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Object Tracking by
Oversampling Local Features

Federico Pernici and Alberto Del Bimbo

Abstract—In this paper, we present the ALIEN tracking method that exploits oversampling of local invariant representations to
build a robust object/context discriminative classifier. To this end, we use multiple instances of scale invariant local features weakly
aligned along the object template. This allows taking into account the 3D shape deviations from planarity and their interactions
with shadows, occlusions and sensor quantization for which no invariant representations can be defined. A non parametric
learning algorithm based on the transitive matching property discriminates the object from the context and prevents improper
object template updating during occlusion. We show that our learning rule has asymptotic stability under mild conditions and
confirms the drift-free capability of the method in long term tracking. A real-time implementation of the ALIEN tracker has been
evaluated in comparison with the state of the art tracking systems on an extensive set of publicly available video sequences that
represent most of the critical conditions occurring in real tracking environments. We have reported superior or equal performance
in most of the cases and verified tracking with no drift in very long video sequences.

Index Terms—Visual real-time tracking, long-term tracking, learning from video, local feature invariance, template update.
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1 INTRODUCTION

Tracking is a fundamental problem in computer vision
and has a wide range of application. It is a prerequisite
to higher level tasks such as area monitoring, target
recognition, trajectory interpretation, behavior anal-
ysis and reasoning. Effective methods must provide
robust object representation capable to cope with nui-
sance factors that affect the image formation process,
i.e. all the information that is not of direct interest
for tracking but which needs nevertheless be taken
into account. Such factors include invertible nuisances
such as contrast and viewpoint variations, as well as
non-invertible ones such as occlusions, sensor quan-
tization and general illumination changes [53], [54],
[52]. Can these factors be removed so that the only
remaining information is that needed to track an ob-
ject in the scene? This question dates back to J. Gibson
[13], who claimed that the crucial information for
perception is the information that remains invariant as
an observer moves through the environment. Hence,
at least for invertible nuisances one can construct in-
variant features that act as a representation for decision
tasks that would contain all and only the information
that matter to the task.

Unfortunately a similar solution does not exist
for non-invertible nuisances. However, when some
form of active control of the sensing process can
be carried out, then some non-invertible nuisances
may become invertible too. Occlusions, for example,
can be inverted by moving the camera around the
occluder. Scaling/sensor-quantization can be inverted
by moving the camera closer to the object. When
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no active control can be applied, invertibility can
only be obtained for planar or locally planar scene
structures [53]. A well known case of that is given by
the SIFT detector based on Difference of Gaussian by
[35]. Instead, if the visual structure detected originates
from some phenomena in the scene or from artifacts
of the image formation process (for instance a key-
point detected at an occluding contour), invertibility
depends on whether the signal is properly sampled.

Our solution for tracking presented in this paper is
inspired by these general observations and grounds
on solutions that attempt to neutralize both invertible
and non invertible nuisance factors that may affect
the image formation process. According to this, while
on the one hand it assumes local invariant features
for object representation, on the other hand, 3D shape
deviations from planarity and their interactions with
shadows, occlusions and sensor quantization are man-
aged by taking multiple instances of the same features
in different conditions, i.e. oversampling, after a weak
alignment along the object template.

Shape and appearance variations are hence cap-
tured by a non parametric classifier that uses the
instances of the features to model the complex appear-
ance manifold topology originated by visual artifacts
for which no invariants can be computed (Fig 1).
Two additional classifiers are used respectively to
achieve higher discrimination between the object and
its surrounding context and prevent improper object
template updating during occlusions.

We will refer to this solution as ALIEN, where the
acronym stands for Appearance Learning In Eviden-
tial Nuisance. It will be proved that this solution
is able to perform continuous tracking even under
severe visibility artifacts or critical conditions such
as occlusions and shadowing. We will show that our
learning rule is asymptotically stable, confirming the
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Fig. 1: Weak alignment of multiple instances of local features. (a): Four frames from the trellis sequence [45] with appearance variations
in a particular object region (highlighted) due to non-invertible nuisances (self-occlusions and shadows). (b): Region representation after
weak alignment. Feature locations describing the 2D shape in the coordinate system of the object template and the appearance descriptors
associated (128D).

drift-free capability to the method proposed. We will
present an extensive set of experiments on publicly
available sequences, showing the superiority of the
method with respect to the state of the art.

In the following we review the state of the art
of tracking and highlight the distinguishing aspects
of the ALIEN tracker with respect to the other ap-
proaches. The proposed algorithm is then summa-
rized in Section 2 and detailed in Section 3. In Sec-
tion 4 we present an extensive comparison with the
state of art tracking methods that were published in
the literature. Conclusions are finally given in Section
5.

1.1 Related work
Recent surveys of the most notable methods of track-
ing were published in [33], [69] and comparisons of
performances under different conditions appeared in
[62], [48], [67]. The very many methods that have
been published in the literature differ from each other
in the solutions adopted for the object appearance
representation, the object shape transformation admit-
ted, whether a motion model is used and whether
the learning model is generative or discriminative
[62]. Among these methods, a few of them have
been recognized for either their performance or their
design originality, namely the the CoGD [71], L1 [38],
the Predator-TLD [25], the PROST [49], the BLUT
[68], the MIL [4], the ConTra [9], the MTT [75], [76]
and the LSHT [22]. Many other trackers have been
inspired by these solutions with minor distinguishing
characteristics.

Different object representations were employed. In
the L1 tracker, the authors used the best sparse sub-
space representation of pixel intensities [65]. Pixel
intensities were combined with trivial templates that
account for the presence/absence of image patches
of the object candidate. Although templates explicitly
consider occlusions, the pixel-wise holistic represen-
tation is sensitive to partial occlusions and motion
blur [63]. These two limitations were addressed re-
spectively in [68] and [39], [27], by adding heuristics
to the sparse representation framework. Many other
trackers, among them MTT and those in [32], [34],

[24] and [77], have adopted the sparse representa-
tion. A specific review and comparison on sparse
representation methods was published in [74]. The
Predator-TLD tracker used Local Binary Patterns of
pixel intensities to represent the object appearance. A
similar representation was also used in the ConTra
method. In the MIL tracker, the authors used Haar-
like wavelets as in [61]. The same representation was
used in PROST. The LSHT tracker used a locality
sensitive intensity histogram computed at each pixel
location. Although in all these cases features are local,
their evaluation is generally made globally along the
object template.

In MIL, Predator-TLD, CoGD, ConTra, ODF [8],
ET [3], [41], [36], [71], [73], [18] and many other
solutions, context features were used to improve the
distinction between the object and its background.
A critical problem concerns the accuracy with which
foreground image regions are separated from back-
ground regions. In most of the literature, an axis
aligned bounding box is used although this is likely
to treat background regions as part of the foreground.
This produces a gradual degradation in object ap-
pearance which results in an irreversible drift of the
template model. Recently, object segmentation was
used to limit this phenomenon [64], [14], but this
requires that a significant object segment is visible.

