Hedging Your Bets: Optimizing Accuracy-Specificity Trade-offs in Large Scale Visual Recognition

Jia Deng^{1,2}, Jonathan Krause¹, Alexander C. Berg³, Li Fei-Fei¹ Stanford University¹, Princeton University², Stony Brook University³

Proc. of CVPR 2012

Presenter: Lamberto Ballan

What to recognize?

Increasing

structural complexity

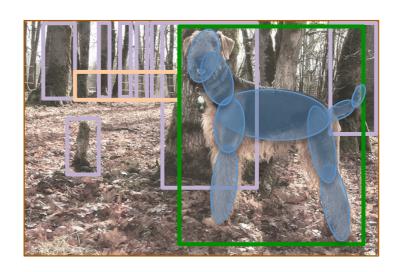
http://www.flickr.com/photos/sgcallawayimages/3306849049/

Dog

Single label

Dog, Tree, Fence, Leaf

Multiple labels



Localization

"Happy shaggy Airedale poses in the autumn forest."

Description

Where are we? (for large-scale recognition)

Increasing

ctural complexity

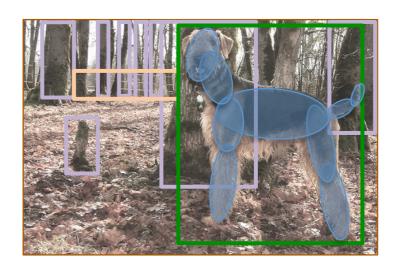
http://www.flickr.com/photos/sgcallawayimages/3306849049/

Dog

Single label

Dog, Tree, Fence, Leaf

Multiple labels



Localization

"Happy shaggy Airedale poses in the autumn forest."

Description

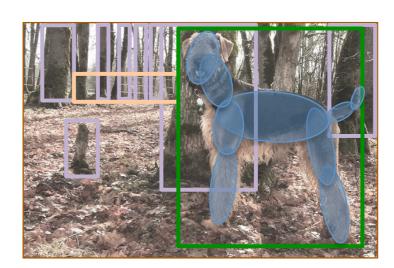
Label space?

~20,000 categories (noun synsets) from WordNet

Single label

Dog, Tree, Fence, Leaf

Multiple labels



Localization

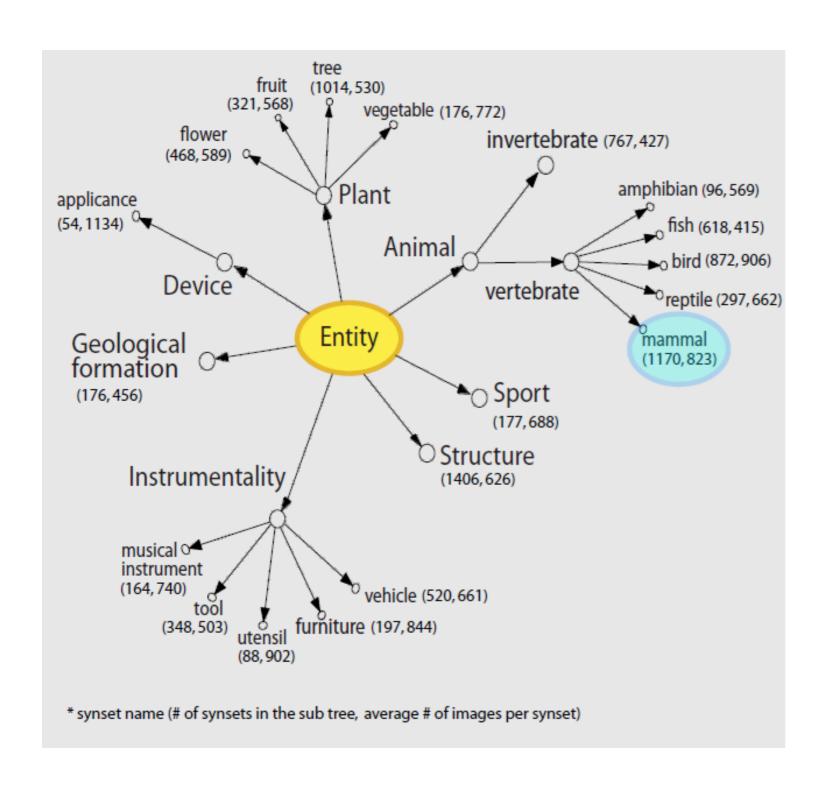
Increasing

structural complexity

"Happy shaggy Airedale poses in the autumn forest."

