Scalar Quantization for Large-Scale
Image Search

Wengang Zhou?, Yijuan Lu?, Hougiang Li?, and Qi Tian?

lUniversity of Texas at San Antonio, USA
’Texas State University at San Marcos, USA
3University of Science and Technology of China

& D/’T‘

Outline

* Motivation

* Codebook-free CBIR
— Scalar Quantization

— Index Structure
— Code Word Expansion

* Experiments
 Conclusion

Content based Image Retrieval

Stage IlI: 2012- present, Codebook-free CBIR

Represent images with binary features, no codebook training

Stage II: 2003-2012, Codebook -based CBIR

Local invariant features (SIFT), codebook for quantization

Stage |: 1990s — 2003, Global feature based CBIR

Features: color, texture, shape

NN search

Nearest neighbor search is inherently expensive due to the curse of
dimensionality

For high dimensions it turns out multi-dimensional indexing
methods, such as the popular KD-tree are not more efficient than
the brute- force exhaustive distance calculation

There is a large body of literature on algorithms that overcome this
issue by performing approximate nearest neighbor (ANN) search.

For real data, LSH is outperformed by heuristic methods, which
exploit the distribution of the vectors. These methods include
randomized KD-trees and hierarchical k-means, both of which are
implemented in the FLANN selection algorithm

NN search

ANN algorithms are typically compared based on the trade-off
between search quality and efficiency.

— However, this trade-off does not take into account the memory
requirements of the indexing structure.

In the case of E2LSH (Euclidean Locality-Sensitive Hashing), the
memory usage may even be higher than that of the original
vectors.

Both E2LSH and FLANN need to perform a final re-ranking step
based on exact L2 distances, which requires the indexed vectors to
be stored in main memory if access speed is important.

— This constraint seriously limits the number of vectors that can be
handled by these algorithms.

Compact binary codes may reduce the problem

Stage | - Global Feature Based CBIR UT:A

Image DB
Feature

Extraction

Off-line

Automatic

Relevance
Feedback

User
Interface

Rui & Huang, et al., Relevance Feedback —a powerful tool for interactive content-based image retrieval, TCSVT, 1998

metadata

Color
Texture

structure

1

memory

Feature
weighting

Similarity
ranking

Color

— Color histogram
— Color moments

— Color correlogram

Texture

— Tamura texture

— Co-occurrence matrices
— Gabor features

— Wavelet moments

Shape
— Fourier descriptor

Structure
— Edge-based features

Large Scale Image Retrieval based
on Bag-of-Visual-Word Model|

Images

Local features SIFT, SURF, MSER

Keypoint
feature
space

Keypoints e . Clustering by Vector Quantization:
clustering Visual Codebook - K-means / hierarchical K-means

Visual-word - Random forest

Vocabulary

Inverted index file
Indexed
Index Structure

Image Feature Feature
ID Orientation Scale

Image Retrieval

Codebook-based CBIR

Local features SIFT, SURF, HOG

Keypoint
feature
space

Clustering by Vector Quantization:

?Ei‘{é’!ﬂf = I Visual Codebook - K-means / hierarchical K-means
- Random forest

Visual-word '

X

Vocabulary
Inverted index file
Inde ructure Hashing

¥

St
. cpe s Local geometric verification
Spatial Verification Global geometric verification
Application

Vector Quantization

e From feature to visual word

— Map a high-dimension vector to the closest visual word
represented as an integer (visual word id)

: Visual Word
* Popular techniques SHal THOT

— Hierarchical 1-NN

»él‘j- M %

!\
@@ rj:J

Drawbacks of Vector Quantization

* High Computational Cost to train codebook

— Codebook generation is computationally expensive,
especially with a large amount of features, e.g. 1 billion

e Limited Reliability
* Highly depend on training image database
* Difficult to determine codebook size, e.g., 100K or 1M
* Cannot well cover the feature space of indexed images

* Update Inefficiency

e Difficult to update the codebook for newly collected
images

 Computational cost is high to update each visual word

Outline

* Motivation

e Codebook-free CBIR

— Scalar Quantization
— Index Structure
— Code Word Expansion

* Experiments
* Demo
* Conclusion

Stage Ill: Codebook-free based CBIR [sies

* Key Steps:
Step 1: Convert a floating-point SIFT feature to a
binary sighature
e Scalar Quantization vs. Vector Quantization