Tracking by detection paradigm was used in most
of the tracking systems, namely in MIL, Predator-
TLD, CoGD, PROST, ConTra, LSHT, OB[15], ORF[47],
FT[1], ODF [8], ET [3], OAB [16], SB [17], BS [56],
Struck [20], GTK [51], CoTT [70], DNBS [31], SPT[64],
CT [73], BHT [50], DFT [40] and many others. Re-
cursive filtering was employed instead by L1, MTT,
BLUT, IVT [45], VTD [28], LGT [7], CT [73], hsvPF
[43] and several others. With respect to recursive
filtering, the advantage of tracking by detection is in
the resilience of the underlying representation of ap-
pearance, making it easier recovering from occlusions.
It is anyway required that the objects have sufficient
visual information.

Template updating is fundamental to maintain a
complete object model that makes the tracker capable
of resist to factors that might corrupt the object rep-
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resentation as well as to support long term tracking
with no drifting [37]. In MIL and other trackers like
the OB, OAB, SB and BS trackers, template updating
is performed by an evolving boosting classifier that
tracks image patches and learns the object appearance.
However, online boosting requires that data are inde-
pendent and identically distributed (i.i.d.) [60] which
is a condition not satisfied in video sequences, where
data is temporally correlated [72]. In the Predator-
TLD and the PROST methods the authors combined
an optic flow tracker with an online learned ran-
dom forest. New training samples are collected when
detections violate constraints on the object position
estimated. In order to control drifting, the new data is
not incorporated into the template until a previously
confirmed appearance is not retrieved with high con-
fidence. A similar solution was followed in ConTra,
where the authors introduced some mechanisms to
improve the capability to distinguish between objects
of similar appearance. To the best of our knowledge
Predator-TLD and ConTra are the only methods ca-
pable of effective tracking in long sequences (until
10000 frames) with little drifting. No drifting was
also reported recently in [57], in a sequence of about
2600 frames. Object appearance was learned from the
selection of trustworthy frames, using HOG features
and an SVM classifier. In the L1 tracker, appearance
update is performed by keeping the most recent stable
templates.

In the ALIEN tracker we adopt a local represen-
tation based on SIFT [35] and evaluate object ap-
pearance similarity globally in the object template, at
distinct and independent stages. Initially, a classifier
discriminates between object and context. It exploits
bag of features to detect local object appearance sim-
ilarity according to transitive matching (explained
in Subsection 3.1); object features that have been
matched are hence voted according to a global shape
model based on a similarity transformation. With
this approach, two matched features are in principle
sufficient to instantiate a global transformation. In the
case in which these are spatially close to each other, as
for example in the case in which most of the object is
occluded, this permits the exploitation of the sole local
similarity. On the other hand, when most of the object
is visible the global shape model is used. As will be
explained in Subsection 3.2, the similarity transforma-
tion is combined with a RANSAC-like voting scheme,
so accounting also for shape generalization, rather
than simply voting to a specific geometric model.

We adopt the tracking by detection paradigm. How-
ever, differently from most of the systems, in ALIEN
tracking is performed in both scale and rotation space,
using an object-oriented bounding box.

Template updating as performed in ALIEN is sub-
stantially different from the other approaches. Out-
liers are maintained in the object template and feature
oversampling is used as a potential revealer of novel

object structures. Differently from [4], we explicitly
consider that the data distribution is time varying and
keeps constant only between two consecutive frames.
The object template is updated frame by frame in a
way that the data distribution is not corrupted and
features are removed by uniform sampling. This ap-
proach of incremental appearance learning is asymp-
totically stable and permits tracking with no drifting
also in very long sequences.

The voting scheme of our tracker has relation with
the Hough voting of local features of [29] and [12].
The works in [18] and [36] have some similarities with
our method. They too perform template updating, but
reject the outliers. Instead, in ALIEN all the features
are retained in the template to cope for non invertible
nuisance or potential novel object structures. As in
ALIEN, they both use bag of features and discrimi-
nate the object with respect to context. Segmentation
of superpixel regions is used in [36] to distinguish
between object and background. However, in these
methods object shape is less considered and the bag
of features representation is the most important part
of the model.

1.2 Contributions and Improvements

The main contributions of the paper are:
• A novel object representation based on the weakly

aligned multi-instance local features. We demon-
strate that this representation improves on the
inherent limit of local features invariance un-
der occlusion, sensor quantization and casting
shadow.

• A novel non parametric learning algorithm based
on the transitive property of the matching rela-
tionship between the object and its surrounding
context. This property allows building a strong
discriminative classifier which also enables to
detect occlusions before updating the template,
so avoiding improper appearance contamination.

The algorithm asympthotic stability is established
using the Multiplicative Ergodic Theorem [42]. This
confirms a drift-free capability of our learning proce-
dure.

The method has superior performance with respect
to the state of the art tracking methods and is capable
of continuous tracking for long periods also in the
presence of severe occlusions, in- and out-of-plane-
rotations and scale variations, and at the same time
is insensitive to blurring. The performance of the
solution is demonstrated in Section 4 on several
publicly available datasets.

2 METHOD OVERVIEW

In this section, we summarize the principal compo-
nents of our tracking system and their functional
interrelationships.
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Fig. 2: Overview of tracking by transitive matching with context. Left: The object under tracking at time t = 0 and the elements involved
in our method: object template, context and search area respectively T0, C0 and S0. Middle: The object is going to be occluded by another
object with similar imaged features (indicated with circles). The contextual space-time region Ct−1 captures some of these features which
may imminently enter in the bounding box of the object under tracking (only one is shown for clarity). Right: Two features (indicated with
crosses) extracted from the search area match both with context Ct and object template Tt and are therefore classified as not distinctive.
This is a particular combined case in which a feature is both an occluding and a non distinctive feature.

Given a bounding box defining an object of inter-
est, discrimination between the object and the rest
of the scene is obtained by using two distinct non-
parametric Nearest Neighbor classifiers, accounting
respectively for the object under tracking and its
context. The object classifier Tt accounts for the object
shape and appearance at time t:

Tt = {(pi,di)}NTi=1, (1)

where p ∈ R2 is the location of a keypoint referred to
the coordinate system of the object template, d ∈ Rn
is the appearance descriptor associated (see Fig. 1(b))
and NT is the number of object features.

The context classifier Ct accounts for the appearance
of the spatio-temporal context surrounding the object
and exploits the standard bag of features representa-
tion:

Ct = {di}NCi=1, (2)

where d ∈ Rd is the visual descriptor of a keypoint in
the context region and NC is the number of features.
In the present implementation we have used SIFT fea-
tures [35], although any scale invariant representation
as [5], [6], [46], [30], [2] can be plugged in.

Object tracking (detailed in Subsection ??) is ob-
tained from the tight interplay between the two clas-
sifiers Tt, Ct and the state of the tracked object xt.
The state xt at time t includes the object center
location (xt, yt), scale st and rotation angle θt with
respect to the bounding box provided at time t = 0,
and implicitly defines an object oriented bounding
box (OBB(xt)). Consequently, it also defines the 2D
similarity transformation:

M(p;xt) ⇐⇒ xt = (xt, yt, st, θt), (3)

where p ∈ R2 is the location of a keypoint, M :
R2 7→ R2 maps the object detected in the image

into the coordinate system of the object template and
xt = (xt, yt, st, θt) is the vector of the transformation
parameters to be estimated.