Description

WordNet / ImageNet



14,197,122 images 21,841 synsets indexed

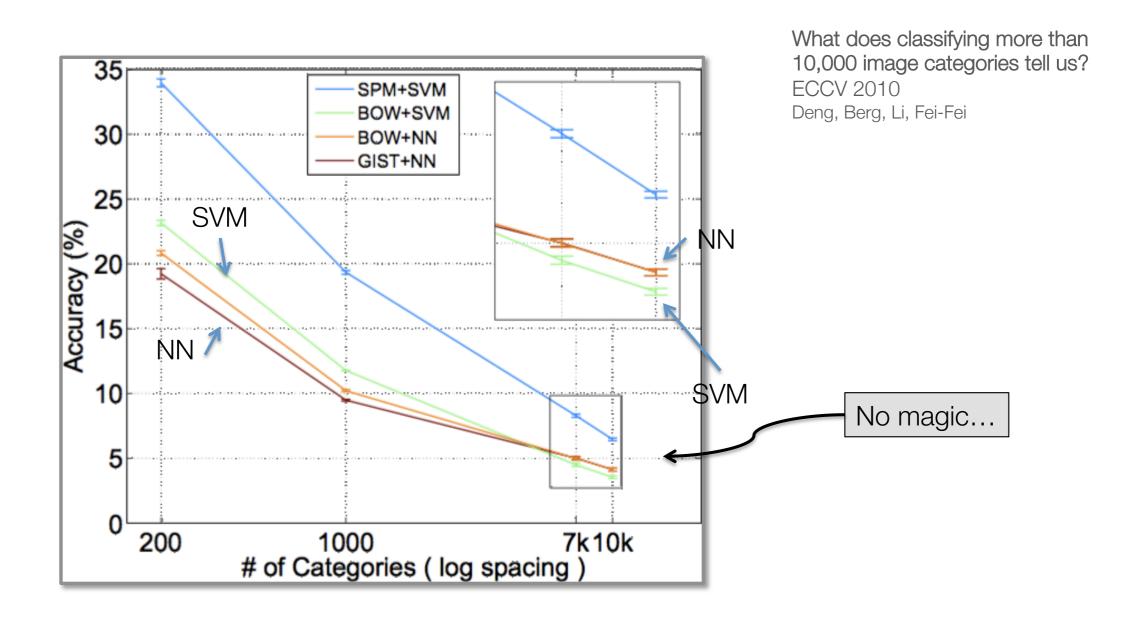
ILSVRC-2013

Task I: Detection PASCAL-style detection challenge; 200 categories

Task 2: Classification Image classification challenge; 1000 categories

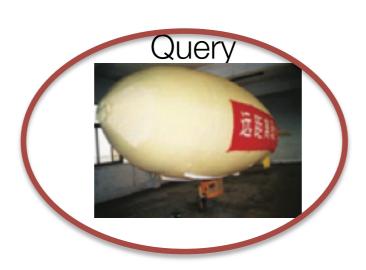
Task 2: Classification with localization Image classification plus object localization challenge; 1000 categories

Why do we want a large label space?



- Performances are often weak ... (~10%)
- ... but large-scale allows us to use structure over labels!

What do we mean by similarity?