Step 2: Adopt the classic inverted file indexing

Step 3: Reduce quantization loss by code word
expansion

Scalar Quantization

 Basic Idea

— Scalar vs. Vector Quantization

= simple, fast, data independent

— Map a SIFT feature to a binary signature (bits)
 Map function is independent of image collection

— The binary signature keeps the discriminative power
of SIFT feature

Step 1: Binary SIFT Signature

e General idea

Distance
preserving

SIFT descriptor Binary Signature

Transformation

(0,25,8,2,... 14,5, 2)T 0 (0,1,0,0,...,1,0,0)7

e Compact for storing in memory

How to * Efficient for comparison computing

select

Preferred Properties

e Simple and effective

* Unsupervised to avoid overfitting to training data
* Well preserved feature distance

Binary SIFT Signature

—Given a SIFT descriptor FEGNIAENHAET
—Transform it to a bit vector [ISGN NSy

* Each dimension is encoded with k bits, k <
log,d

Example:
d=8

Scalar Quantization

 To start, each dimension is encoded with one
o]l
— Given a feature vector iGNNI A N=Y &

The median value of vector

Experimental Observation

Statistical study on 0.4 trillion feature pairs

o
e

(o)
c
©
=
2
©
o\
-
(o)
(o)
©
S
>
©

S~

30 40 50 60 70 80 90
Hamming distance

Euclidean distance vs. Hamming distance;

Experimental Observation

Statistical study on 0.4 trillion feature pairs

—
P
rd

average L2 distane

average standard deviation

40 50 60 70 80 90

Hamming distance 20 30 40 50 60

Hamming distance

(b) The average standard deviation vs. Hamming
distance.

/

/ (c) Descriptor pair frequency vs. Hamming

distance;

frequency of SIFT descriptor pair

40 60
Hamming distance

An Example of Matched Features uria

@ : LO : @ LO : Q : @) |
O |V}
0)
§ 100 b oo . Q |
5 o ¢ ®
50 |- © o O o 0 q -
@ ¢) @ @
o 0 Q Q
o & allr iR Rilioen e Pl |
Oymm \MK@\ KW&U(PZ@D NATC TS PO T TRASH 2B Y TR =l Ta~ \S&SL)
20 40 60 80 0 120
feature dimension
Observation 150 : : L L L L
Share some common ? 9 ¥ - ® @ ? .
patterns in magnitudes on * s 5 0 g
he 128 bi he pair- E oY ? ®
the 128 bins, e.g., the pair 2 o o 9
ise diff b g 0 e |p o o I |-
wise differences between d o b Y5 o d o o
most of bins are similar and o)é%wm e o e ﬁm@?wﬁ ﬂi%ﬁ%q‘ pmﬁ ?;\ cf*@% e
20 40 60 80 100 120
stable. feature dimension
Implication:
p - 1 ﬁO b L OL O L O L L O i
The differences between .
. o >
bin magnitudes and a 8
. 0.5 _
predefined threshold are §

stable for most bins.

feature dimension

OQ&/ oy via i i e i govan)
20 40 e0 80 o0 120

Distribution of SIFT Median Value

e Distribution on 100 million SIFT features

X 1 O6

\
\.
\

e
=]
©
o}
2
|_
L
(5}
e
5]
>
(&)
c
o)
=]
oy
o}
P
=

Scalar Quantization

e Generalize Scalar Quantization

— Encode each dimension with multi-bits, e.g., 2 bits
— Trade-off between memory cost and accuracy

magnitude

iercnam
||‘| I

A typical SIFT descriptor with bin magnitude sorted in descending order

«'
-
3
-
D
(o

L)
l. 'Iili iz iy
I‘ Illlliﬁli!!!‘!é!!“nﬁ 0. 2 e ————————————
‘LS!.L'ZS!"UJH"UJH?’JR')".‘!l;.;-)".‘!')'Z-)".‘!.L'L-)".‘!.L'Z-)'L‘!”HUJ,JHUJ..L'HU,‘L.’JH‘L"’J

SIFT descriptor bin (sorted by magnitude)

Scalar Quantization

e Each dimension is encoded with two bits

— In practice, we quantize each dimension with 2 bits
* Considering memory and accuracy

(19 1) 1{ fl >f2A
(bi,bip108) =101, 0) if f; < f; ffz
(0, 0) if f; =< f;