Similarly to [4], we do not maintain a distribution
of the object state at every frame and assume that, at
time t, the tracked object is equally likely to appear
within a radius r of the tracker state estimated at time
t− 1 (in both location and scale):

p(x̂t|x̂t−1) =
{

1 if ||x̂t − x̂t−1||∞ < r
0 otherwise. (4)

Object detection returns the tracker state and a prob-
ability p(y = 1|St) where:

St = {(pi,di)}NSi=1 (5)

is the set of features extracted from an image search
area St and y is a binary variable indicating the
presence or the absence of the object of interest in
that image region. The detector response is evaluated
with a greedy strategy (detailed in Subsection 3.2.1).

If the object remains undetected for a certain num-
ber of frames nu, random search is applied (only
horizontal and vertical shifts should be generated
since SIFT features are invariant to scale variations).

Once the tracker state is estimated, an additional
detector (detailed in Subsection 3.2.2) checks if the
object is occluded. If not, both the object and the
context appearance models are updated. All the local
features inside the OBB(x̂t) region are labeled as
object features. Instead, the features of the annular
region surrounding the object are accumulated over
a time window of length l:

Ct =
t⋃

τ=t−l

{(p,d) |p ∈ Aτ}, (6)
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Fig. 3: Block diagram presenting the major work flow and functional component in the proposed tracking algorithm. Shaded area highlights
the three components discussed in the paper.

where At = St r OBB(x̂t), and are labeled as context
features. Fig. 2-left and middle illustrates some of the
entities described in this section.

3 TRACKING ALGORITHM
In this section, we expose object detection and appear-
ance learning of the ALIEN tracking algorithm. The
block diagram of the system and the detailed presen-
tation of the processing steps are shown respectively
in Fig. 3 and Alg. 1. In the following subsections, we
will discuss the way in which ALIEN discriminates
between object and context (Subsection 3.1), how an
updated version of the object appearance is contin-
uously learned and the way in which we detect and
manage occlusions in order to avoid that spurious fea-
tures contaminate the object template (Subsection 3.2).
In Subsection 3.3 we discuss the asymptotic stability
of the learning algorithm.

3.1 Transitive Matching with Context
In order to distinguish between object and context
features, we both consider object appearance features
and their arrangement with the context. To this aim
we exploit the transitive property, of the matching
relationship (indicated with ∼) between the search
area feature set St, the space-time context feature set
Ct and the object feature set Tt:

(Tt ∼ St) ∧ (Ct ∼ St) =⇒ Tt ∼ Ct. (7)

Eq. 7 states that if a feature in St matches both with
a feature in Tt and with a feature in Ct, then this
feature may not be sufficiently distinctive in order
to discriminate between the object and its context.
According to this, all the features satisfying Eq. 7 are
removed by performing set-wise difference:

Ft = T ?t r C?t , (8)

where T ?t collects the matching indexes between Tt
and St, and C?t collects the matching indexes between
Ct and St, obtained by a Nearest Neighbour search
according to the distance ratio criterion of [35] (Alg. 1
lines 3-6). As a byproduct, this strategy also removes
the background features which might be included in
the object bounding box. In this case, these features
both exist in the object and context feature sets and
therefore are managed in the same way as the other
ambiguous features.

3.2 Weakly Aligned Multiple-Instance Learning
of Local Features

3.2.1 Object state estimation

The features in Ft of Eq. 8 are sampled accord-
ing to a greedy strategy to estimate the object state
xt. The locations of the features are voted with a
similarity transformation model M(p;xt) instantiated
at each iteration from two correspondences. Voting
is performed according to the MLESAC (Maximum
Likelihood SAC) loss function that, differently from
RANSAC, has a probabilistic formulation that pro-
vides a soft criterion in the evaluation of the error [59].
According to this, the tracker state x̂t is estimated as:

x̂t = argmin
x,y,θ,s

{∑
f∈Ft

L(ef ;M)
}
, (9)

where:
L(ef ;M) = − ln p(ef |M), (10)

is the MLESAC loss funtion with:

p(ef |M) = γ
1√
2πσ

exp
(−2e2f

2σ2

)
+ (1− γ) 1

ν
(11)

where σ is the standard deviation of the keypoint
detector, γ is the expected proportion of inliers and
ν accounts for some knowledge of the outliers distri-
bution. The quantity ef is the symmetric transfer error
of the matching feature f between the current frame
and the object template, computed as:

ef = d(p, M−1p′)2 + d(p′, Mp)2, (12)

being p and p′ the point locations of a matched feature
f ∈ Ft in the image and object template respectively,
and M the 3× 3 homogeneous matrix representing the
similarity transformation M(p; x̂t). The first term in
this equation is the transfer error in the current image
and the second term is the transfer error in the object
template.

In the evaluation of Eq. 10, the number of itera-
tions is fixed instead of being adapted to a prob-
abilistic confidence level. According to this, object
model overfitting is avoided and the local features
are only weakly aligned to the object template. As
a result, when performing template update this will
provide the oversampling mechanism (discussed in
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Algorithm 1: ALIEN tracking algorithm.
Input: Initial object bounding box x0,
Output: Estimated Object State x̂t = (x̂t, ŷt, θ̂t, ŝt), object

shape and appearance Tt and object context
appearance Ct.

1 repeat
2 Crop out the search region

St = {x ∈ R4 : ||x− x̂t−1||∞ < r} and extract local
features St = {(p,d)|p ∈ St,d ∈ Rd}.

3 // Compute matching features
T ?t = {(p,d) ∈ St | ||d−1NNT (d)||

||d−2NNT (d)|| < λT } ;

4 C?t = {(p,d) ∈ St | ||d−1NNC(d)||
||d−2NNC(d)|| < λC} ;

5 // Transitive matching with context
6 Ft = T ?t r C?t ;
7 (x̂t, ŷt, θ̂t, ŝt) = argmin

x,y,θ,s

{ ∑
f∈Ft

L(ef ;M)
}

;

8 if
(
|ŝt − ŝt−1| < ks

)
and

(
|θ̂t − θ̂t−1| < kθ

)
then

9 // object detected
10 x̂t = (x̂t, ŷt, θ̂t, ŝt) ;
11 Et = {(p,d) ∈ St |p ∈ OBB(x̂t)} ;
12 Ot = {(p,d) ∈ C?t |p ∈ OBB(x̂t)} ;
13 // Occlusion detection
14 if |Ot| ≤ NO then
15 // Object non-occluded
16 // Object appearance update

E ′t = {(p′,d) | (p,d) ∈ Et, p′ = M(p; x̂t)};
17 Tt = Tt−1

⋃
E ′t ;

18 // Context appearance update
19 Dt = Dt−1

⋃
Ot ;

20 Ct =
( t⋃
τ=t−l

(Sτ r Eτ )
)⋃
Dt;

21 // Uniform random sampling forgetting features
22 if |Tt| > NT then
23 RandSamp( Tt , NT ) ;
24 end
25 if |Dt| > ND then
26 RandSamp(Dt , ND ) ;
27 end
28 end
29 end
30 until True;

Subsection 3.2.3). The detector response is evaluated
considering the state parameters ŝt and θ̂t as:

p(y = 1|St) =
{

1 if |ŝt − ŝt−1| < ks, |θ̂t − θ̂t−1| < kθ,
0 otherwise.