Airship *Blimp*

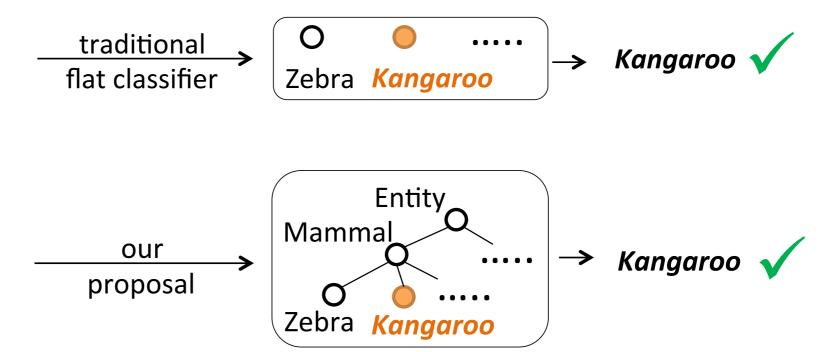
Retrieved Images

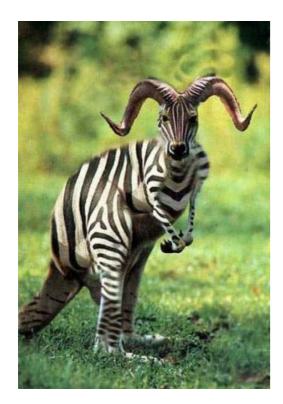
Aquatic Animal Axlotl

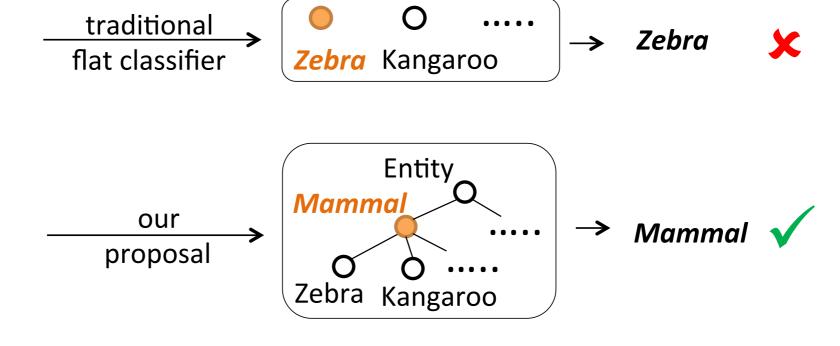
Retrieved Images

Airship *Baloon*

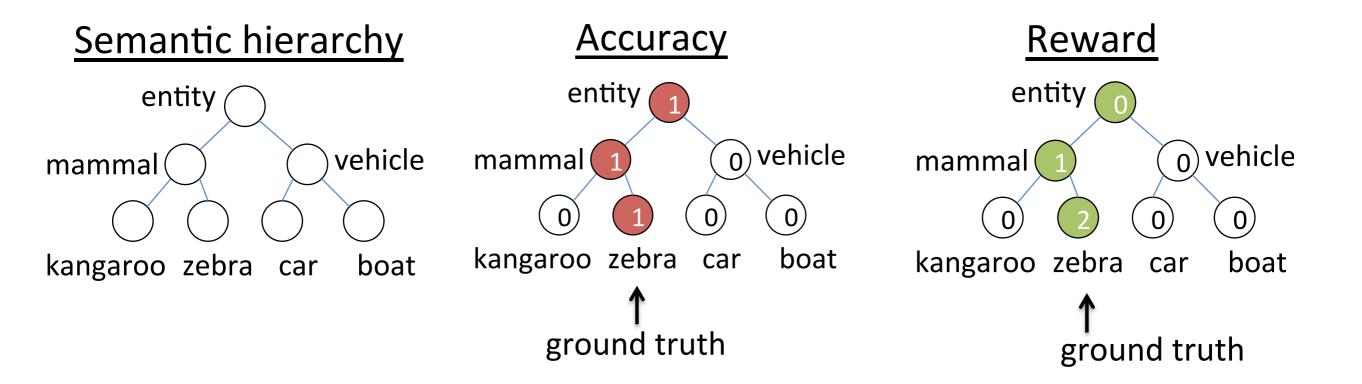
How can we do this?





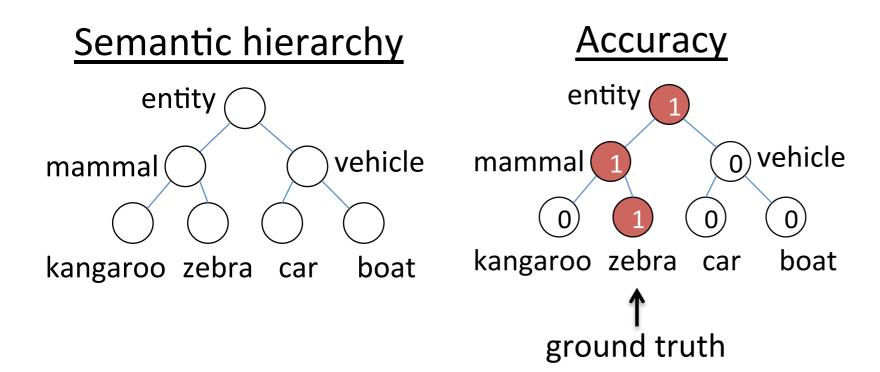


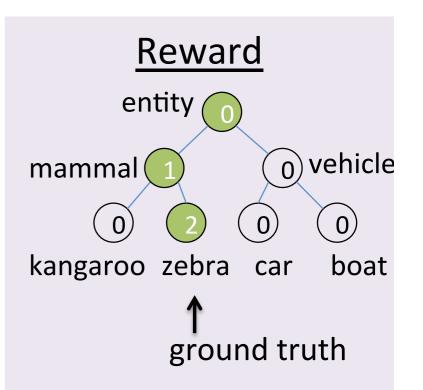
Formulation



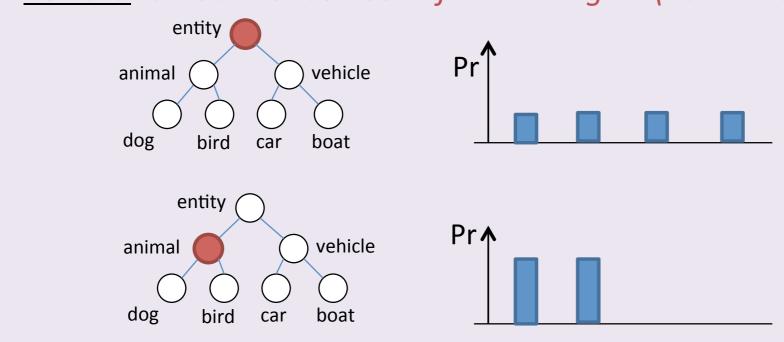
Key idea: automatically select the appropriate level of abstraction to optimize the accuracy/specificity trade-off

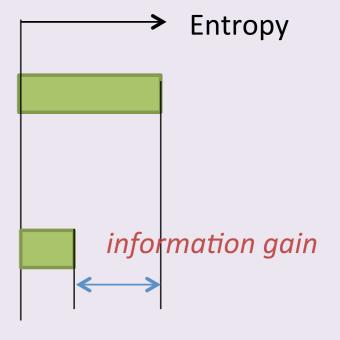
Formulation



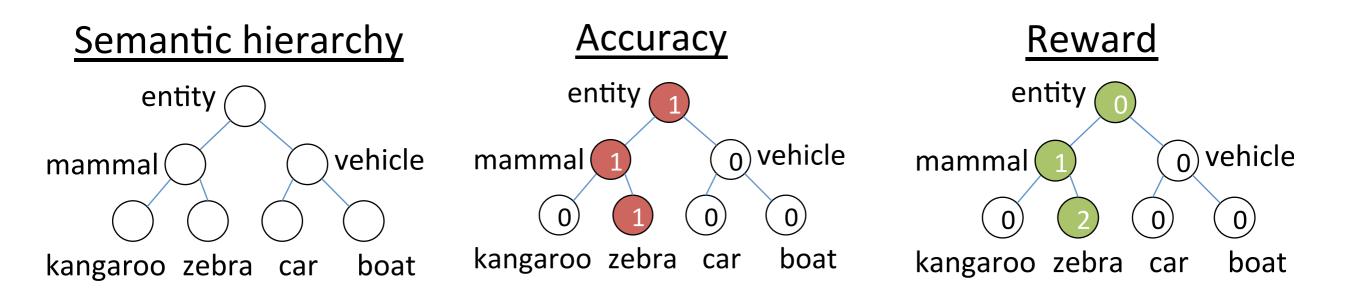


Reward: amount of correct information gain (i.e. decrease of uncertainty)

