Hands on Advanced Bag-of-Words Models for Visual Recognition

Lamberto Ballan and Lorenzo Seidenari MICC - University of Florence

- The tutorial will start at 14:30
- In the meanwhile please download the matlab code and images from: https://sites.google.com/site/iciap13handsonbow/
- We have also some USB pendrives with the material

- The starting point is the *exercises.m* file (we provide you also the *exercises_solutions.m* script)

Hands on Advanced Bag-of-Words Models for Visual Recognition

Lamberto Ballan and Lorenzo Seidenari MICC - University of Florence

Outline of this tutorial

- Introduction
 - Visual recognition problem definition
 - Bag of Words models (BoW)
 - Main drawbacks and solutions
- Session I (practical session): Standard BoW pipeline
 - Feature sampling strategies
 - Codebook creation and feature quantization
 - Classifiers
- Session II (practical session): Advanced BoW models for Visual recognition
 - Feature fusion
 - Modern feature representation: reconstruction based approaches LLC
 - Spatial pooling: max pooling, spatial pyramid

Predicting the presence (absence) of an object in an image

Does this image contains a **church**? [Where?]

Predicting the presence (absence) of an object in an image

Does this image contains a **church**? [Where?]

Single instance versus category recognition

Does this image contains «Santa Maria Del Fiore Cathedral»?

Single instance versus category recognition

Does this image contain a face?

Single instance versus category recognition

Does this image contain Barak Obama?

Scale

- Objects of different size
- Perspective

Viewpoint

Object pose

Michelangelo's David

Occlusion

- 3D scene layout
- Articulated entities

Magritte's "The Son of Man"

Clutter

Intra-class variation

All these are chairs

Inter-class similarity

A dog can be very similar to a wolf

Dog

Bag-of-Words models

 Text categorization: the task is to assign a textual document to one or more categories based on its content

is it something about medicine/biology?

is it a document about business ?

- "Bag of Words" (BoW) model, combined with advanced classification techniques, reaches state-of-the-art results
- The approach:
 - A text document is represented as an unordered collection of words, disregarding grammar and word order;
 - Method ingredients are: vocabulary, word histograms, a classifier

Same approach usable with visual data

 An image can be treated as a document, and features extracted from the image are considered as the "visual words"...

bag of visual words

Bag of (visual) Words: an image is represented as an unordered collection of visual words

- 1. Feature detection (sampling) and description
- 2. Codebook formation and image representation
- 3. Learning and recognition

- 1. Feature detection (sampling) and description
- 2. Codebook formation and image representation
- 3. Learning and recognition

The focus of this tutorial

Feature Sampling

Interest operators (e.g. DoG, Harris, MSER ...)

Feature Sampling

Dense sampling (regular grid)

extract_sift_features.m 12 if strcmp(file_ext, 'dsift') exercises.m 13 % DENSE SIFT 14 -% Extract SIFT features fon training and test images 15 detect_features_dsift(fullfile(dirname,d(i).name),file_ext if do_feat_extraction 16 elseif strcmp(file_ext, 'msdsift') extract_sift_features(fullfile('...', 'img', dataset_dir), desc_name) % MULTI-SCALE DENSE SIFT 17 18 scales = [16 24 32 48];

for i=1:length(data)

exercises.m

176 -

TODO: Exercise 1 to complete the codebook formation

Visual Word example 1: what's inside a cluster

Visual Word example 2: what's inside a cluster

Visual Word example 3: what's inside a cluster

Codebook Issues

How to choose vocabulary size?

- Too small: visual words not representative of all patches
- Too large: quantization artifacts, overfitting

Computational efficiency

- Vocabulary trees (Nister'06)

Bag-of-Words Representation

Quantization: assign each feature to the most representative visual word

Image Representation

Once each feature is assigned to a visual word we can compute our image representation

```
exercises.m

306 % 2.1 for each training and test image compute H. Hint: use
307 % Matlab function 'histc' to compute histograms.
308
309 - N = size(VC.1): % number of visual words
```

N = size(VC,1); % number of visual words

for i=1:length(desc train)

for i=1:length(desc_train)
 visword = desc_train(i).visword;

%H = . . .

310

311 -

312 -

313 314 histograms

TODO: Exercise 2 to

represent images as BoW

Image Representation

Compute histograms of visual word frequencies

Learning and Recognition

Learn category models/classifiers from a training set

Discriminative methods (covered by this tutorial)

- k-NN
- SVM: linear and non-linear kernels (RBF, Intersection, ...)

Generative methods

- graphical models (pLSA, LDA, ...)

Discriminative Classifiers

Model space

k-Nearest Neighbors Classifier

- For a test image find the k closest points from training data
- Labels of the k points vote to classify

Works well if there is lots of data and the distance function is good

TODO: Exercise 3, NN image classification using Chi-2 distance

Model space

SVM Classifier

Find hyperplane that maximizes the *margin* between the positive and negative examples

- Datasets that are linearly separable work out great
- But what if the dataset is not linearly separable? We can map it to a higher dimensional space (lifting)

TODO: Exercise 4, SVM image classification using different pre-computed kernels

Model space

Kernels for histograms

- Linear classification with BoW histograms:
 - Each occurrence of a visual word index leads to same score increment
 - Classification score proportional to object size!

score for class cow

We should discount small changes in large feature values

- Hellinger and Chi-2 distances apply a discount to large values changes
- Hellinger distance: element-wise square rooting

$$d(x,y) = (\sqrt{x} - \sqrt{y})^2 \qquad K(x,y) = \sum_i (\sqrt{x_i} - \sqrt{y_i})^2$$

Chi-2 distance between vectors

$$d(x,y) = \frac{1}{2} \frac{(x-y)^2}{x+y} \qquad K(x,y) = \exp(-\gamma \sum_{i} \frac{(x_i - y_i)^2}{x_i + y_i})$$

Discounting effect of distances:

Experiments

- Two different datasets (both are subsets of Caltech-101)
 - 4 Object Categories: faces, airplanes, cars, motorbikes
 - 15 Object Categories: bonsai, butterfly, crab, elephant, euphonium, faces, grandpiano, joshuatree, leopards, lotus, motorbikes, schooner, stopsign, sunflower, watch
- Experimental protocol
 - for each class 30 images are selected for train and (up to) 50 for test
 - results are reported by measuring accuracy

Confusion matrices obtained on the 4
Objects dataset (using NN and linear SVM)