(13)
where ks and kθ are two predefined constants which
control the maximum allowed speed in scale and
rotation between two consecutive frames (Alg. 1 line
8). These two constraints reject false positives due
to unreal axial or central symmetry modeled in the
M transformation. It is important to note that, since
tracking is performed in scale and rotation space, the
image features that are extracted from the detected
object are better aligned to those in the object tem-
plate, so making it easier for the classifier to learn the
correct object shape and appearance.

3.2.2 Occlusion Detection

An additional classifier is used in order to prevent
improper updates in the presence of persistent occlu-
sions. We consider the set features in C?t that are also

included in the OBB(x̂t) region:

Ot = {(p,d) ∈ C?t |p ∈ OBB(x̂t)}. (14)

The features in Ot may be: object/context ambiguous
features, object/context boundary features, and fea-
tures of occluding objects. For the first two classes,
the cardinality of the features can be approximatively
assumed equal to zero, on average. The number of
visual features in the third class is instead higher
than zero since occluding objects typically consist of
a large number of connected regions. Following these
considerations, detection of occlusions can be reduced
to checking the cardinality |Ot| of Ot in Eq. 14 by
thresholding (Alg. 1 line 13-14). If an occlusion is
detected the object template is not updated. Since
the voting strategy is partially robust to outliers (at
least for the time interval necessary to remove all
the features that may provide correct matches in the
template) the specific value of the threshold is not
critical for the system performance.

3.2.3 Object/context appearance update
The transformation M(p; x̂t) naturally accounts for
global in-plane rotations and scale variations of the
object. Appearance variations due to out-of-plane
rotations are accounted by combining the template
representation with the information provided by
M(p; x̂t) and the new object evidence in the current
image at time t.

All the features in the search area St that are con-
tained in OBB(x̂t) (the set Et that represents the new
object evidence) are labeled as object features. Their
locations p′ in the template are computed as (Alg. 1
line 16):

p′ = M(p; x̂t). (15)

This oversampling strategy provides an over-
representation of the object with both matched and
unmatched features being included in the template.
The unmatched features play an important role in the
ALIEN tracking system. In fact, they may account
for template-aligned samples due to new visual
structure determined by out-of-plane rotations or
for non-invertible nuisances that cannot be captured
by the SIFT invariance. This determines a sort of
generalization of the object shape and appearance.

Context must be updated as well. Tracking by
transitive matching with context may fail when an
occlusion persists for a number of frames greater
than the temporal window l used to accumulate
the context features (Eq. 6). In this case, the set-
wise removal in Eq. 8 is no more effective and
the occlusion cannot be detected, as features are
discarded after that l frames are elapsed. This effect
may be largely reduced by accumulating the features
Ot to the context Ct. In this way, features that are
not distinctive for the object are regarded as hard
negatives and are collected indefinitely (see Alg. 1 line
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18–20). Fig. 2 Middle and Right show an example of
this process and its effects.

3.2.4 Forgetting Features
In order to avoid an unbounded growth in the num-
ber of features, we adopt a strategy to remove features
in the object template. This is based on the assumption
that the generated samples of the video sequence are
strongly correlated and therefore non i.i.d.. According
to this, the generating data distribution is considered
as slowly varying and stationary only between con-
secutive frames. For each frame, when the number
of features in the object classifier exceeds the number
of features allowed NT (determined by memory or
speed constraints), features are removed from the ob-
ject template according to uniform random sampling
so that the current distribution is not corrupted (Alg. 1
lines 22 and 23). Similarly, when the number of the
accumulated occlusion features Dt in the context ex-
ceeds some threshold ND, uniform random sampling
for forgetting features in the object context is used
(Alg. 1 lines 25 and 26).

3.3 Algorithm Convergence Analysis
As reported in Eq. 15, at each time t, the object
template is updated by adding novel feature points.
Their new locations are computed using the estimated
similarity transformation. Slight imprecisions in the
estimation of the similarity transformation might ac-
cumulate over time and result in some drifting of the
feature point locations. To understand under what
conditions this might occur, a stability study is re-
quired.

Assumption 1: Because of the temporal coherence
between consecutive frames, there is a high probabil-
ity that the features used to compute the transforma-
tion Mt between the OBB(xt) and the object template
at time t are the same as those in the OBB(xt−1)
computed at time t− 1. �

According to this, the transformation matrix Mt

can be approximatively computed by the product of
frame-to-frame similarity matrices {M′

i}ti=0 from t = 0
until t. In homogeneous coordinate notation:

Mt ≈ M0M
′
1 · · · M′t−1M′t. (16)

Fig. 4 shows the relationships between the entities
involved in Eq. 16. Elements in the matrices M′ of
Eq. 16 are random variables because they are com-
puted from measurements trough an estimation pro-
cess. Therefore their variation depends on both the
uncertainty in keypoint localization and their spatial
layout [19]. According to [58], [55], [44], during the
initial iterations of the evaluation of Eq. 9, the uncer-
tainty due to keypoints spatial layout dominates. As
the estimate converges and new correspondences are
established, parameters uncertainty due to keypoints
spatial layout reduces significantly and the uncer-
tainty in keypoint localization comes to play a major

Fig. 4: Object template Tt and OBBs relationships for a generic
trajectory of the object under tracking. Both the template and image
coordinate systems are indicated. The transformation Mt at time t
can be expressed as the composition (matrix product) of frame-to-
frame transformations at previous time instants.

role. In this case, the variations of the parameters
of the similarity transformation can be considered as
being subject only to errors determined by keypoint
localization. This assumes a linearized approximation
of the error model in which a first-order model has
proved to be sufficient [21].

Assumption 2: According to the considerations
above, the estimated state x̂t = (xt, yt, st, θt) can be
reasonably assumed, with no loss of generality, to be
corrupted by an additive white Gaussian noise ξ(·)t ∼
N (0, σ(·)) around a reference value x̄0 as provided by
the initial bounding box:

x̂t = x̄0 + ξt = (0, 0, 1, 0) + (ξxt , ξ
y
t , ξ

s
t , ξ

θ
t ). � (17)

The unmatched features violate this normal noise
distribution model, but since they are identified before
the final estimation is applied, they can be neglected
in the convergence analysis. Eq. 16 can be viewed as
the infinite product of ”perturbed identity matrices”
which results after that the detected object features at
time t are transformed onto the template coordinate
system according to the frame-to-frame similarities.

Asymptotic Stability: According to the Multiplica-
tive Ergodic Theorem [11], [42], it holds:

lim
t→∞

1
t log ||M0M

′
1 · · · M′t−1M′t|| = γ with probability 1,

(18)
where γ are the Lyapunov Exponents.