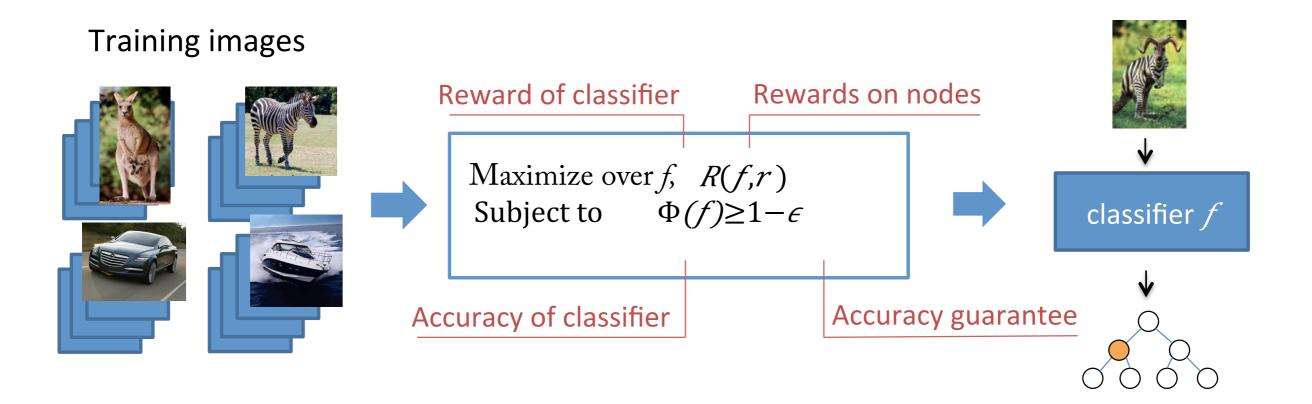




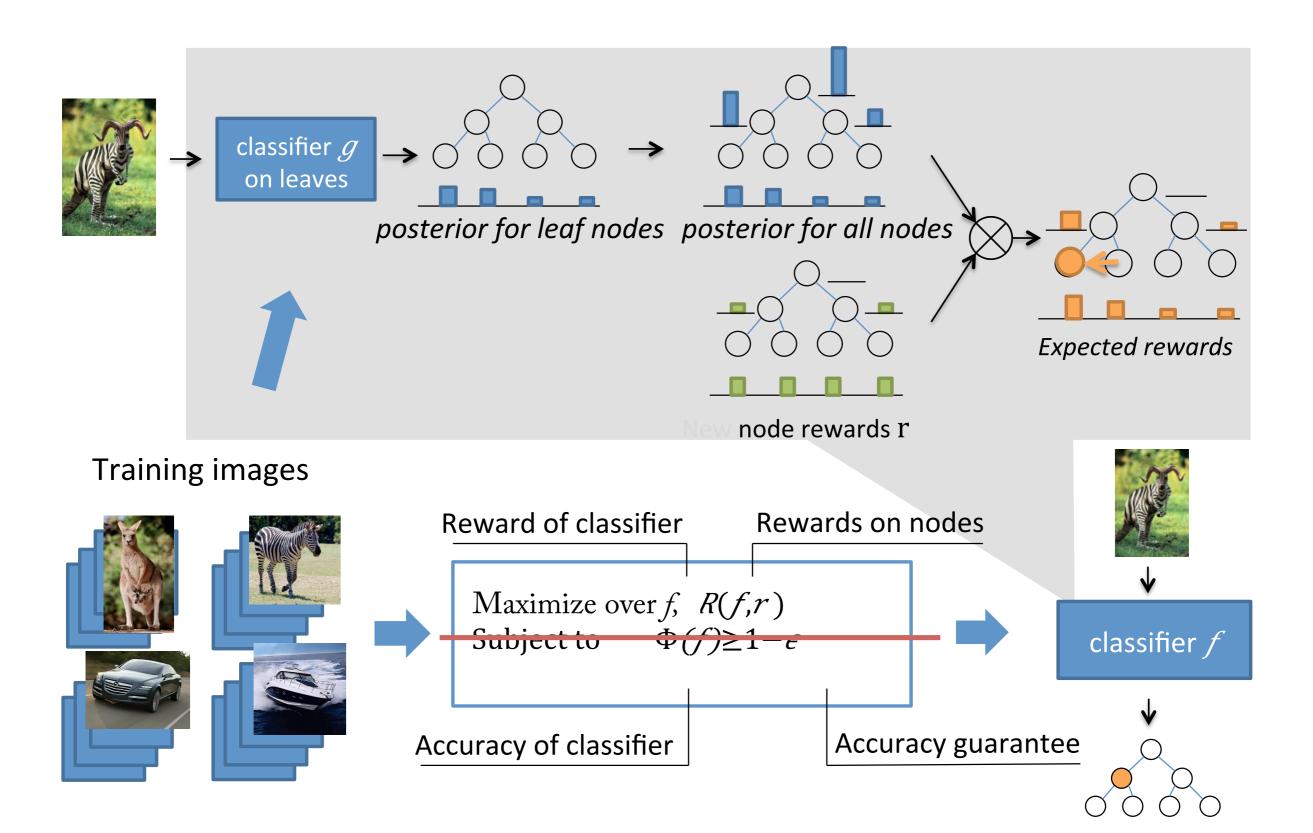
Formulation



