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Abstract

We present a novel approach to obtain a mosaic image for the surface texture
content of a surface of revolution (SOR) from a collection ofuncalibrated views.
The SOR scene constraint is used to calibrate each view and align the corre-
sponding pictorial content into a global representation. Metric surface properties
are extracted from each view by exploiting special properties of the imaged SOR
geometry expressed in terms of homologies. Image alignmentis achieved by
projecting imaged surface elements onto a reference plane,and then registering
them according to a translational motion model. This work extends previous re-
search on calibrated scenes of right circular cylinders to the more general case of
uncalibrated SOR scenes. Experimental results with imagestaken from the web
demonstrate the effectiveness and the general applicability of the approach.

1 Introduction and Related Work

Image mosaicing consists in merging collections of images having a partially overlapping
content. The process can be decomposed into three main steps. First, the transformations
relating each image coordinate system with a reference one are computed; the images are
then warped according to the associated transformations, and finally aligned to each other to
compose a single mosaic image.

Several approaches were proposed in the literature, mainlydiffering in the alignment
methods adopted and in the class of warping transformationsconsidered [8], [20]. The most
common warping transformations fall into the class of projective and affine planar parametric
models, related to special camera motions (e.g., rotationsonly) and/or scene geometry (e.g.,
planar scenes) [15], [7]. A typical example is that of panoramic mosaics, which are obtained
either with a pan-only or with a pan/tilt camera, and are further warped onto a cylindrical
or a spherical manifold, respectively, to obtain a 360◦ panorama [12], [2], [18]. A general
technique for projecting an image mosaic onto a curved manifold according to camera motion
is developed in [19].

If camera motion is unconstrained but the scene is planar, standard parametric models
(i.e., planar homographies) can still be used for mosaicingpurposes. This is not the case
for general curved scenes, that require image transformation models which are more com-
plex than homographies and are typically—even if not always[17]—non parametric. Due
to its intrinsic difficulties, the problem of curved scene mosaicing under general motion has
been largely neglected by the research community. As an exception, a method for mosaicing
the pictorial content painted on right circular cylinders was presented in [14]. That method
requires that internal camera parameters are known in advance. The external orientation pa-
rameters and the imaged symmetry axis are obtained from two imaged circular cross sections.
As the method does not fully exploit prior knowledge about scene geometry, pictorial surface



elements cannot be metrically sampled in the warping step, and geometric distortions are in-
troduced. This may affect significantly the subsequent alignment step and the visual quality
of the obtained mosaic.

In this paper, a novel approach is presented for the creationof mosaics from collections
of uncalibrated perspective views of a Surface of Revolution (SOR). A projective model of
SOR scene geometry based on homologies is used both to calibrate each single view and
to align metrically the corresponding surface pictorial content from each view according to
a translational motion model. The original contribution ofthis work is two-fold. First, the
approach extends previous literature on curved surfaces tothe broad class of SOR objects.
Second, calibration information need not be known in advance, but can be obtained directly
from SOR scene geometry. Experimental results with images taken from the web demon-
strate the effectiveness and the general applicability of the approach. In particular, the visual
quality of the results is comparable with the one obtained with expensive 3D laser scanning
technologies (see e.g. [9]) typically used for cultural heritage applications.

Figure 1: Mosaicing from two SOR images.

2 The Approach

Fig. 1 shows an example of mosaic creation from two SOR views.The imaged SOR surface
regions visible from each view (Fig. 1, left) are first individually mapped onto a reference
plane (Fig. 1, middle), whereon they can be aligned togetherand merged into a single mosaic
image (Fig. 1, right).

The mosaicing approach consists of three main steps. In the first step, the imaged SOR
geometry of each view is estimated from the visible segmentsof two imaged cross sections,
and used to compute the internal camera parameters. The imaged SOR geometry is then
exploited together with the calibration information and the imaged SOR silhouette to obtain,
for each view, a SOR parameterization common to all the viewsup to a translation (second
step). This removes the projective distortion due to the image formation process, and allows
the imaged SOR regions visible from each view to be warped onto a common reference plane.
In the final step (alignment and compositing), the unknown translation for each warped image
is estimated by region-based image registration, and used to create the mosaic image. In the
following sections, each of the steps above will be described in detail.