8ea T 85]? 83 T 833
2 7)
CSW-ORENSPI9 is descendingly sorted from [G/PETRRRNAPTY,

where f1 =

Visual Matching by Binary Signhature

* Given SIFT f{!) from Image /, and f{?) from image /,

 Perform scalar quantization:
f > p 2 > p@

e (1) matches f(2), if Hamming distance
d(b?), b2)) < Threshold

Real example:
256-bit SIFT binary
signature
Threshold = 24 bits

Outline

* Motivation

e Codebook-free CBIR

— Scalar Quantization
—|Index structure
— Code Word Expansion
* Experiments
* Demo
e Conclusion

Step 2: Indexing with Scalar
Quantization

Adopt the classic inverted file indexing
— Fast, scalable

Take the top t bits of the binary signature as “code word”
— Codeword address

Store the remaining bits in the entry of indexed features

A toy example :

Code Word ID Indexed feature list for image database

Features

ImageID (10101)

I ITTTT T 1T
,
,
[
AN = =it
,
,

e
e
e

- I T
e

I
[T ,
,
[
+
,
, (HHET R
[
+
[
[
,

I
,
,
[
-
[T FEEETT T
[T [P
[T [HEETE T
i il e ol e
[T (PP
[
,

M e
— I — HITII = == 7
M e
[[T M e
[T [T (HHET R
inallm [+ = + — I H = I =
[T M e
[T M e
[T M e
i — HIFT=I— — =
[T (T R
[T AR AR
[T M e
HH H — HIH T == -
[T N el
[T N e
[T [EEETT T R
HH — [H R+
[T [T
[T [T
[T [T

+ — HIH A =
,
[
[
HHL — e
[
,
,
,

|
Lo
| [O
| (R
, R
+ — — HI e == 4
[[T , R
, AN [
| IRERN
| L]

SpJom 8po2 anbiun Jo junowe

-
O
S

©
.Z
S

-

S

-
d

S
e

G

S,
N
e
i

o0
=

<

D
=
=

bit number t
 The amount of unique code words (top t bits from 256-bit
vector) for different t on 1-million image database.

Indexing with Scalar Quantization

* Generally, the more code words are generated,
the shorter the average length of indexed feature
list becomes, and the less the time cost is needed
to query a new feature.

What happens if there’s a bit flip in the “code
word” ? There’s need of a sort of query
expansion to search within more code words for
each query feature. And the number of expanded
indexed feature lists is polynomial to t.

 To make a tradeoff, we select t = 32, obtaining,
in the experiments, 46.5 million “code words”.

Indexing with Scalar Quantization

>
o
c
[0}
=)
oy
@
=
2
S
S
o)
e
o}
s}

code word rank (sorted by frequency)

The figure shows the distribution of code word occurrence on one million image
database.

Only the top few thousand code words have very high frequency. These code
words are prevalent in many images, and their distinctive power is weak.

A stop-list is used to ignore those high frequency code words that occur in more
than 0.11% of the total image dataset.

Experiments reveal that a proper stop-list may not affect the search accuracy, but
does avoid checking many code word lists and achieves gain in efficiency.

Outline

* Motivation

* Our Approach

— Scalar Quantization
— Index Structure

—Code Word Expansion
* Experiments
* Demo
e Conclusion

Step 3: Code Word Expansion

* Quantization Error
— Flipping bits exist in code word

1007101011

-
TO"101071]

— If ignore those flipped bits, many candidate features will
be missed
* Degraded recall !!
— Solution: Expand code word to include flipped code words

 Enumerate all possible nearest neighbors within a predefined
Hamming distance

Step3: Code Word Expansion
- Quantization Error Reductio

Visual Word ID Indexed feature list for image database

VWO (000) =——>

I VW1 (001) II—->

VW2 (010)

2-bit flipping [l EEEEY

VW4 (100) >

VW5 (101) ——>

VW6 (110) ——>

I VW7 (111) >

Outline

* Motivation
 Our Approach
— Scalar quantization

— Index structure
— Code word expansion

* Experiments

 Conclusion
 Demo

Experimental Results

* Experiment Setup

— Basic dataset:
* One million images crawled from the Web

— Ground truth dataset
e Partial-duplicate dataset of 1103 images
* 33 groups, containing logo, artwork, trademark, etc.
* Available for download (if the website of Wengang Zhou comes back
online...)
— Comparison approaches
* Baseline (visual vocabulary tree), Nister, CVPR’06
* Hamming Embedding, Jegou, ECCV’08
» Soft Assignment, Philbin, CVPR’08

— Computer configuration
* CPU 3.4G Hz, 16G memory

Parameter Analysis

* There are two parameters in our approach:
Hamming distance threshold K and expansion-
bit number d.