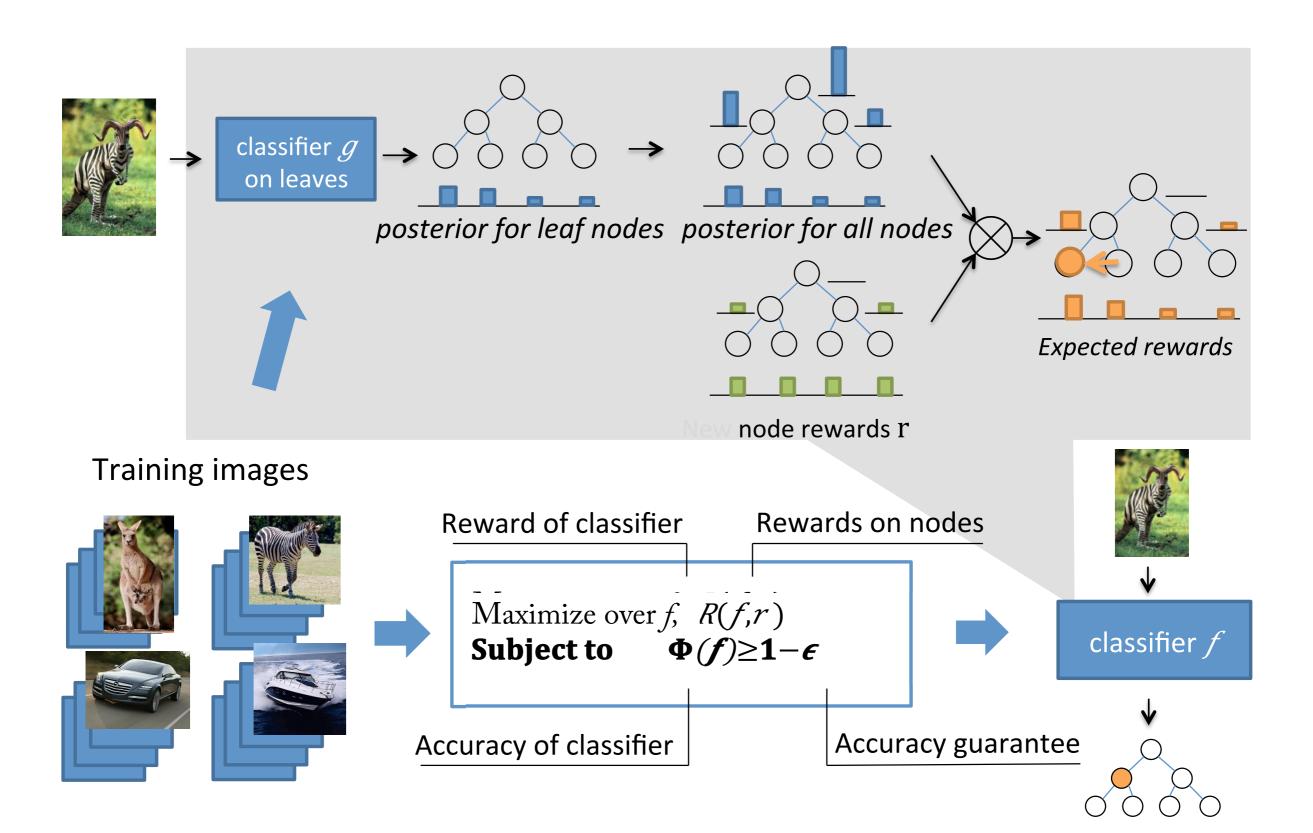
Goal: maximize the reward given an arbitrary accuracy guarantee



