Meta-Class Features for Large-Scale Object Categorization on a Budget

Speaker: Svebor Karaman

Authors:
Alessandro Bergamo
Lorenzo Torresani

Work presented as a Poster @ CVPR 2012
Object categorization

Two restrictive assumptions of standard benchmarking

- Predefined and fixed set of categories
- Computational costs not much considered

Object class search by example

Accurate real-time search and recognition of arbitrary (i.e. defined on the fly) categories in gigantic image collections.

- Application example: novel object class search

 The user defines a query (by providing a set of image examples of an arbitrary class)

 We search in the database the images relevant to the query

 Output images

- Approach: learn a one-vs-all classifier using the query images as positive examples, then rank the database
Meta-classes overview

Meta-classes history
- “Efficient Object Category Recognition Using Classemes” [TSF10] Lorenzo Torresani, Martin Szummer, and Andrew Fitzgibbon @ ECCV 2010.

Key concept
Use the output of rather complex classifiers, learned offline, as a feature vector used as input to learn and test online linear classifiers.

Advantages
- Each bin is highly informative. Towards breaking the semantic gap?
- New classifiers can be learned efficiently online and give good performances
- Very low memory usage when binarized without much loss of performance
The meta-class features

Classification model h_c of meta-class c

- **LP-β classifier** [GN09]: linear combination of M non-linear (here, actually approximated by linear kernels using the “lifting” explicit map of [VZ12]) classifiers, one for each low-level feature.
- **Two steps learning**: parameters $\{w_{m,c}, b_{m,c}\}$, then, $\beta_c = [\beta_{1,c}, \ldots, \beta_{M,c}]^T$.

- Our meta-class descriptor $h(x) \in \mathbb{R}^C$ extracted from an image x, is the output of a set of non-linear binary classifiers $\{h_1, \ldots, h_C\}$ evaluated on x

\[
h(x) = \begin{bmatrix} h_1(x) \\ \vdots \\ h_C(x) \end{bmatrix}, \quad \text{where} \quad h_c(x) = \sum_{m=1}^{M} \beta_{m,c} \left[w_{m,c}^T \Psi_m(f_m(x)) + b_{m,c} \right]
\]

- A linear classifier on this descriptor, effectively implements a non-linear function of the original low-level features:

\[
g(x) = \sum_{c=1}^{C} w_c h_c(x)
\]

- Learned once in offline stage
- h_c is a variant of LP-β [12]
- explicit feature map [31] to efficiently add non-linearity in the classifier
- m-th low-level feature

Speaker: Svebor Karaman (Unifi::Micc::VimLab)
Learning the meta-classes

What are meta-classes?
- “Abstract” categories that share common salient visual properties.

Learning the meta-classes
- Inspired by the label-tree learning [BWG10]: hierarchical partitioning of the classes into subsets
 - One meta-class should be easily recognized from the others
 - Rather high confusion within one meta-class
- Whole set of labels l_D. Given a label set l, find two subsets l^L and l^R such as: $l^L \cup l^R = l$ and $l^L \cap l^R = \emptyset$
- Given the symmetrized confusion matrix B, maximize:
 $$E(l^L) = \sum_{i,j \in l^L} B_{ij} + \sum_{p,q \in l \setminus l^L} B_{pq}$$
- Solved by spectral clustering. Train a meta-class classifier $h(l^L,l^R)(x)$.
- Applied recursively up to $|l| = 1$.

Speaker: Svebor Karaman (Unifi::Micc::VimLab)
Our approach: learn the set of basis classes

Goal: each basis class should capture **useful** visual properties **shared by many object classes**

Idea: define each basis class as an abstract category (*meta-class*) corresponding to a subset of visually similar training object classes

Label tree: each node is a *meta-class*, i.e. a *subset* of classes easily recognizable

D: database with K classes
(label set is $\{1 \ldots K\}$)

We learn 1-vs-All classifiers over D
(*mc-classess)*

$\{\hat{h}_1, \ldots, \hat{h}_K\}$

We create the symmetrized
Confusion Matrix
on a validation set D_{val}

$$B \in \mathbb{R}^{K \times K}$$

We recursively partition the label set \mathcal{L} of each node into two subsets by minimizing (Spectral Clustering [23]):

$$E(\ell^L) = \sum_{i,j \in \ell^L} B_{ij} + \sum_{p,q \in \ell - \ell^L} B_{pq}$$
meta-class tree visualization

We show a small portion of the tree learned by our approach. In the inner nodes, we have meta-classes comprising categories visually similar to each other.