Application of transformation M to the noise com-
ponent of Eq. 17 can be written in matrix form using
homogeneous coordinates as:

M(ξt) = T(ξxt , ξ
y
t )S(1 + ξst )R(ξ

θ
t )T
−1(ξxt , ξ

y
t ), (19)

where T(ξxt , ξ
y
t ), S(1+ξst ) and R(ξθt ) are 3×3 perturbed

matrices of translation, scale and rotation respectively.
The stochastic discrete recurrence therefore results as:

pxt+1 = pxt ξ
s
t cos(ξ

θ
t )− p

y
t ξ
s
t sin(ξ

θ
t )− ξst cos(ξθt )ξxt +

ξst sin(ξ
θ
t )ξ

y
t + ξxt (20)

pyt+1 = pxt ξ
s
t sin(ξ

θ
t ) + pyt ξ

s
t cos(ξ

θ
t )− ξst sin(ξθt )ξxt −
ξst cos(ξ

θ
t )ξ

y
t + ξyt , (21)
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Fig. 5: Asymptotic stability of the Lyapunov Exponents for the
stochastic discrete recurrence of Eqs.20 and 21. (a): Convergence
trend to a common value for several realizations. (b): Convergence
for different values of the standard deviation of the scale parameter
σs.

where (pxt , p
y
t ) are the coordinates of a generic location

in the object template at time t. The asymptotic stabil-
ity of Eq.16 is assured when all Lyapunov Exponents
γ are negative. �

The robust evaluation of the Lyapunov Exponents
can be performed numerically using the algorithm
in [10]. Fig. 5(a) shows the temporal convergence of
Lyapunov Exponents for several realizations of Eq. 20
and Eq. 21. It can be observed that they all converge
to a common negative value. Figure 5(b) shows that
temporal convergence still holds for different values
of the standard deviation of the scaling parameter σs
(the most sensitive parameter). In particular, asymp-
totic stability is confirmed for object detection errors
with a standard deviation that is larger up to half the
original bounding box size.

4 EXPERIMENTAL RESULTS
We report on a set of quantitative experiments com-
paring the ALIEN tracker to recent state of the art
algorithms. The experiments are evaluated on bench-
mark sequences that are commonly used in the litera-
ture. Since in the ALIEN tracker the object bounding
box is oriented, in order to have a consistent compar-
ison with the other methods we have been forced to
consider the smallest axis-aligned bounding box that
contains the OBB. This results into a slight penalty of
the ALIEN performance figures.
4.1 Parameter settings
The parameters of the ALIEN tracker were fixed for
all the experiments. The λT and λC likelihood ratio
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Fig. 6: Average success rate for different values of the likelihood
ratio λT and λC threshold (both fixed to the same value). (a): Video
sequences with no distractors; (b): video sequences with distractors.
Curves are plotted for different values of the occlusion threshold
NO .

of respectively the object and context classifier, are
particularly important and their settings are crucial
for the performance in object detection.

In our experiments we have found appropriate to
apply the same value for λT and λC so to give the
same relevance to object and context. Fig. 6 shows
the average success rate of the ALIEN tracker as a
function of the value of λT and λC in two different
cases of sequences without and with distractors (ob-
jects with similar appearance as the tracked object),
respectively. Plots are obtained at different values
of NO (the number of features in C?t that are also
included in the OBB region to assess the presence
of occlusion). Fig. 6(a) shows that for scenes with
few distractors, the performance of the tracker starts
decreasing for values beyond 2.75. Fig. 6(b) shows
that values higher than 3 are more suited instead
for sequences with distractors. It is also visible that
variations of the value of the threshold NO have little
effect on the performance of occlusion detection. In
the experiments, the number of features for the object
classifier was set to NT = 1000 and the number of
features in the context classifier was set to NC = 1500.

The values of the length of the time window l
(for feature accumulation in the context classifier in
Eq. 6), the max number nu of frames where the
object remains undetected before random search is
applied, the maximum allowed speed in scale and



9

rotation allowed ks and kθ (in Eq. 13) have influ-
ence on the capability of the ALIEN tracker to resist
to critical conditions, such as long occlusions, out
of plane rotation of the object, and performance of
tracking. We set these parameters with values that
correspond to typical conditions observed in most real
sequences. Tab. 1 reports the values that we have used

TABLE 1: Parameter values used in the experiments.

λT λC l nu σ NO ks kθ
2.5 2.5 10 8 1 2 0.5 90

for the experiments reported in this section. We have
experimentally observed that little variations around
these values have no significant effects on the overall
performance.

The number of iterations of the greedy optimization
in object state estimation nR was set to 500. With these
settings the current ALIEN implementation runs at
320x240@11 FPS in a Intel i7 CPU quad core @ 2.80
GHz. The overall system is implemented with Matlab
except for the SIFT which is based on OpenCV.
4.2 Video Sequences
Verification of the ALIEN performance was carried
out on a total number 40 video sequences for a total
of 45741 frames that that were used in the literature.
Since each sequence has distinguishing aspects that
makes it suited to test the tracker in a special critical
condition, this permitted the verification of the ALIEN
capability to respond to every type of critical condi-
tions as well as its drifting over long term tracking.

We distinguish the following groups of sequences
according to their characteristics and use in previously
published experiments:

Group 1: the 4 sequences (Pedestrian1, Pedestrian2,
Pedestrian3, Car) include occlusions (full occlusions in
most of the cases) and long intervals where the object
disappears from the camera view. These sequences,
were used in [71] to compare the performance of their
CoGD tracker.

Group 2: in the 8 sequences (Sylvester, Faceocc1,
Faceocc2, Tiger, Board, Box, Lemming, Liquor) objects
change their pose frequently and have many short
term and partial occlusions; all scenes have also clut-
tering and some blur. These sequences were used in
[49] and [22] to compare the performance of PROST
and LSHT, respectively.

Group 3: the 8 sequences (Jumping, Owl, Face
Body, Car1, Car2, Car3, Car4) include large amounts
of blur and abrupt changes of speed and direction of
object motion. Most of these sequences were used in
[68] to verify the performance of BLUT.

Group 4: the 3 sequences (Motocross, Volkswagen
and Carchase) are very long sequences specifically
suited to evaluate the long term tracking capability
of the tracker. These sequences were used in [25]
and [9] (Motocross and part of Carchase only) for the
assessment of Predator-TLD and ConTra, respectively.

Group 5: the 6 sequences (Animal, Clutter, Girl,
ETHPedestrian, Multifaces and Scale), include various
critical conditions such as cluttering, occlusions, dis-
tractors, targets exiting the camera field of view,
strong scale changes and out-of-plane rotations. These
sequences were used, among the others, in [9] to
assess the performance of ConTra.

Group 6: the 11 sequences (David, car4’, car11,
coke11, football, oneslr, shaking, singer, skating1, soccer
and trellis) include small objects, objects with ho-
mogeneous appearance patterns, shadowing, lighting
variation, and articulated object with self-occlusions
due to pose changes. They were used for assessment
of the the MTT performance in [76].

