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Introduction

Image Source: E. Murphy-Chutorian and M.M. Trivedi. ”Head pose estimation in computer vision: A survey”.

2009.
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Introduction

Best performance in head pose estimation is obtained by non-linear
regression methods.

Partial Least Squares, a regression technique, has been gaining
much interest in computer vision lately.

Image Source: E. Murphy-Chutorian and M.M. Trivedi. ”Head pose estimation in computer vision: A survey”. 52
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Introduction

In prior work, there is no study of the effect misalignment

Propose head pose estimation method based on partial least
squares (PLS) regression

... while solving the alignment problem simultaneously.
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Linear and Kernel PLS

Consider a matrix of independent variables X and a matrix of
dependent variables Y, obtained as a response to X. PLS
decomposes the matrices as follows:

X = TPT + E

Y = UQT + F

Solving for T and U using the NIPALS algorithm, the regression
coefficients can be expressed as:

B = XTU(TTXXTU)−1TTY

The kernel PLS applies the same decomposition but after a
nonlinear transformation of the input vectors.
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Experimental Setup

We tested the linear PLS and kPLS on two databases: Pointing’04
and CMU Multi-PIE.

X was composed of the HOG features of each face.

Y is composed of the corresponding pose: two dimensional (pitch
and yaw) for Pointing’04 while one dimensional (yaw) for CMU
Multi-PIE.
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Pointing’04 Results

Method Yaw Err Pitch Err Accuracy (Yaw,Pitch) Notes
Ours (kernel PLS) 6.56◦ 6.61◦ (67.36%, 80.36%) -

Stiefelhagen 9.5◦ 9.7◦ (52.0%, 66.3%) 1
Ours (linear PLS) 11.29◦ 10.52◦ (45.57%, 58.70%) -
Human Performance 11.8◦ 9.4◦ (40.7%, 59.0%) 2

Gourier (Associative Memories) 10.1◦ 15.9◦ (50.0%, 43.9%) 3
Tu (High-order SVD) 12.9◦ 17.97◦ (49.25%, 54.84%) 4

Tu (PCA) 14.11◦ 14.98◦ (55.20%, 57.99%) 4
Tu (LEA) 15.88◦ 17.44◦ (45.16%, 50.61%) 4

Voit 12.3◦ 12.77◦ − -
Li (PCA) 26.9◦ 35.1◦ − 5
Li (LDA) 25.8◦ 26.9◦ − 5
Li (LPP) 24.7◦ 22.6◦ − 5

Li (Local-PCA) 24.5◦ 37.6◦ − 5
Li (Local-LPP) 29.2◦ 40.2◦ − 5
Li (Local-LDA) 19.1◦ 30.7◦ − 5

Notes:
1) Used 80% of Pointing’04 images for training, 10% for cross-evaluation, and 10% for testing.
2) Human performance with training.
3) Best results over different reported methods.
4) Better results have been obtained with manual localization.
5) Results for 32-dim embedding.

Ref: M. Al Haj, J. Gonzalez, and L.S. Davis. ”On partial least squares in head pose estimation: How to
simultaneously deal with misalignment”. CVPR 2012.

Table Source: E. Murphy-Chutorian and M.M. Trivedi. ”Head pose estimation in computer vision: A survey”. April

2009.
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Box-and-Whisker Pointing’04 Results

kPLS yaw regression
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Multi-PIE

2700 face images from the CMU Multi-PIE database were
manually annotated. These images belong to 144 subjects, under
frontal illumination and varying expressions.

kPLS linear PLS PCR
Mean Absolute Error (MAE) 5.31◦ 9.11◦ 11.03◦

Accuracy 79.48% 57.22% 48.33%

58



Face Detection
Reactive Tracking

Head Pose Estimation

Partial Least Squares
Estimation Results
Misalignment

The Alignment Problem

Misalignment is a problem for any regression/classification
algorithm.
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The Alignment Problem

Misalignment is a problem for any regression/classification
algorithm.

Pose results are reported without studying this effect.
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The Alignment Problem

Misalignment is a problem for any regression/classification
algorithm.

Pose results are reported without studying this effect.

The detection output is not necessarily aligned with trained models.
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Misalignment Effect

0% shift 0% shift

pitch 0◦ and yaw −30◦ pitch ? and yaw ?

Error in Pointing’04 linear PLS: 11.29◦

Error in Multi-PIE linear PLS: 9.11◦

Error in Pointing’04 kernel PLS: 6.56◦

Error in Multi-PIE kernel PLS: 5.31◦
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Misalignment Effect

0% shift 5% shift

pitch 0◦ and yaw −30◦ pitch ? and yaw ?
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Misalignment Effect

0% shift 35% shift

pitch 0◦ and yaw −30◦ pitch ? and yaw ?
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Misalignment Effect

0% shift 40% shift
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Misalignment Effect

0% shift 45% shift

pitch 0◦ and yaw −30◦ pitch ? and yaw ?
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Misalignment Effect

0% shift 50% shift

pitch 0◦ and yaw −30◦ pitch ? and yaw ?
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The Alignment Problem

Proposal:
Consider not only the detected face but also a bag of neighboring
windows.
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The Alignment Problem

Proposal:
Consider not only the detected face but also a bag of neighboring
windows.
Given the latent sub-spaces, the instance with the minimum
residual is the one with the best response.

61



Face Detection
Reactive Tracking

Head Pose Estimation

Partial Least Squares
Estimation Results
Misalignment

Residual estimation

We derived this error as:

linear: e = x− xXTT(TTXXTT)−1TTX.
kernel: e = K (x, x)− K (x,X)TtT − tTTKT (x,X) + tTTKTtT .

To test the accuracy of minimum residual, compare accuracy of
well-aligned samples vs. the selected samples in misaligned bags.
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Misalignment Bags

0%
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Misalignment Bags
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Misalignment Bags

10%
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Misalignment Bags

25%
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Misalignment Bags

50%
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Misalignment Bags

The MAE of applying the regression on the minimum residual
sample of each bag is shown below:

linear case
64
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Misalignment Bags

The MAE of applying the regression on the minimum residual
sample of each bag is shown below:

kernel case
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Our method vs. MIL

Multiple Instance Learning (MIL) is used to accommodate for
misalignment

On average, our kPLS method outperforms Multi-Instance
Multi-Label SVM (MIMLSVM)

...despite not having any misaligned sample in the training
dataset and being 100x faster.

Ours (kPLS) MIMLSVM
MAE Pointing’04 Yaw 7.94◦ 10.72◦

MAE Pointing’04 Pitch 9.35◦ 12.32◦

MAE Multi-PIE Yaw 6.06◦ 5.40◦

Source: Z.-H. Zhou and M.-L. Zhang. ”Multi-instance multilabel learning with application to scene classification”.

NIPS 2007
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