- Hurricane lamp
- Perfume
- Crock pot
- Oil lamp
- Lamp
- Electric lamp
- Table lamp
- Hematocrit
- Tab
- Candlepin
- Game equipment
- Icing sugar
Visualization of PiCoDes

- What kind of information is encoded in PiCoDes?

- Images with large negative PiCoDes values (before binarization)
- Images with large positive PiCoDes values (before binarization)
Experiments

- Low-level features: color GIST, oriented and unoriented HOG, SSIM, SIFT + Spatial pyramids of 13 cells
- “Lifting” up the feature dimensionality from $d = 17360$ to $D = 52080$ to approximate the non-linear kernels
- 8000 randomly sampled synsets (classes) from ImageNet disjoint from ILSVRC2010 and Caltech256. Label-tree: 7458 internal nodes (meta-classes)
- Feature vector of 15458 dimensions: classemes + meta-classes classifiers
- Probabilistic output by sigmoid normalization through Platt’s scaling: mc
- Binarized version $[h_c(x) > 0]$: mc − bit

Figure 1: Multiclass object categorization accuracy on Caltech256. Linear SVM applied to mc or mc-bit descriptor outperforms the state-of-the-art LP-β classifier and is orders of magnitude faster to train and test.
Recursive feature elimination

Figure 2: Multiclass recognition accuracy as a function of mc-bit dimensionality on ILSVRC2010. Recursive Feature Elimination to reduce the dimensionality of the mc-bit descriptor. The percentage at each dimensionality indicates the proportion of classeme features retained in the descriptor. Although initially the full descriptor contains more classemes than meta-classes, the majority of features selected at each step are meta-classes.
Recursive feature elimination

mc-bit: tree usage

In this slide we show the label tree learned by our method. The root is at the center of this radial layout; the radial distance of each node indicates its depth in the tree. The blue nodes are the meta-classes selected by Recursive Feature Elimination when the descriptor dimensionality is 2000.
Large scale experiment

- ILSVRC2010 dataset
 - 150,000 images
 - 1,000 classes
- Training protocol
 - All 150 positives
 - 4,995 negatives: 5 images of the 999 other classes
- Ranking of the full dataset for each class
- Very good results, higher than classemes
- Results lower than XRCE and NEC but these methods have much higher memory usage (Fig. 4) and computational costs (Fig. 5)

Figure 3: Object-class search on ILSVRC2010: accuracy in retrieving images of a novel class from a dataset of 150,000 photos. For each query class, the true positives are only 0.1% of the database. The mc-bit descriptor significantly outperforms classemes.
Figure 4: Storage requirements for 10M images with different feature representations (note the log scale). The mc-bit descriptors outperforms the top-method for ILSVRC2010 in terms of scalability to large databases.

Figure 5: Object-class search time as a function of the number of images in the database, using a machine with 20 GB of memory. The mc-bit approach is significantly faster than the competing approaches and is the only one that allows large databases to be kept in the memory of standard computers.
Implementation

Code available

- The software supports several images types (Jpeg, Png, Tiff, and others) and it is available for Microsoft Windows, GNU/Linux and Mac OSX.
- They exploit explicit features maps approximating the intersection kernel to efficiently evaluate the non-linear kernels used by classemes, resulting in a descriptor extraction that takes about 2 sec per image.

References I

Meta-Class Features for Large-Scale Object Categorization on a Budget

Speaker: Svebor Karaman

Authors: Alessandro Bergamo, Lorenzo Torresani

Work presented as a Poster @ CVPR 2012