4.3 Quantitative Results
In the following we compare the performance of the
ALIEN tracker with the results of CoGD, PROST,
BLUT, Predator-TLD, ConTra, MTT and LSHT and
other trackers, for a total of 29 different systems. In
order to have a fair comparison, we have reproduced
the same tables as presented in [71], [49], [68], [25],
[9], [76] and [22] and used the same performance
indicators as those originally used by these authors
for each group of sequences. For each table, we have
indicated the list of sequences that were used for
comparison, and for each sequence its sequence group
(recalling its characterizing features) and the number
of frames. Columns report the name of the trackers
that were compared and the performance measures
that were published. The last column reports the
ALIEN performance. Bold numbers indicate the best
performance figures. Second best are underlined.

ALIEN vs CoGD [71]: Table 2(a) compares
ALIEN performance against the CoGD tracker and the
IVT, ODF, ET and MIL tracker. Most of the sequences
belong to Group 1. Performance figures in this table
can be assumed as indicators of the capability of the
tracker to resist to full occlusions and critical condi-
tions such as exiting/reentering of a target from the
camera field of view. The performance was evaluated
considering the success rate, defined as the percentage
of frames where the target bounding box as an overlap
with ground truth larger than 50% (the Pascal Score).
ALIEN and CoGD both have largely higher perfor-
mance than the other methods, with ALIEN scoring
the best performance in most of the sequences.

ALIEN vs PROST [49]: Table 2(b) compares
against PROST and 4 algorithms: OB, ORF, FT, MIL.
All the sequences except the David and Girl belong
to Group 2. The results measure the robustness of
the tracker with respect to partial occlusions, pose
changes and clutter. Performance was evaluated in
terms of both centroid localization error and success
rate. ALIEN scores best on all the sequences, out-
performing the second best by about 4 times. This
performance improvement can be ascribed to the fact
that instead of tracking the change of appearance that
would results to drift, ALIEN quits tracking until the
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object is again visible. This avoids object template
degradation and also provides long-term tracking
capability as shown in Table 2(e).

ALIEN vs LSHT [22]: Recently the LSHT
was proposed to cope with partial occlusions, pose
changes and clutter. The authors provided an exten-
sive verification on a subset of Group 2 sequences
against 12 trackers: FT, BHT, LGT, L1, SPT, CT,
MIL, Struck, VTD, the Predator-TLD, DFT and MTT.
Tab. 2(c) shows the ALIEN performance with respect
to these trackers in terms of success rate. It can be
observed that ALIEN has the higher number of best
scores. It has low success rate only on the Tiger
sequence where the object has very small size in all
the frames, so making it difficult to extract keypoints
and meaningful local signatures.

ALIEN vs BLUT [68]: Table 2(d) reports the
comparison between ALIEN and BLUT and GTK,
MIL, OAB, hsvPF, ICTL, VTD, IVT and L1. The se-
quences analyzed all belong to Group 1. Performance
was measured in terms averaged normalized local-
ization error defined as: d

(a+b)/2 , being d the Euclidean
distance between centroids, a and b respectively the
height and width of the estimated object bounding
box. Both BLUT and ALIEN have one order of mag-
nitude lower errors with respect the other algorithms.
All the others fail on these sequences. The BLUT
has specific management for blur and scores the best
performance. It is anyway important to notice that
it has no learning mechanism to adapt the tracker
to appearance or shape variations. Due to this, it is
likely that its performance degrades in real operating
conditions.

ALIEN vs Predator-TLD [25]: The comparison
between ALIEN, Predator-TLD and the 5 trackers: OB,
SB, BS, MIL and CoGD is reported in Table 2(e) us-
ing Precision, Recall and F-measure. Sequences used
belong to Group 1 (to verify the robustness to full
occlusions) and Group 4 (to verify the long term track-
ing capability of the tracker). It can be observed that
both ALIEN and Predator-TLD both achieve the best
performance. This is mainly due to the fact that both
trackers manage object reacquisition. Similar results
are obtained considering true positives with overlap
larger than 25% (rather than 50%) as suggested in [26].

ALIEN vs ConTra [9]: Table 2(f) compares
ALIEN against ConTra and 6 others trackers: FT,
MIL, CoTT, DNBS, VTD and Predator-TLD. Sequences
under test are from Group 5, 4, 2 and 1 and the
results indicate the capability of the tracker to adapt
to several different critical conditions such as out of
plane rotation, scale changes, distractors, total occlu-
sions and targets exiting the camera field of view as
well as to perform long term tracking (the Motocross
and the Carchase). In all the sequences, ALIEN scores
the best performance with about double accuracy. In
particular, in the Multifaces sequence, faces are tracked
for the entire sequence with no geometric support

or explicit tracking of the distractors as in ConTra.
ALIEN’s much more discriminative capability can be
credited to feature oversampling which implicitly pro-
vides a local multi-view appearance representation.

ALIEN vs MTT [76]: Table 2(g) reports the
comparison between ALIEN, the MTT and the: IVT,
L1, MIL, OAB, FT and the VTD. Sequences belong
to Group 5, 4 and 2. They show the capability of
the tracker to adapt to different conditions and data
diversity. All the sequences are short. The average
localization error of ALIEN is the lowest in many
of the sequences. ALIEN fails tracking in skating1
where objects have very large self-occlusions. In these
conditions features oversampling is almost useless
because the visual signal cannot be properly sampled.
Failure is also reported in the shaking sequence. In this
case the face region is mostly uniform and the DoG
detector is not effective in localizing keypoints.

4.4 Qualitative Results and Considerations
From the results above it can be noticed that ALIEN
is capable of responding to most of the critical con-
ditions that occur in real cases with performance
superior or equal to the current state of the art track-
ing systems. Differently from many other trackers its
architecture is not designed to address some specific
conditions, but permits instead general adaptivity.

Fig. 7 and Fig. 8 show a few screenshots with
conditions that might hamper tracking and the way in
which ALIEN responds. Fig. 7(a) shows face tracking
under strong occlusion from the faceocc1 sequence.
Crosses represent the features in Ot of Eq. 14. In this
case they are mostly originated from the occluding
object. Fig. 7(b) shows a case where the occlusion
causes misalignment of the object template which
could determine drifting. In this case, the context
is capable of intercepting the occluder and avoids
learning of misaligned features.

In Fig. 8(a) and Fig. 8(b) we have reported few
screenshots of the car and carchase sequence, respec-
tively. In both sequences, we indicate the bounding
boxes of the ALIEN tracker and the other trackers.
Fig. 8(a) shows the part of sequence where a vehicle
enters and leaves two zones occluded by trees. In both
cases, the superior capability to capture the locality
of the object appearance makes ALIEN the last to ter-
minate tracking, and the first to re-acquire the object
after the full occlusion. Fig. 8(b) shows screenshots
after 7000 frames of tracking in the carchase sequence,
where only ALIEN and Predator-TLD have survived.
At this point, the ALIEN continues tracking while the
Predator-TLD tracker estimates a wrong object scale
and is distracted by the other similar objects. This
causes an irreversible drift of the template appearance
model.

Finally, Fig. 9(a) shows frames of particular video
sequence obtained from the concatenation of 530 un-
aligned face images of the same subject (former US
President G. Bush) taken from the Labeled Face in
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TABLE 2: ALIEN comparative performance analysis. Bold numbers indicate the best score, underlined numbers indicate the second best.

(a) ALIEN vs CoGD [71] – Success rate (%).