2.1 Imaged SOR Geometry and Camera Calibration

A SOR can be parameterized asP(θ ,z) = (ρ(z)cos(θ ),ρ(z)sin(θ ),z) , whereθ ∈ [0,2π ]
andz ∈ [0,1]. The scaling functionρ(z) controls the 3D shape of the SOR. (In the special
case of constantρ(z), the SOR reduces to the right circular cylinder addressed in[14].) The
perspective projection of a SOR gives rise to two different kinds of image curves, namely



the apparent contour and theimaged cross sections. The former is the image of the points
at which the surface is smooth and the projection rays are tangent to the surface; the shape
of this curve is view dependent. On the other hand, imaged cross sections are view inde-
pendent elliptical curves, that correspond to parallel coaxial circles in 3D and arise from
surface normal discontinuities or surface texture content. Both the apparent contour and the
imaged cross sections of a SOR are transformed onto themselves by a 4-dof harmonic ho-

mologyH = I−2v∞ lTs
vT

∞ ls
, wherels andv∞ are respectively the imaged axis of revolution and

the vanishing point of the normal direction of the plane passing throughls and the camera
center [13]. These geometric entities are strictly relatedto the calibration matrixK, which
embeds information about the internal camera parameters. In particular it holdsls = ωv∞,
whereω = K

−T
K
−1 is the image of the absolute conic [7]. Moreover, since crosssections are

parallel circles in 3D, they intersect at the circular points of the families of planes orthogonal
to the SOR symmetry axis. Their projection in the image,i andj, are also related to the image
of the absolute conic asiT ω i = 0 andjT ω j = 0. The resulting system







iT ω i = 0
jT ω j = 0
ls = ωv∞

(1)

provides four linear constraints onω , whose coefficients can be computed from two imaged
ellipses as shown in [4] [5]. A symbolic representation of the geometrical relationships in-
volved in Eq. 1 is shown in Fig. 2(a). It can be demonstrated that only three out of the four
constraints above are actually independent. Therefore, the system of Eq. 1 can be used to
calibrate a natural camera (zero skew and known aspect ratio: 3 dofs) from a single image.
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Figure 2: (a): A symbolic representation of the geometry of camera calibration. The IAC is
shown dashed to remind that it is a pure imaginary conic. (b) The geometry of imaged SOR
parametrization.

2.2 Imaged SOR Parameterization

The image of any SOR point can be backprojected uniquely ontothe coaxial right cylinder
(cos(θ ),sin(θ ),z); this, in turn, can be unrolled onto the plane(θ ,z) used as reference plane
for mosaicing. The imaged SOR parametrization just described is nothing but the (unknown)
warping transformation connecting the image and the mosaicing planes. This section shows
how to evaluate the imaged SOR parametrization from the imaged SOR geometry introduced
in the previous section and the apparent contour. The following three properties hold (see
Fig. 2(b) for a graphical interpretation):



Objective:
• GivenC, l∞, ls, v∞ andx′γ ∈ γ . Compute the imaged cross sectionC

′ tangent atx′γ .
Algorithm:

1. Compute the tangent linel′ at x′γ ∈ γ .
2. u∞ = l′× l∞
3. Computex ∈ C at which the tangent linel is incident withu∞
4. vW = (x×x′γ )× ls
5. w∞ = (x×x′γ )× l∞
6. µW = {vW,w∞,x,x′γ }

7. W = I+(µW−1)
vW lT∞
vW l∞

8. C
′ = W

−T
CW

−1.

Table 1: Computation of the imaged cross sectionC
′ tangent to an assigned pointx′γ on the

apparent contourγ. (see Fig.2(b))

Property 2.1 The apparent contour is tangent to an imaged cross section at any point of
contact [1].

Property 2.2 The lines tangent to two distinct imaged cross sections C and C
′ at any two

points x and x′ are related by the planar homology W = I+(µ −1) v lT∞
vT l∞

as x′ = Wx, and have

the same vanishing point u∞, which lies on the vanishing line l∞ of all the planes orthogonal
to the SOR symmetry axis. The point v lies on ls.

Property 2.3 The 3D points whose images x ∈ C and x′ ∈ C
′ are related as x′ = Wx belong to

the same SOR meridian θ = constant.

