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What to recognize?
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Where are we? (for large-scale recognition)
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Label space!
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IMJ£AGE

14,197,122 images
21,841 synsets indexed

ILSVRC-2013

Task |: Detection
PASCAL-style detection challenge; 200
categories

Task 2: Classification
Image classification challenge; 1000
categories

Task 2: Classification with localization
Image classification plus object
localization challenge; 1000 categories



Why do we want a large label space?

Accuracy (%)
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® Performances are often weak ... (~10%)

What does classifying more than
10,000 image categories tell us?
ECCV 2010

Deng, Berg, Li, Fei-Fei

' No magic...

® .. but large-scale allows us to use structure over labels!



What do we mean by similarity?
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How can we do this?
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Formulation

Semantic hierarchy Accuracy
entity
mammal vehicle
kangaroo zebra car boat kangaroo zebra car boat kangaroo zebra car boat
ground truth ground truth

Key idea: automatically select the appropriate level of abstraction to
optimize the accuracy/specificity trade-off



Formulation

Semantic hierarchy Accuracy Reward
entity
mammal vehicle
kangaroo zebra car boat kangaroo zebra car boat kangaroo zebra car boat
ground truth ground truth

Reward: amount of correct information gain (i.e. decrease of uncertainty)
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Formulation

Semantic hierarchy Accuracy
entity
mammal vehicle
kangaroo zebra car boat  kangaroo zebra car boat kangaroo zebra car boat

Goal: maximize the reward given an arbitrary accuracy guarantee

Training images

Reward of classifier Rewards on nodes
Maximize over f; R(f,7)
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For NOW, assume NO accuracy guarantee ...
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What about the accuracy guarantee 1—¢?

i 11

7 SN classifier g RS C%Qg\@ —>
on leaves 0 A m

posterior for leaf nodes posterior for all nodes

_ -
Ré/ Am
Expected rewards
0 0 8 a8

node rewards r

Training images

Reward of classifier Rewards on nodes

. S v
Maximize over f; R(f,7) » -
Subjectto ®(f)>1-¢€ classifier /
v
Accuracy of classifier Accuracy guarantee )Q<




What about the accuracy guarantee 1—¢?
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Original Reward
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The optimal 47+ is where the accuracy is exactly 1—¢: binary search

Training images

Reward of classifier Rewards on nodes

Maximize over f, #(/f,7)
Subjectto  ®(f)=1—¢€
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The DARTS algorithm
Dual Accuracy Reward Trade-off Search

" Train a flat classifier that gives probability estimates on the leaf nodes.
= [« aclassifier that maximizes the expected new node rewards (» + )
= Binary search to find the optimal f) such that [ is 1—eaccurate

= Jis the dual variable in the Lagrange function
= Theorem: for any 1—¢, DARTS converges to an optimal solution except for

artificial cases ( no worries in practice ).

Training images

Reward of classifier Rewards on nodes
Maximize over f, #(/f,7)
» Subject to d(f)=1—€ »
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Recognition Pipeline
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red fox

Recognition Pipeline
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Some examples

mammal animal

trimaran

Flat catamaran

Ours sailboat watercraft craft artifact artifact



Results

Datasets: 10,000 image classes from ImageNet (~“9million images)
Baselines: Flat classifier with a reject option, etc.
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10K classes: 90% accurate, 19% on leaf nodes, 64% non-root internal nodes, 17% “entity”



Some more (extreme) examples

Ours vehicle animal edible fruit watercraft

Ours animal animal living thing citrus fruit
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