∑

z

‖ I(z)− J(z +

N∑

i=1

αiTi(z)) ‖2; s.t.

N∑

i=1

αi = 1, αi ≥ 0. (8)
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Fig. 4. Example of image matching procedure indicated by expression (8) when there
are 3 template displacement fields

However, as expression (8) is not a convex optimization task, common gradient
based methods [18] and [19] may fail to obtain satisfactory solution. To find a
more effective way to optimize expression (8), we first investigate how it works
fundamentally.

As shown in Fig. 4, each template displacement field indicates a candidate
matching point J(z+Ti(z)) of target point I(z). Since T (z) is a convex combina-
tion of template displacement fields, in geometry, feasible region of all matching
points is a convex hull of N vertices determined by the template displacement
fields. When N = 3, for each target point z in image I, the feasible region of
matching point is actually a triangle. Considering that, if the feasible region is
sufficiently small, then grayscale of any pixels in it can be approximately inter-
polated by grayscale of the convex hulls vertices:

J(z +

N∑

i=1

αiTi(z)) ≈
N∑

i=1

αiJ(z + Ti(z)). (9)

Actually using simple calculus it can be proved that the first order Taylor Ex-
pansion of the left and right sides of expression (9) are the same. In order to
solve expression (8) more efficiently, we further relax expression (8) with (9):

argmin
αi

∑

z

‖ I(z)−
N∑

i=1

αiJ(z + Ti(z)) ‖2; s.t.
N∑

i=1

αi = 1, αi ≥ 0. (10)

The optimization problem of expression (10) is a quadratic programming. Since
the objective is convex, the optimization has unique global minimum and can be
solved analytically. Note that, I(z) is frontal gallery image, J(z) is non-frontal
probe image. And parts of J(z + Ti(z)) are synthesized from Image J using
template displacement field Ti(z). As shown in Fig. 2, only visible regions in
J(z) can be synthesized, thus the raw synthesis images have many undefined
regions. Intuitively only visible regions should be considered in the matching
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procedure, in order to get rid of the influences of undefined regions we mend
the black hole of raw synthesis images with I(z) to generate fulfilled synthesis
images, i.e., J(z + Ti(z)).

Compared to expression (8), rationality of expression (10) depends on the
precision of approximation induced by expression (9). Therefore the size of the
convex hull(see Fig. 4) should be controlled. As optimization of expression (10)
is actually a common regression problem with L1 regularization adding a non-
negative constraint, the optimal combination coefficients obtained by minimiz-
ing expression (10) are actually sparse. The preserved fulfilled synthesis images
J(z + Ti(z)) with non-zero coefficients must be similar to gallery image, which
indicates that the corresponding template displacement fields Ti(z) are similar.
Thus the corresponding convex hull shown in Fig. 4 is relatively small, which
leads objective of expression (10) sufficiently close to original objective, i.e., ex-
pression (8).

Finally, for computational consideration, we prune J(z + Ti(z)) before the
optimization and wipe out raw synthesis images which are far away from I(z)
in Euclidean space. Then we obtain compact version of expression (10):

argmin
αNi

∑

z

‖ I(z)−
K∑

i=1

αNiJ(z + TNi(z)) ‖2; s.t.
K∑

i=1

αNi = 1, αNi ≥ 0, (11)

where I(z) is gallery frontal image, J(z + TNi(z)) is the ith nearest neighbors
of I(z) in all raw synthesis images. In the final objective in expression (11), we
implicitly obtain displacement field T (z) between gallery and probe image. So
we call it implicit Morphable Displacement Field (iMDF).

4 Recognition with Virtual Image

We show virtual images synthesized by proposed iMDF model using yaw +60◦

data of MultiPIE database [14] in Fig. 5(a). For each virtual image in Fig. 5(a),
left facial regions are synthesized with pixels coming from probe image. We call
this parts as synthesis regions. Most of right facial regions are exactly the same
as gallery image, we call it mending regions. As mending regions contains no
identity information, we use occlusion mask to extract only synthesis regions
for subsequent recognition. The occlusion masks we use are calculated from
predefined template displacement field which reflects visibility of pixels. Note,
we use the same occlusion mask for different faces in the same pose, though
invisible regions of different persons are slightly different.

