Towards Sentiment and Emotion Analysis of User Feedback for Digital Libraries

Stefano Ferilli¹ Berardina De Carolis¹ Domenico Redavid² Floriana Esposito¹

¹ Dipartimento di Informatica – Università di Bari name.surname@uniba.it

² Artificial Brain S.r.l. redavid@abrain.it

12th Italian Research Conference on Digital Libraries - IRCDL 2016 Firenze, Italy, 4-5 February, 2016

Summary

- Introduction & Motivation
- Pre-Processing
- Author Identification: Relational Approach
- Author Characterization: Statistical Tool
- Conclusions & Future Work

Introduction & Motivation

- Comments in blogs and forums on the Internet allow to study people's attitude on various topics
 - Sentiment Analysis / Opinion Mining
 - Positive/negative valence
 - Emotion Analysis
 - Specific feelings
- Digital Libraries might understand how their content is perceived by their users
 - Useful to suitably direct their future strategic choices

Problems & Objectives

- Problems:
 - complexity of natural language
 - need of dealing with several languages
 - choice of relevant features and of good approaches to building the models
- Interesting results obtained for Italian by a system based on a Text Categorization approach
- Proposed solution: further experiments to check whether reliable predictions can be obtained, both for opinions and for feelings

Sentiment Classification as a Text Categorization Task

- Categories = polarity or emotions
- Differences with respect to topic-based TC
 - topics are objective, sentiments are subjective;
 - there may be hundreds (or even thousands) of topics, but just a few sentiments (at the extreme, just two polarities, positive and negative);
 - topics are application-dependent, sentiment is general;
 - topics may be independent from each other, sentiments typically are not
 - e.g., in an evaluation based on a number of 'stars' the categories are different degrees of a single scale

Text Categorization

- Text Categorization (TC) is the activity aimed at mapping documents in natural language to a pre-defined set of categories
 - Formally, given a set of documents *D* and a set of categories *C*, a text *classifier* implements a function that for each document-category pair says whether the document belongs to the category
 - The 'hard' categorization can be replaced by a degree of belonging
 - Often, the target function is unknown, and must be approximated
 - Use of Machine Learning techniques

Proposed Approach: Features

- single, normalized words
- abbreviations, acronyms, and colloquial expressions
- *n*-grams with sufficient frequency in the corpus
- PoS tags
- expressive punctuation
- emoticons

Proposed Approach: Algorithms

- Rocchio
 - Similarity-based
 - Classification by cosine similarity
- Naive Bayes
 - Probabilistic
 - Classification by maximum posterior probability
- Committee
 - Weighted sum

Previous Experiment on Opinion Mining

- Dataset: 2000 reviews in Italian, 558 movies
 - http://filmup.leonardo.it/
 - 1000 positive (6-10 stars); 1000 negative (1-5 stars)
- Experimental setting
 - 17 different feature settings
 - 5-fold cross-validation
 - Equal weight to classifiers in the committee
- Good efficiency on mediocre platform
 - PC, Intel Core 2 Duo E6750 @ 2.66 Ghz, 2 GB RAM, Windows 8)
 - Runtime between 3'25" (5892 features) and 13'08" (9001 features, of which 2784 *n*-grams)
 - *n*-grams significantly increase the number of features, and runtime as a consequence

Previous Experiment on Opinion Mining

- Overall accuracy always > 81%
 - Always above 82% for the committee
 - Very good, compared to the state-of-the-art for English and especially for Italian
 - When Rocchio outperformed Naive Bayes, accuracy of the committee was greater than that of the components; in the other cases, corresponding to settings that used *n*grams, Naive Bayes alone was the winner
 - Even if balanced between positive and negative cases, accuracy on the former always better than that on the latter
 - This is somehow surprising, because it is commonly believed that negative emotions are stronger, and hence easier to recognize

New Experiment on Opinion Mining

- Evalita Sentipolc 2014 dataset
 - 4513 tweets in Italian mainly about politics
 - Standard benchmark for competitions; tweets are shorter than the movie reviews
 - Neutral items removed: 2091 tweets (1412 negative, 679 positive)
 - Only system configuration that provided the best results in the previous experiments

Normalization	PoS tags	Punct./Abbrev.	n-grams
lemmas	nouns, verbs, adjectives, adverbs, emoti- cons	Yes	_

New Experiment on Opinion Mining

10-fold cross validation

0

- Imbalanced dataset -> Precision/Recall
- •

Positive			I N	egativ	<i>r</i> e	Average			
Р	R	F1	Р	\mathbf{R}	F1	Р	R	F1	
).752	0.498	0.599	0.750	0.901	0.819	0.751	0.700	0.724	

- Figures compare well to the state-ot-the-art best system in the competition
 - Recall on positives worse than on negatives
 - Due to the difference in the number of examples in the two classes of the dataset?
 - May be a useful outcome, because library managers (differently from e-business site holders) may be more interested in identifying and analyzing criticisms than on reading positive comments

New Experiment on Emotion Analysis

- Dataset purposely collected
 - 800 comments about movies from filmup
 - Shown at random to 11 human raters
 - Asked to evaluate whether the opinion about the movie expressed one of 3 emotions/classes of interest
 - One positive (happiness)
 - One lightly negative (sadness)
 - One strongly negative (anger)
 - and in such a case which one
 - Label given to each comment according to the majority agreement criterion
 - Comments for which majority was not reached were discarded

New Experiment on Emotion Analysis

- Final dataset
 - 752 entries
 - 406 for happyness, 175 for sadness, 171 for anger
 - Features involved an extended set of Pos tags

Normalization	PoS tags	Punct./Abbrev.	n-grams
	nouns, verbs, adjectives, adverbs, articles,	Yes	_
	pronouns, emoticons		

New Experiment on Emotion Analysis

10-fold cross validation

•	Anger		Happiness			Sadness			Average			
	Р	R	F1	Р	R	$\mathbf{F1}$	Р	R	F1	Р	R	F1
•	0.698	0.408	0.514	0.742	0.870	0.801	0.630	0.575	0.600	0.690	0.617	0.651

- Good performance on Happiness
- Less accurate on the other two classes
 - Due to the imbalanced dataset?
 - However, positive emotions are typically harder to recognize than negative ones
 - Combining our classifier with other state-of-the-art ones might improve the overall results

Conclusions

- Comments in blogs and forums may allow Dls to study users' attitude on various topics
 - Valence (sentiment analysis)
 - specific feelings (emotion analysis)
- Complex problem
 - Proposal: a system based on a Text Categorization
- Experimental results compare well to state-ofthe-art tools
 - Application to the DL domani seems feasible

Future Work

- Further experiments
 - Use cases specifically concerning DIs dedicated to art
 - Need for data
 - Extended set of emotions to be recognized
 - Including at least all primary ones