With reference to Fig.2(b), the cross sectionC
′ is tangent to the apparent contourγ and the

pointx′γ is the contact point of property 2.1. The linel′ tangent atx′γ meetsl∞ atu∞. The line
l passing byu∞ and tangent toC gives the pointx. The pointsx andx′γ correspond under the
homologyW of property 2.3, whilel′ andl are the tangent lines of property 2.2. The properties
above are used in the algorithms shown in Tables 1, 2(a), 2(b)and 3 to solve the imaged SOR
parametrization problem. The algorithms in Tab. 3 is the top-most algorithm performing
image transformation by using the algorithms in Tabs. 1, 2(a) , 2(b). The algorithm in Tab. 1
computes the imaged cross sectionC

′ tangent atγ at its generic pointx′γ ∈ γ by transforming
a visible cross sectionC. The inputsl∞, ls, v∞ are computed from two visible cross section
as described in [4]. This algorithm allows one to “move” projectively along imaged cross
sections. In particular Tab. 2(a) and 2(b) show how to index ageneric imaged surface element
with a unique value ofθ andz respectively.

Solving for the Euclidean θ . The angle between two lines in a world planeπ can be
computed in the image in terms of the vanishing points of the lines and the imaged circular
points of the plane as shown in Fig. 3(a). In the figure, the Euclidean (world angle)θ between
the two imaged lineslθ andls can be calculated by the Laguerre’s formula [6]

θ =
1
2i

log({vθ ,vs, i, j}) , (2)

where{} denotes the usual cross ratio of four points [16]. In order toobtain an imaged point
at a givenθ in a generic imaged cross sectionC, the Eq. 2 is inverted. By expressing the
generic point on the vanishing linel∞ of π asv(λ ) = i+ λ (i− j), Eq. 2 can be rewritten as

ei2θ = {λθ ,λs,λi,λ j} , (3)



whereλθ , λs, λi = 0 andλ j = −1 are the values of the complex parameterλ respectively for
the pointsvθ , vs, i andj. Given the imaged axis of revolutionls = (l1, l2, l3) and the imaged
circular pointsi = conj(j) = (a + ib,c + id,1), by solving forλs the equationlTs v(λs) = 0 we
getλs = − 1

2 [1+ i tanφs], where

φs = arctan

(

−
l1a + l2c + l3

l1b + l2d

)

. (4)
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Figure 3: (a) Sampling an imaged cross sectionC(z) at a given Euclidean angleθ . (b) The
texture transformation.

By replacing the above value ofλs into Eq. 3, the value ofλθ can be computed as

λθ = −
1
2

[1+ i tan(φs + θ )] , (5)

which yields the vanishing point asvθ = i + λθ (i− j). The image linelθ = vθ × o—where
o = C

−1(z)l∞ is the image of the cross section center—intercepts the imaged parallelC at two
points, of which the required pointx(θ ,z) on the visible imaged meridianχ(θ ) is the farthest
one fromvθ along the linelθ . Tab. 2(a) summarizes the described algorithm.

Solving for the metric z. For any givenθ , the algorithms of Tab. 1 and Tab. 2(a) can
be used to obtain the whole imaged meridianχ(θ ). The z value associated to each of the
points of this imaged meridian can be obtained by rectification of the planeπχ through the
meridian. The rectifying homography [10] can be computed from the image of the absolute

conic ω and the vanishing linem∞ of the planeπχ asMr =

(

β−1 −α β−1 0
0 1 0

m1 m2 1

)

, where

m∞ = (m1,m2,1) andiχ = conj(jχ) is expressed asM−1
r (1, i,0) = (α − iβ ,1,−m2−m1α +

im1β ). The vanishing linem∞ is obtained asm∞ = x∞×v⊥ (see Fig. 2(b)), wherex∞ andv⊥
are respectively the vanishing point of theθ -direction of all lines inπχ that are orthogonal to
the symmetry axis, and the vanishing point of the direction of the symmetry axis. The imaged
circular points are computed as the intersection ofm∞ with ω . As the SOR symmetry axis
lies by construction onπχ , once the rectifying homographyMr for this plane is known, we are
able to rectify both the imaged meridianχ and the imaged axis of symmetryls, thus obtaining
the required value ofz.

The correspondence between a point of the apparent contourx′γ ∈ γ at which the imaged
cross section is tangent-contact and the (normalized) metric z where the 3D cross-section
resides can be expressed in terms of a functionζ : γ → [0,1] such that

z = ζ (x′γ ) . (6)



Objective: Given an angleθ in the world space, the fixed
entities l∞, ls, v∞ i,j and the conicC. Compute the im-
aged pointx ∈ C subtending an angleθ with respect to
the plane through the camera center and the 3D axis of
revolution.
Algorithm:

1. Computeλθ as in Eq. 5
2. vθ = i+λθ (i− j).
3. vs = ls × l∞
4. lθ = vθ × (C−1l∞)
6. IntersectC with lθ an choose from the two solu-

tion the farthest fromvθ .