Sequence Group Frames Occ. IVT ODF ET MIL CoGD ALIEN
[45] [8] [3] [4] [71]

David 6 761 0 17 - 12 17 99 98
Jumping 3 313 0 23 1 14 1 100 87
Pedestrian1 1 140 0 7 4 15 72 100 100
Pedestrian2 1 338 93 10 5 85 26 71 92
Pedestrian3 1 184 16 27 2 28 26 83 90
Car 1 945 143 83 - 1 4 84 100

Mean - - - 27 3 25 24 89 94

(b) ALIEN vs PROST [49] – Average localization error/Success rate (%).

Sequence Group Frames OB ORF FT MIL PROST ALIEN
[15] [47] [1] [4] [49]

Girl 5 452 43.3/24 - 26.5/70 31.6/70 19.0/89 4.514/66
David 6 502 51.0/23 - 46.0/47 15.6/70 15.3/80 3.731/98
Sylvester 2 1344 32.9/51 - 11.2/74 9.4/74 10.6/73 5.213/89
Faceocc1 2 858 49.0/35 - 6.5/100 18.4/93 7.0/100 1.357/99
Faceocc2 2 812 19.6/75 - 45.1/48 14.3/96 17.2/82 5.949/100
Tiger 2 354 17.9/38 - 39.6/20 8.4/77 7.2/79 3.889/30
Board 2 698 - 154.5/10 154.5/67.9 51.2/67.9 37.0/75 10.737/75
Box 2 1161 - 145.4/28.3 145.4/61.4 104.5/24.5 12.1/91.4 7.111/86
Lemming 2 1336 - 166.3/17.2 166.3/54.9 14.9/83.6 25.4/70.5 9.292/38
Liquor 2 1741 - 67.3/53.6 67.3/79.9 165.1/20.6 21.6/83.7 4.039/81

Mean - - 32.9/42.2 133.4/27.3 78.0/58.1 46.1/64.8 18.4/80.4 5.583/76.2

(c) ALIEN vs LSHT [22] – Success rate (%).

Sequence Group Frames L1 SPT CT FT MIL Struck VTD TLD BHT LGT DFT MTT LSHT ALIEN
[38] [64] [73] [1] [4] [20] [28] [25] [50] [7] [40] [76] [22]

Board 2 698 3 47 73 82 76 71 81 16 38 5 23 63 93 75
Box 2 1161 4 8 33 42 18 90 34 60 8 9 37 25 84 86
David 1 761 41 64 46 35 24 67 32 90 7 24 45 92 93 98
Faceocc2 2 812 60 22 100 80 94 79 77 76 43 8 49 82 100 100
Sylvester 2 1344 48 34 74 66 70 87 72 76 78 8 54 96 89 89
Tiger 2 354 10 3 65 5 77 65 17 26 5 2 21 27 66 30
Trellis 6 568 67 72 35 18 34 70 54 31 18 2 45 34 91 92

Mean - - 29 31 53 41 49 66 45 46 24 7 34 52 77 71

(d) ALIEN vs BLUT [68] – Average normalized centroid localization error.

Sequence Group Frames GTK [51] MIL[4] OAB[16] hsvPF[43] ICTL[66] VTD[28] IVT[45] L1[38] BLUT[68] ALIEN

owl 3 631 0.121 0.467 0.544 0.088 0.027 0.683 0.358 0.479 0.011 0.042
face 3 493 0.081 0.523 0.960 0.069 0.044 0.123 0.039 0.560 0.027 0.039
body 3 334 0.082 0.613 0.244 0.170 0.105 0.388 0.334 0.331 0.033 0.049
car1 3 742 0.317 0.626 1.012 0.594 0.193 0.862 0.639 0.622 0.019 0.034
car2 3 585 0.697 0.775 0.510 0.272 0.297 0.563 1.679 0.555 0.023 0.040
car3 3 357 0.697 0.569 0.345 0.145 0.152 0.328 0.321 0.538 0.013 0.032
car4 3 380 0.871 0.974 0.516 0.670 0.304 0.260 0.248 0.452 0.050 0.028

Mean - - 0.409 0.650 0.590 0.287 0.160 0.458 0.517 0.505 0.025 0.037

(e) ALIEN vs Predator-TLD [25] – Precision/Recall/F-measure.
Sequence Group Frames OB [15] SB [17] BS [56] MIL [4] CoGD[71] TLD [25] ALIEN

David 6 761 0.01 / 0.01 / 0.01 0.27 / 0.27 / 0.27 0.16 / 0.12 / 0.13 0.06 / 0.06 / 0.06 0.99 / 0.99 / 0.99 1.00 / 1.00 / 1.00 0.99 / 0.98 / 0.99
Jumping 3 313 0.41 / 0.04 / 0.08 0.14 / 0.08 / 0.10 0.06 / 0.05 / 0.05 0.37 / 0.37 / 0.37 1.00 / 0.99 / 1.00 0.99 / 0.99 / 0.99 0.99 / 0.87 / 0.92
Pedestrian1 1 140 0.36 / 0.09 / 0.14 0.20 / 0.14 / 0.16 0.10 / 0.04 / 0.05 0.42 / 0.42 / 0.42 0.99 / 0.99 / 0.99 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00
Pedestrian2 1 338 0.74 / 0.12 / 0.21 0.55 / 0.46 / 0.50 1.00 / 0.02 / 0.04 0.10 / 0.12 / 0.11 0.71 / 0.90 / 0.79 0.89 / 0.92 / 0.91 0.93 / 0.92 / 0.93
Pedestrian3 1 184 1.00 / 0.33 / 0.49 0.41 / 0.33 / 0.36 0.81 / 0.40 / 0.54 0.49 / 0.58 / 0.53 0.84 / 0.99 / 0.91 0.99 / 1.00 / 0.99 1.00 / 0.90 / 0.95
Car 1 945 0.89 / 0.57 / 0.69 1.00 / 0.67 / 0.80 0.99 / 0.56 / 0.72 0.11 / 0.12 / 0.11 0.91 / 0.92 / 0.91 0.92 / 0.97 / 0.94 0.95 / 1.00 / 0.98
Motocross 4 2665 0.13 / 0.00 / 0.00 0.01 / 0.00 / 0.00 0.14 / 0.00 / 0.00 0.02 / 0.01 / 0.01 0.80 / 0.26 / 0.39 0.67 / 0.58 / 0.62 0.69 / 0.81 / 0.74
Volkswagen 4 8576 0.04 / 0.00 / 0.00 0.00 / 0.00 / 0.00 0.00 / 0.00 / 0.00 0.26 / 0.03 / 0.05 0.41 / 0.03 / 0.06 0.54 / 0.64 / 0.59 0.98 / 0.89 / 0.93
Carchase 4 9928 0.73 / 0.03 / 0.05 0.79 / 0.04 / 0.08 0.38 / 0.09 / 0.14 0.49 / 0.03 / 0.05 0.87 / 0.04 / 0.08 0.50 / 0.40 / 0.45 0.73 / 0.68 / 0.70

mean - - 0.40 / 0.04 / 0.06 0.39 / 0.06 / 0.09 0.24 / 0.07 / 0.10 0.32 / 0.04 / 0.06 0.70 / 0.16 / 0.20 0.58 / 0.57 / 0.58 0.84 / 0.80 / 0.82

(f) ALIEN vs ConTra [9] – Average localization error.