As shown in Fig. 5(a), when probe and gallery images coming from the same
person (images lie in diagonal of virtual image frame) the synthesis regions are
pretty similar with true frontal face. What’s more, no matter which gallery im-
age is used as matching target, the synthesis regions of obtained virtual image
always seem like the true frontal face. Fundamentally speaking, this is because
displacement field generated by iMDF model satisfying both local consistency
and global conformity only allows deformation caused by viewpoint variation
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Fig. 5. Image synthesis Results and Recognition Strategy

for each face. To make full use of this property, we design two kinds of recogni-
tion strategies: 1. Image-to-Image recognition; 2. Image-to-Stack recognition, as
shown in Fig. 5(b). In Image-to-Image recognition strategy, similarity between
gallery image I and probe image J equals to similarity between gallery image
I and virtual image J ′, which is generated with gallery image I as matching
target. In Image-to-stack recognition, we sum similarities between gallery image
I and all virtual images synthesized from probe image J (for example all virtual
images in red dotted frame shown in Fig. 5) as the similarity between I and J .

To make our system more robust to variations other than merely pose, we
exploit EGFC introduced in [15] to calculate similarities presented in Fig. 5(b).
For each pose, we train an EGFC model using masked virtual images together
with corresponding masked matching targets.

5 Experimental Results

To evaluate the proposed method, we conduct FRAP experiments with a single
enrolled image per person. We use frontal faces as gallery set and non-frontal
faces as probe set. Totally the performance of our proposed method is evaluated
in three aspects. First, we compare our method with previous FRAP algorithm
to verify the effectiveness of proposed iMDF method in handling pose varia-
tion in semi-automatic evaluation protocol. Second, we present results with fully
automatic configuration to show the potential of our system for automatically
recognizing faces across pose. Finally, we investigate the performance bottleneck
of our fully automatic system. Note, in all the following experiments, number of
template displacement field N = 700. Preserved number of raw synthesis image
K = 25. Image size is 64× 80. In EGFC model, images are equally divided into
4× 2 = 8 blocks. For each block, Gabor features with 5 scales and 8 orientations
are extracted. Then PCA and LDA are employed to further extract discrimi-
native features for final recognition. In all the experiments, dimension of PCA
model is set to 300. Dimension of LDA model is set to 150 on PIE [13] and
MultiPIE [14] databases and 80 on FERET [12] database.
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Table 1. Semi-Automatic FRAP Performance Evaluation

C34 C14 C11 C29 C05 C37 C02 C22 Avg Avg bb bc bd be bf bg bh bi

-60° -45° -30° -15° 15° 30° 45° 60° (C11-
C37)

(C34-
C22)

-60° -40° -25° -15° 15° 25° 40° 60°

Chai07[7] - - 89 100 98 82 - - 92.3 - Blanz03[2] 95 95 97 100 97 96 95 91 95.8

Castillo11[11] 56 90 100 100 100 100 96 60 100 87.8 Ashraf08[9] 48 70 89 96 94 82 62 42 72.9

Arashloo11[10] 83 91 89 91 98 100 95 79 94.5 90.8 Li09[20] 65 81 91 92 93 89 80 65 82

GrayCCA-S1 63 99 100 100 100 100 99 84 100 93.1 GrayCCA-S1 70 95 97 100 99 99 94 74 91

GrayCCA-S2 63 97 100 100 100 100 99 82 100 92.6 GrayCCA-S2 73 93 98 100 100 99 94 71 91

GrayLDA-S1 82 100 100 100 100 100 99 88 100 96.1 GrayLDA-S1 87 97 99 99 100 99 98 92 96.4

GrayLDA-S2 85 100 100 100 100 100 99 85 100 96.1 GrayLDA-S2 88 97 99 99 100 99 98 91 96.4

EGFC-S1 78 100 100 100 100 100 100 84 100 95.3 EGFC-S1 93 99 100 100 100 100 100 94 98.3

EGFC-S2 91 100 100 100 100 100 100 96 100 98.4 EGFC-S2 98 100 100 100 100 100 100 98 99.5

(b)     Feret

Method Avg

(a)     CMU-PIE

Method

5.1 Semi-automatic FRAP Performance Evaluation

Experiments in this section are performed on two data sets, i.e., PIE and FERET.
We manually label 5 landmarks (two eyes, nose tip and two mouth corners) as
shown in Fig. 3. In the PIE database, we use all 68 persons with neutral expres-
sion and normal illumination at 9 yaw poses. As there are only 68 subjects, we
train EGFC model in MultiPIE database. For the FERET database, We use all
200 persons at 7 different poses. The first 100 persons are used to train the EGFC
model, and the rest consist the test set. Evaluation results and the pose angles
we use to generate template displacement fields are given in Table 1. For com-
prehensive comparison we also show recognition results with features extracted
by CCA and LDA from gray-scale images. Note, with identical synthesis results,
“S1” uses Image-to-Image recognition strategy, while “S2” uses Image-to-Stack
recognition strategy.

As shown in Table 1, our methods significantly outperform image matching
based FRAP methods [9–11, 20], classical 2D-based method [7] and 3D-based
method [2]. Image-to-Stack strategy is more robust than Image-to-Image strat-
egy when use EGFC as classifier. Although we use 3D face model to calculate
template displacement field, as only shape models are used, our method will not
suffer from poor generalization ability [21].