(a)

Objective: Givenz compute its correspond-
ing pointx′γ ∈ γ at which the cross section at
z is tangent contact tox′γ
Algorithm:

0. Sett− = 0 andt+ = 1.
1. Chooset as the midpoint of[t−,t+]

and setx′γ = γ(t).
2. Compute ˆz = ζ (x′γ ).
3. If |z− ẑ| < ∆z stop.
4. If z > ẑ set t− = t; else sett+ = t;

go to 1.

(b)

Table 2: (a) Imaged cross section sampling at a givenθ . (b) Iterative evaluation of the point
on the apparent contourγ that lies at a givenz.

Objective:
• Compute the flattened imaged SOR regionT

Algorithm:
1. Choose a reference imaged parallelC.
2. Computex′γ = ζ−1(z) and the relative imaged cross sectionC(z)′ with the algorithm of Tab. 2(b).
3. SampleC(z)′ at θ = θ1, . . .θN with the algorithm of Tab. 2(a).
4. For each of theN pointsx′χ(θ ) = x(θ ,z) thus obtained, setT (θ ,z) = I(x′χ(θ )).
5. Texture acquisition is achieved by repeating the steps 1 through 4 for all the rows of the texture image

T , sampled at regular intervals ofz.

Table 3: Texture transformation algorithm.

An algorithm for the computation ofx′γ = ζ−1(z) at the genericz by successive approxima-
tions is outlined in Tab. 2(b). This algorithm is essential for image warping by inverse texture
sampling. The unknownx′γ is denoted asγ(t), wheret ∈ [0,1] is any curve parameter onγ
such thatζ (γ(0)) = 0. Hence, the problem can be reformulated as to find the value of t which
satisfiesζ (γ(t)) = z. The algorithm exploits the fact that the function(ζ ◦ γ)(t) is monotonic.

We are now finally in the position to perform image warping according to the algorithm
of Tab. 3. The algorithm performs flattened texture acquisition by resampling the original
image starting from an orthogonal grid ofθ andz values in the reference plane. The image
to reference plane transformation maps imaged SOR meridians and parallels onto mutually
orthogonal straight lines (see also Fig. 3(b)). It is worth noticing that, to guarantee that
texture details have the same size in all the warped images, aunique scaling factor forz must
be specified for all the views. In order to achieve this, the portions of apparent contour used
to warp each image must be chosen so that they are delimited bytwo imaged cross sections
corresponding to the same 3D SOR parallels in all views. If the SOR has a top and a bottom,
these two extremities can be conveniently selected to delimit the apparent contour in each
view.

2.3 Texture Alignment

Thanks to the characteristics of the image warping algorithm just described, the subsequent
image alignment phase is greatly simplified, and reduced to the problem of estimating rigid
translations in the reference plane. The alignment procedure is very similar to that used for
cylindrical panoramic mosaics [18]. Both a horizontal translationδθ and a vertical translation
δz are estimated for each input image. Translations alongz must be taken into account to



(a) (b) (c)

Figure 4: (a) shows the computed imaged meridians atθ=10◦, 20◦, 30◦, 40◦, 50◦, 60◦ mea-
sured from the imaged axis of revolution. (b) shows the flattened texture obtained with the
described algorithms. Here imaged cross sections and meridians are warped as mutually or-
thogonal straight lines. (c) Four complementary views of a japanese vase and the warped
flattened textures obtained.

compensate for misalignments due to slight uncertainties in the scaling factor.
Direct registration is employed to align at subpixel accuracy the warped images and re-

cover the translationδ = (δθ ,δz). The intensity errorE(δ ) = ∑xi
[I1(xi + δ )− I2(xi)]

2 be-
tween the two imagesI1 and I2 is minimized using the iterative method described in [11].
The algorithm starts from an initial guess lying close to theminimum.

3 Experimental Results

Fig. 4(a) shows an uncalibrated view of a vase taken from the web. In the figure, two ellipses
were manually fitted by following two boundaries corresponding to imaged cross sections.
The apparent contour was manually drawn and modeled by an interpolating cubic spline
curve. The same figure shows six imaged meridians computed with the described algorithm at
increasing angles of 10◦ measured from the imaged axis of revolution. The imaged meridians
shown are part of the resampling grid. The imaged axis of revolution is also the image of a
meridian, and specifically the one contained in the plane through the camera center and the
3D axis of revolution. It is worth noticing how the meridian gives the perception of the depth
while approaching the apparent contour. The regular sampling of the spline parameter clearly
does not induce a regular sampling for the imaged meridians.