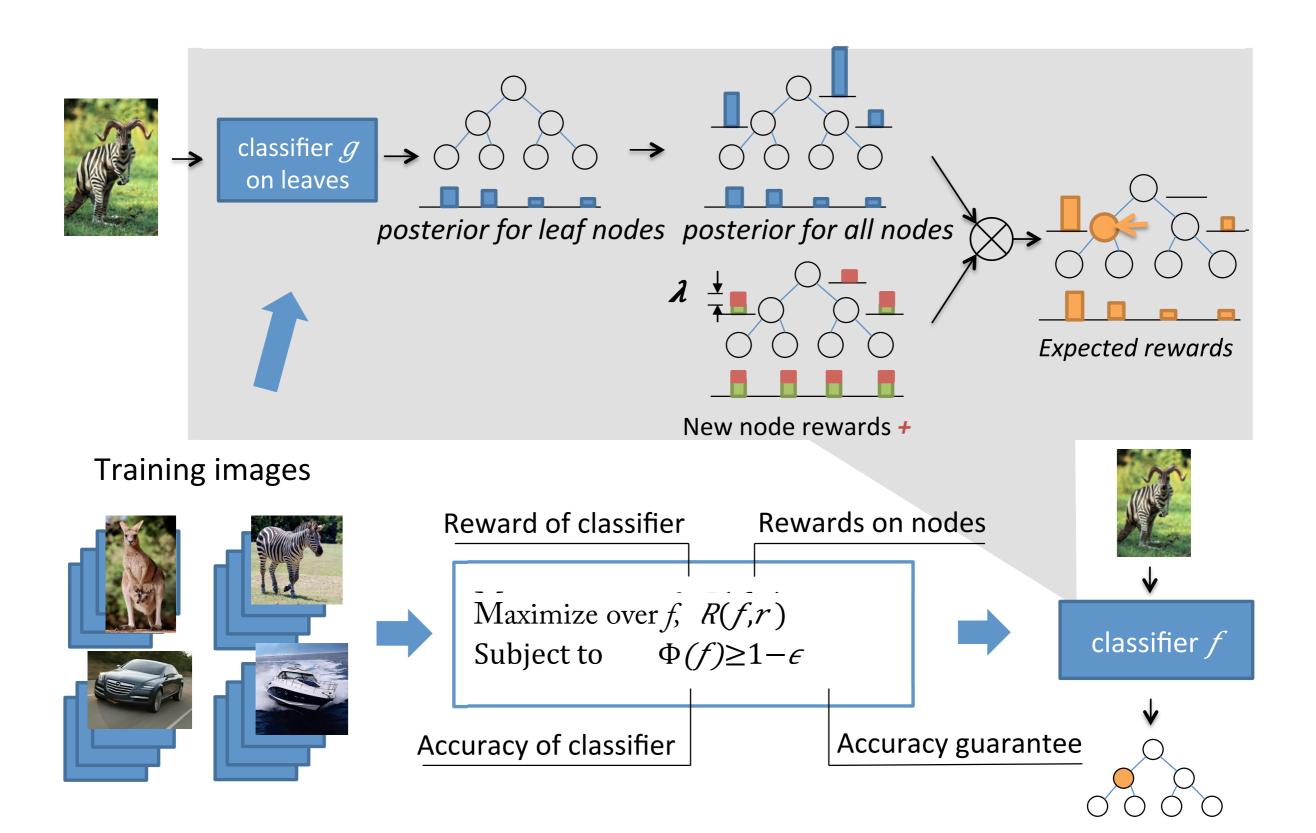
For now, assume no accuracy guarantee ...

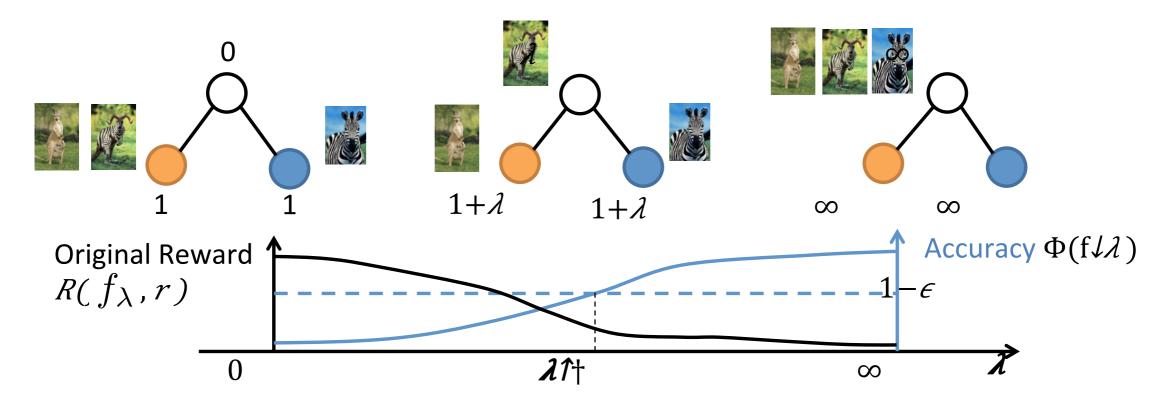


What about the accuracy guarantee $1-\epsilon$?

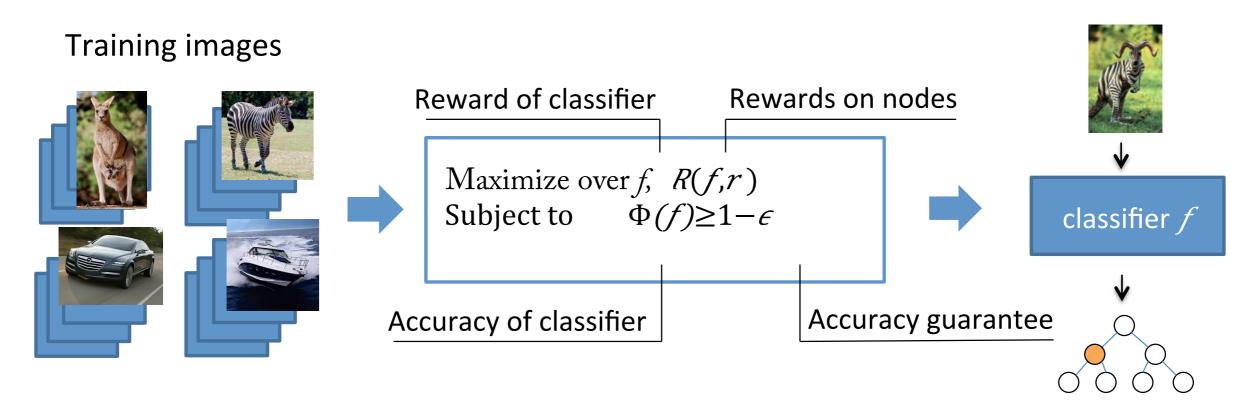


What about the accuracy guarantee $1-\epsilon$?





