VISUAL OBJECT TRACKING
Tracking arbitrary objects in unconstrained environment by simply specifying a **single (one-shot) training example** at run-time.

CHALLENGES
Illumination, shadow, occlusion, viewpoint, clutter, translucent reflective material, camera sensor noise, motion blur, sensor quantization.

THE KEY IDEA
Our method has been inspired by studying the effects of Scale Invariant Feature Transform (SIFT) when applied to objects assumed to be flat even though they aren’t. We argue that positive performance is intrinsically in the multiview local appearance representation.

HOW AND WHY IT WORKS
Deviations from flatness induce nuisance factors that act on the feature representation in a manner for which no general local invariants can be computed. Hence deviations are (over)-represented through multiple instances of the same features.

DOWNLOAD
http://www.micc.unifi.it/pernici/

FaceHugger: The ALIEN Tracker
Applied to Faces

VISUAL OBJECT TRACKING
Tracking arbitrary objects in unconstrained environment by simply specifying a **single (one-shot) training example** at run-time.

CHALLENGES
Illumination, shadow, occlusion, viewpoint, clutter, translucent reflective material, camera sensor noise, motion blur, sensor quantization.

THE KEY IDEA
Our method has been inspired by studying the effects of Scale Invariant Feature Transform (SIFT) when applied to objects assumed to be flat even though they aren’t. We argue that positive performance is intrinsically in the multiview local appearance representation.

HOW AND WHY IT WORKS
Deviations from flatness induce nuisance factors that act on the feature representation in a manner for which no general local invariants can be computed. Hence deviations are (over)-represented through multiple instances of the same features.

DOWNLOAD
http://www.micc.unifi.it/pernici/