The flattened texture of Fig.4(b) is obtained by resampling the curves of the imaged SOR
parameterization and warping them onto mutually orthogonal straight lines in the reference
texture image (row and column). The largest amount of warping is required by the imaged
surface regions close to the apparent contour and by high curvature surface parts. Fig. 4(c)
shows four views of the vase of Fig. 4(a) having a common overlapping imaged surface
pictorial content. Fig. 4(c) shows also the warped imaged surface in overlapping order. The
resolution of the original images is 400× 600. We chose a similar resolution for the warped
texture images. Fig. 5(a) shows the manual initialization of the alignment step with three
of the four warped images of Fig. 4. Notice how length ratios are maintained in all images,
while the lighting is remarkably different from image to image. Fig. 5(b) shows the mosaic
image resulting after image alignment and compositing. Themosaic represents a full 360◦



(a) (b)

Figure 5: (a) Initial guess for the direct registration. (b)The complete mosaic obtained by
image registration and compositing.

“vase panorama” obtained using five warped images, of which the leftmost image of Fig. 4(c)
was used twice in order to close the visual texture loop. The effect of image compositing
is to reduce the lighting gradient inside the mosaic. The registration fails when the SOR
deviates from its ideal geometry. Fig. 6(a) shows a vase cover in which the axis of revolution
is not straight. Since the top cross section is not perfectlycoplanar with the bottom one,
the generated imaged parameterization is not perfectly registered. The subsequent image
alignment cannot be performed under this condition, since the common overlapping regions
are different.

The transformations relating the different coordinate system of each imaged SOR region
depends on camera calibration. Bad estimates of internal camera parameters can prevent the
alignment with the translational motion model. One of the main limitations of this approach is
that the quality of the boundary fitting of the ellipses (imaged visible cross sections) strongly
affects the accuracy of calibration results. Fig. 6(b) shows the mean and the relative RMS
errors in the computation of the principal point (upper) andfocal length (lower) for different
noise levels corrupting the imaged cross sections of a synthetic SOR view. The influence
of this noise was tested by running a Monte Carlo simulation with 10000 trials for each of
the parameters under test. Both ellipses and the system of eq.1 are estimated using algebraic
distance. Bold curves indicate a reference condition whereall the points of the imaged cross
sections are available while light curves indicate the condition where only the visible points
of the imaged cross section are used. It can be noticed that, in noisy conditions, the accuracy
obtained when a subset of the points of the imaged cross sections are used approximates the
accuracy that is obtained in the case in which all the points are available.

4 Conclusion

In this paper we have discussed a novel method for mosaicing several uncalibrated views
of a SOR. The proposed solution exploits the projective properties of SORs class and their
relationships with camera geometry. The method uses as inputs two at least partially visible
imaged cross sections and the apparent contour (see [3] for an automatic method to extract
simultaneously such curves and the imaged geometry).

The method gives good results especially with smooth SORs, and can be used reliably in
all those cases in which uncalibrated photographs are available and structured light or other
hardware solutions cannot be employed. In particular, the method can be applied for cultural
heritage or archaeological objects that are either no more available as original, or cannot be
moved from their site. It can also be applied in those cases where the nature of the object
material makes it impossible or expensive the acquisition with laser-based techniques [9]. The
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Figure 6: (a): A vase cover slightly deviating from an ideal SOR. The top cross section is
not coplanar with respect to the bottom one. As indicated by the arrow the superimposed
parameterization is not perfectly registered. (b): Shows the means and the relative RMS
error in the computation of the principal point (upper) and focal length (lower) for different
noise level of a synthetic SOR view. The two curves on each graph shows the effect of using
only the visible points of the imaged cross section (light curve) or all the points of the cross
sections (bold curve).

flattened (rolled-out) representation can be regarded as a virtual painting drawn by the artist
onto a curved support. Rolling out this kind of images facilitates the study and comparison of
similar images. Specifically, existing image retrieval techniques can be applied for indexing
databases of 3D objects by their pictorial surface content.

The main limitations of the method are related to self-occlusions and non smooth SORs,
as only the texture portions corresponding to a differentialble apparent contour can be warped.
Currently, images are warped separately, and then registered together: this means that calibra-
tion errors in one view can affect the final mosaic quality. Toreduce the effect of calibration
errors, future research will address performing the warping and alignment steps simultane-
ously. Further improvements will be the use of multiview calibration and the detection and
removal of specular highlights.
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