* To study the impact of these two parameters
on search performance and computational
cost, we compare the mAP performance and
average time cost per query under different
parameter settings of K and d on the 1-M
image dataset.

Hamming distance threshold «

When the Hamming distance threshold K increases, the mAP performance
first increases and then keeps stable and gradually drops a little after it
reaches the peak, where K = 24 .

— This is intuitive, since increasing K always includes more candidate true
matches, but when K is too large, many noisy matches are also included.

When expansion-bit number d increases, the mAP gradually increases.
This is due to the fact that more candidate code word lists are involved in
matching verification, and more true matches will be kept.

—~
)
c
o
o
o)
)
N—
=
@
>
o
—
0]
S
=
(2]
o)
o
@
S
=
0]
o)
@
)
>
®

Hamming distance threshold x

 The average time cost per query increases when K
increases. This is due to that, when «x is larger, we have to
make more exclusive-OR operations, until the Hamming
distance between two 224-bit vectors is above a threshold.

As d increases, the querying time cost rises significantly.
This is because the expanded code word list number is
exponential to the expansion-bit number d.

Comparison: Accuracy

—e— our approach
—E— soft assignment

baselme

200K
database size

mean Average Precision (mAP) on 1-M image dataset

mAP improvement: (our approach: 0.54)

Baseline: 0.38, relatively 42.1% improvement
HE: 0.43, 25.6% improvement
Soft: 0.48, 12.5% improvement

Comparison: Efficiency

Off-line indexing On-line retrieval (Average time
(Time cost to index 1-million SIFT) cost per query on 1-M image

Time cost
(seconds)

baseline 53.72

Method

HE 64.82

soft assignment 771.09

average time cost per query(second)

our approach 18.86

baseline HE soft assignment our approach

0.48 seconds per query on 1-M dataset

-'C
I'\'s

Comparison: Memory Cos

Memory cost per indexed Memory cost for online
feature (Bytes) quantization (Bytes)

baseline 8 142M

HE 12 398M

soft assignment 24 506M

our approach 32 0

THE BEATLES

(AN AN A~
THE ALTERNATE ABBEY ROAD

o =l) A N

£ W T
" Qe
(. &<

Outline

* Motivation
e Codebook-free CBIR

— Scalar Quantization
— Index Structure
— Code Word Expansion

* Experiments

* Demo
e Conclusion

Conclusion & Discussion

e Contributions

— A novel codebook-free CBIR framework

e Scalar Quantization to convert SIFT descriptor to binary signature
— Image-collection independent;
— Efficient to implement

* Adapt binary signature to inverted index structure for large-scale
image search

e Reduce quantization loss by code word expansion

e Future Work

— Threshold selection in scalar quantization
e Learning-based vs. median
— Dimension reduction of binary signature
* More compact
— Apply Scalar Quantization to general features and mobile apps

I ENRIES

Any Questions?

Analysis on Recall of Valid Feature:

\ 224 bits for in index list

32 bits for code word

Retrieved features as candidates: All candidate features :

S = {HamDisy, <2} Q = {HamDis,s¢ < 24}

recall = Sﬂ_Q = 39.8%

Q2

Unique “Code Word” Number

e 32 bits code word address -> 232 (about 4295
million) codewords in total in theory

* Non-empty lists in total 46.5 millions

Stop Word Removal

>
o
c
(]
=)
8
= 1
©
[<]
=
(0]
°
o
o

visual word frequency

N~ . —

—_————

107 10* 10° 10? 10* 10°
code word rank (sorted by frequency) visual word rank (sorted by frequency)

(a) (b)
Frequency of code words among one million images (a) before, and (b) after, application
of a stop list.

Among the 46.5 M codewords, we further remove those stop words
whose occur frequently

Stage Ill: Codebook-free based CBIR
- Scalar Quantization

e SIFT distance distribution of true matches and
false matches

F T
true match
false match

@
o

N .

//
/
/

/

/
0.5 /

4_-/

O k 3 9 9 s s 9 9 e
0.2 025 0.3 0.35 0.4 045 05 055 06 065 0.7
threshold on L2 distance between matched SIFT

—_
(6]

amount of matched pairs
N
(&)

—