5.2 Fully-Automatic FRAP Performance Evaluation

We present results of our algorithm in fully automatic evaluation protocol on
the MultiPIE database. In our experiments, data from all 4 sessions with neutral
expression and frontal illumination at 7 different poses are used. Images from
the first 200 individuals are used as training set to train pose estimator and
EGFC model, the rest 137 individuals consist test set. For each test image, two
eyes are first automatically located. Then, similar to Murphy et al. [22], we
extract HOG feature of the face and use SVM classifier to estimate the pose of
it. The mean pose estimation accuracy of our algorithm is 95.9%. Then method
introduced in [23] is used to locate eyes. Failing in detecting eye location of 2
images in totally 2100 test images, experimental results of rest data are shown in
Table 2. Although EGFC algorithm is powerful in recognizing near-frontal faces,
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Table 2. Fully-Automatic FRAP Perfor-
mance Evaluation

08_0 13_0 14_0 05_0 04_1 19_0

-45° -30° -15° +15° +30° +45°

LGBP[5] 37.7 62.5 77.0 83.0 59.2 36.1 59.3

Asthana11[3] 74.1 91.0 95.7 95.7 89.5 74.8 86.8

EGFC[15] 15.4 56.6 99.7 99.3 63.7 16.6 58.5

EGFC-S1 78.7 94.0 99.0 98.7 92.2 81.8 90.7

EGFC-S2 84.7 95.0 99.3 99.0 92.9 85.2 92.7

Multi-PIE Fully-Auto Evaluation

Method Avg

Table 3. Bottleneck Analysis of Fully-
Automatic FRAP

Method 08_0 13_0 14_0 05_0 04_1 19_0 Avg

EGFC-S2 93 98.7 99.7 99.7 98.3 93.6 97.2

F T

F 63 18

T 26 1

(b)Recognition Failed
Image Distribution

Eye Localization

(a)     Multi-PIE Semi-Auto Evaluation

Pose Estimation

it suffers severely from large pose variation. The mean performance of EGFC
is lowest. With exactly the same experimental setting as Asthana et al. [3], the
performance of proposed method is higher especially when recognition strategy
2 is used. As only 2 facial landmarks are needed, our automatic FRAP algorithm
is also more potential in handling even larger pose variation automatically when
faces are severely occluded (if one eye is occluded, one mouth corner and another
eye can be used).

5.3 Bottleneck Analysis of Fully-Automatic FRAP

In this section, we comprehensively analyze the bottleneck of proposed fully
automatic FRAP algorithm. In order to find the bottleneck, we first conduct
semi-automatic evaluations on MultiPIE database [14]. Except for given ground
truth eye location and face pose, all other parameters are set to be exactly the
same as Section 5.2. And experimental results are shown in Table 3(a). As is
shown, average recognition failure rate declines more than 50%. Totally 108 im-
ages are found to be correctly recognized by semi-automatic algorithm while
falsely recognized by fully-automatic algorithm. Distribution of these recogni-
tion failed images are shown in Table 3(b). Note, if one of Normalized Root
Mean Square Error(NRMSE) of two eyes exceeds 0.1, we determine that the
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Fig. 6. NRMSE of eye localization
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detected eye location is false(F), otherwise true(T). Only one recognition fail-
ure occur when eye localization and pose estimation are both succeed, which
suggests that our algorithm can generally handle NRMSE less than 0.1, if pose
is correctly estimated. The cumulative distribution of NRMSE (we use larger
NRMSE of two eyes to represent two eyes’ NRMSE) of eye localization is shown
in Fig. 6. Typical false auto-aligned images and corresponding manually aligned
images are shown in Fig. 7 with the NRMSE value of automatic eye localization
presenting under the false auto-aligned images. Since eye localization accuracy
declines considerably as yaw pose angle increases, we argue that facial landmarks
detection is a non-negligible bottleneck of automatic FRAP system.

6 Conclusions

This paper aims at effective image matching for pose-invariant face recognition.
Given a pair of face images in different poses, we present a novel method to
implicitly build the correspondences between them, which is not only locally
consistent but also globally conforming. We achieve this by a convex combina-
tion of some ground truth template displacement fields generated from a 3D
face database and solve it by implicit Morphable Displacement Field (iMDF).
Extensive face recognition experiments on three multi-pose databases show that
our method is prominent in handling large viewpoint variation. As our method
relieves the burden of facial landmarks detection (2 landmarks are sufficient for
our algorithm) in fully automatic FRAP system, it is potential in handling even
larger pose variation when facial regions are severely occluded.
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