Sequence Group Frames FT [1] MIL [4] CoTT [70] DNBS [31] VTD [28] TLD [25] ConTra [9] ALIEN

Animal 5 72 69 9 8 19 6 37 9 3.47
Carchase 4 5000 lost@355 lost@355 lost@409 lost@364 lost@357 lost@1645 24+ 4.91
Clutter 5 1528 lost@1081 lost@413 9 6 6 4 6 3.75
ETHPedestrian 5 874 lost@95 lost@95 lost@95 lost@635 lost@95 10 16 6.43
Girl 5 502 lost@248 30 14 39 69 19 18 2.33
Liquor 2 1407 lost@47 lost@288 30 lost@404 lost@404 21 10 4.03
Motocross 4 2665 lost@137 lost@485 lost@591 lost@10 lost@10 10 12 8.24
Multifaces 5 1006 lost@64 lost@64 lost@394 lost@64 lost@64 lost@97 26 11.92
Scale 5 1911 8 11 6 lost@269 3 6 2 1.88
Car 1 946 lost@679 lost@481 9 lost@517 lost@517 8 8 3.42

Speed (fps, on 320x240) - - 1.6 14 2 7 0.2 12 10 11

+ tracking stopped at frame 5000
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(g) ALIEN vs MTT [76] – Average localization error.

Sequence Group Frames IVT L1 MIL OAB FT VTD MTT ALIEN
L∗21 L∗∞1 L∗11 L21 L∞1 L11

[45] [38] [4] [16] [1] [28] [76] [76] [76] [76] [76] [76]

car4’ 6 659 8.50 6.37 53.76 88.12 127.29 27.01 1.79 2.40 3.60 2.25 3.83 3.33 6.23
car11 6 392 19.18 5.42 53.75 5.69 72.71 3.74 2.01 2.02 16.73 1.93 2.01 23.69 2.69
coke11 6 291 12.09 58.53 13.70 11.33 70.98 62.70 7.34 9.46 7.38 3.15 7.39 6.53 5.80
david 6 761 9.87 7.16 25.95 21.15 66.91 58.99 7.55 8.38 6.67 7.88 8.37 9.17 3.73
faceocc1 2 858 7.00 9.15 34.35 17.23 7.90 8.73 12.52 18.59 10.92 7.75 23.45 19.15 1.35
faceocc2 2 812 15.25 6.55 10.23 20.84 48.22 11.85 6.45 7.04 10.07 8.09 8.06 10.11 5.94
football 6 362 15.44 5.25 7.98 53.31 6.35 3.33 4.07 5.19 4.51 4.71 4.87 5.25 2.37
girl 5 452 4.98 4.16 12.38 10.99 7.43 11.44 3.88 4.61 5.43 4.49 4.33 9.85 4.51
onelsr 6 560 4.69 24.03 23.82 12.46 57.57 44.29 3.39 2.28 20.26 3.26 3.63 23.61 4.94
shaking 6 365 37.78 52.23 7.91 100.27 15.27 3.96 9.35 8.62 10.80 8.36 9.54 11.37 9.491

singer1 6 351 5.25 9.79 11.09 62.99 26.92 1.45 1.43 1.14 4.53 1.82 4.74 18.88 2.56
skating1 6 400 20.08 74.94 49.18 39.25 63.26 5.02 5.61 9.18 75.51 7.41 82.48 77.89 9.512

soccer 6 392 58.49 97.78 46.34 65.31 41.42 10.50 10.45 11.06 17.16 14.26 46.99 16.06 12.953

sylvester 2 1344 14.53 39.37 15.29 10.42 6.78 7.37 4.77 3.95 4.01 4.78 4.71 7.56 5.21
trellis 6 569 31.08 54.02 37.32 41.46 55.69 47.76 10.30 17.76 15.36 10.32 9.96 33.14 4.65

mean - - 17.61 30.32 26.87 37.39 44.98 20.54 6.06 7.44 14.20 6.03 14.96 18.37 5.46

1Object lost at frame 65; 2Object lost at frame 55; 3Object lost at frame 39.

(a) (b)

Fig. 7: Screenshots of ALIENs tracking with the Face occlusion1 and Multiplefaces sequences. (a): In presence of strong partial occlusion.
(b): In presence of distractors (other faces). Occluding and ambiguous features are marked with crosses.

(a) (b)

Fig. 8: (a): Full occlusion condition: ALIEN tracks the object until it is fully occluded (1st, 2nd, 4th image) and is the first to recover tracking
(3rd and 6th image). (b): Distractors and scale variation in long term tracking: after about 7000 frames. Only ALIEN and Predator-TLD
survived with no drift; the presence of distractors and the wrong scale estimates terminate correct tracking of Predator-TLD.

the Wild dataset [23]. The effects of the incremental
learning capability of the ALIEN tracker can be ob-
served in Fig. 9(b). The algorithm was run through
the dataset several times until the object was detected
approximatively in the 90% of the images. This pro-
duced about 10000 weakly aligned local features. The
learned appearance was then checked by tracking
the face in several video clips taken from YouTube
(with no template updating). It can be noticed that the
tracker is robust against arbitrary viewing conditions
and distractors.

Demo sequences are available at the link ALIEN-
demo or at the YouTube channel http://www.
youtube.com/user/pernixVision.

5 CONCLUSIONS

In this paper, we have proposed a method to track
an object in long video sequences under complex
interactions between illumination, occlusion and ob-
ject/camera motion. We have presented a novel vi-
sual object representation based on weakly aligned
multiple instance local features which improves on
the inherent limit of local features invariance under
occlusion, sensor quantization and casting shadow. A
non parametric learning algorithm based on transitive
matching exploits discriminative classifiers in order to
separate the object from context and detect occlusions.
In order to avoid template contamination, when oc-
clusion is detected, the object template is not updated.

http://www.youtube.com/playlist?list=PLaL9iZxXuKa9QHdUAoviE1Dez8RF01KJe
http://www.youtube.com/playlist?list=PLaL9iZxXuKa9QHdUAoviE1Dez8RF01KJe
http://www.youtube.com/user/pernixVision
http://www.youtube.com/user/pernixVision
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(a)

(b)

Fig. 9: (a): A clip of the video sequence artificially obtained from
images of the Labeled face in the wild[23] used for learning the face
appearance. (b): The learned appearance is then used to track face
identity in YouTube videos. Red points show features matched with
the context.

A real-time implementation of the framework has
been evaluated under publicly available datasets with
an extensive set of experiments and comparisons with
state of the art approaches. Superior or equal tracking
performance is reported in most of the cases.

Our analysis shows that the appearance learning al-
gorithm is asymptotically stable even in the presence
of large errors in object detection. This result might
appear somewhat surprising since one would expect
that errors accumulate and the drift grows gradually
during tracking. We prove that under mild conditions
this will not happen. Hence we believe this is a useful
result for the template update problem.
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