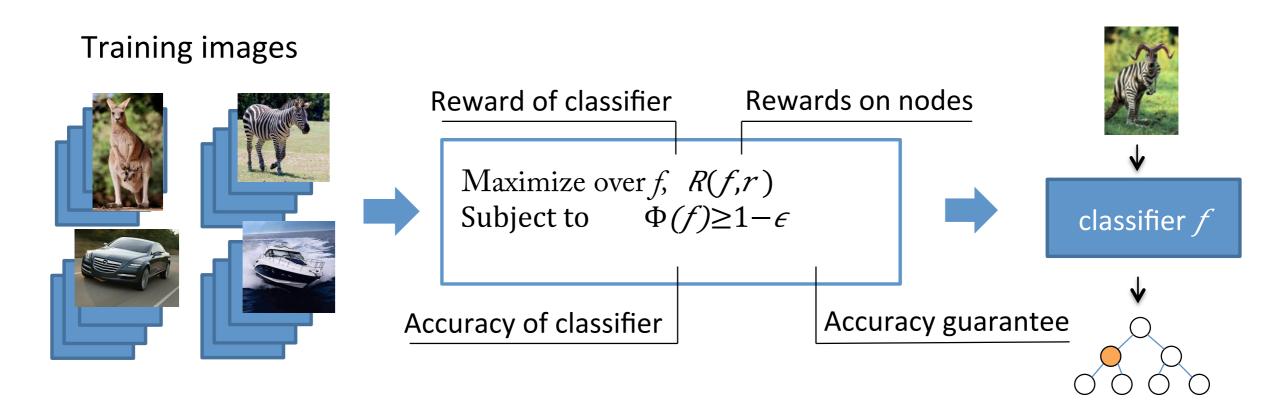
The optimal λt is where the accuracy is exactly $1-\epsilon$: binary search



The DARTS algorithm

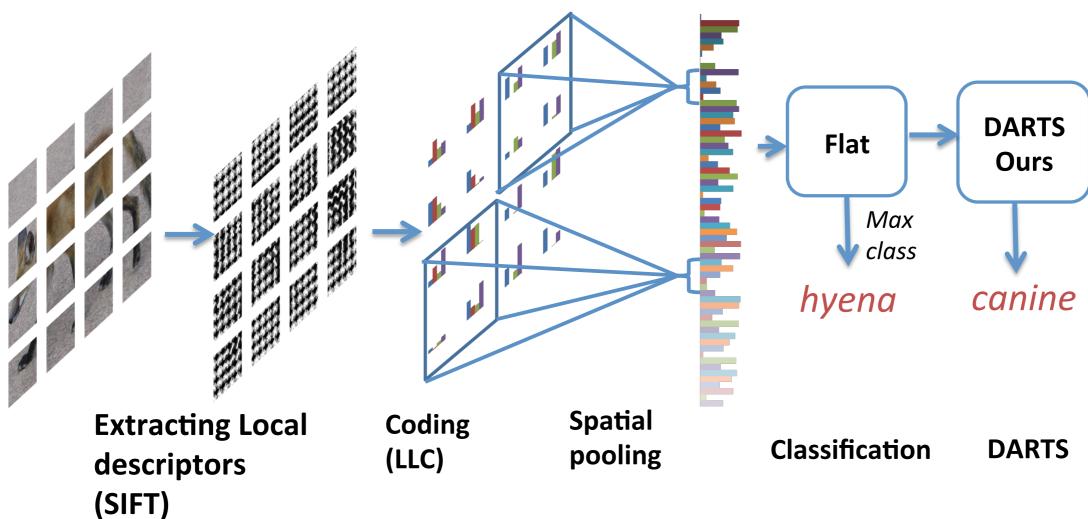
Dual Accuracy Reward Trade-off Search

- Train a flat classifier that gives probability estimates on the leaf nodes.
- $f_{\lambda} \leftarrow$ a classifier that maximizes the expected new node rewards $(r + \lambda)$
- lacktriangle Binary search to find the optimal f_λ such that f_λ is $1-\epsilon$ accurate
- λ is the dual variable in the Lagrange function
- Theorem: for any $1-\epsilon$, DARTS converges to an optimal solution except for artificial cases (no worries in practice).



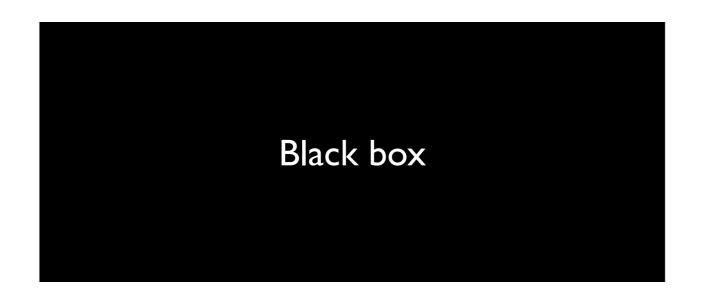
Recognition Pipeline

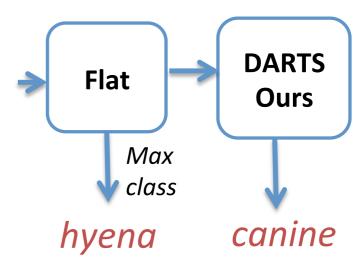
red fox



Recognition Pipeline

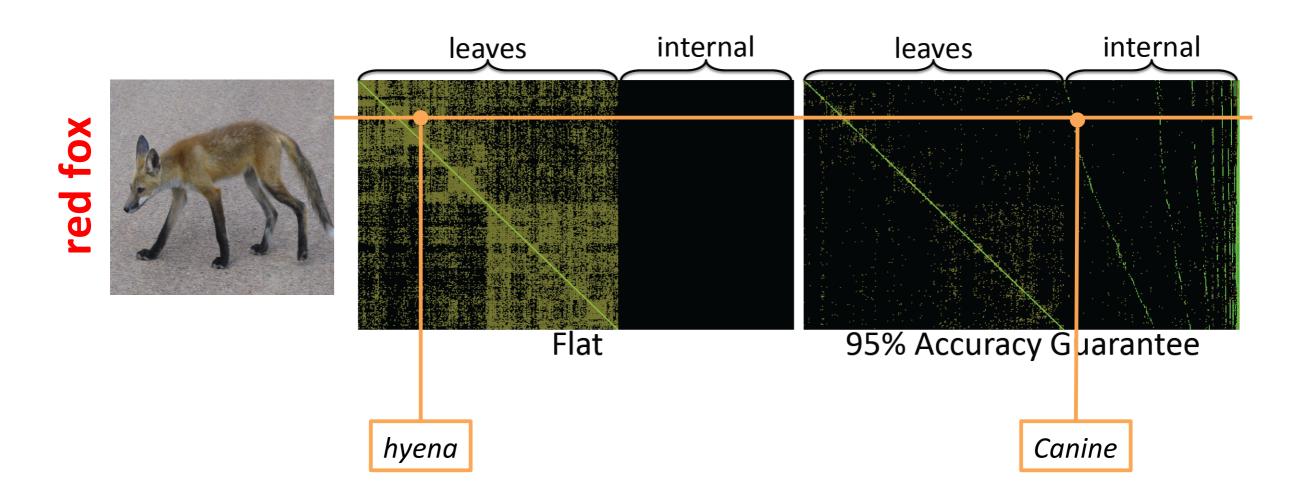
red fox





Classification DARTS

Results



Some examples

red fox jelly fungus Flat Egyptian cat mantis hyena <u>orangutan</u> canine carnivore animal living thing **Ours** mammal trimaran

<u>airship</u>

craft

iron

artifact

electric guitar

artifact

submarine

watercraft

<u> Flat</u>

Ours

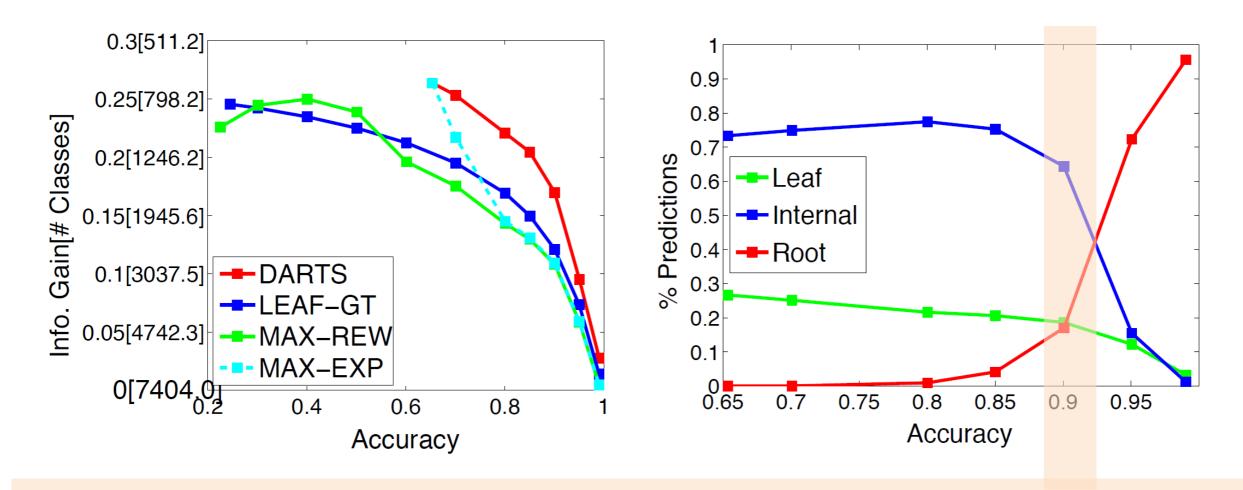
catamaran

sailboat

Results

<u>Datasets:</u> 10,000 image classes from ImageNet (~9million images)

Baselines: Flat classifier with a reject option, etc.



10K classes: 90% accurate, 19% on leaf nodes, 64% non-root internal nodes, 17% "entity"

Some more (extreme) examples

Flat **Ours**

bobsled vehicle

<u>pheasant</u>

animal

mortar edible fruit

canoe watercraft

Flat

Ours

loggerhead

animal

Bouvier des Flandres

grapefruit citrus fruit

animal

cannon

living thing

References

- Alex Berg, "Toward richer targets in large-scale recognition", invited talk @ NIPS' 12 BigVision Workshop *
- Deng et al, "Hierarchical Semantic Indexing for Large Scale Image Retrieval", Proc. of CVPR 2011
- Deng et al, "What Does Classifying More Than 10,000 Image Categories Tell Us?, Proc. of ECCV 2010
- Deng et al, "ImageNet: A Large-Scale Hierarchical Image Database", Proc. of CVPR 2009

^{*} Available online: http://techtalks.tv/talks/toward-richer-targets-in-large-scale-recognition/57860/