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Abstract—In this paper we present a system that integrates
automatic camera geometry estimation and object detection
from a Pan Tilt Zoom camera.

We estimate camera pose with respect to a world scene
plane in real-time and perform human detection exploiting
the relative space-time context. Using camera self-localization,
2D object detections are clustered in a 3D world coordinate
frame. Target scale inference is further exploited to reduce the
number of false alarms and to increase also the detection rate
in the final non-maximum suppression stage.

Our integrated system applied on real-world data shows
superior performance with respect to the standard detector
used.
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I. INTRODUCTION AND PAPER CONTRIBUTIONS

The task we address in this paper is 3D multiple pedes-

trian detection from a PTZ camera. At any point in time, we

want to detect pedestrian, or other objects, localize them on

the 3D scene plane, estimate their trajectories without losing

target association and eventually predict their future motion

for the purpose of sensor management. We are indeed

ultimately interested in performing sensor management in

order to determine the best way to task the visual sensor,

trough pan tilt zoom, to detect and track or recognize targets.

However 3D tracking from a moving and zooming camera

is difficult, since there are many sources of uncertainty

in object localization. Indeed beyond measurement noise,

clutter, changing background and occlusions, camera pose

estimation while zooming causes several difficulties.

This challenging problem has been largely neglected until

recently [1], in which the authors propose a real time

system capable of internal and external camera parameters

estimation in video sequence taken with large focal length

changes. They address the problem as a real time retrieval

system in which a database of pre-build features with

associated bundle adjusted homographies are retrieved and

subsequently refined online. Pose estimate is then used to

perform multiple target tracking in 3D assuming a planar

scene. A major limit of this work is that target templates

used to acquire image measurements are not automatically

detected and have to be manually specified in the first frame

of the sequence. This narrows the general applicability of the

framework in real surveillance scenario.

In this paper we build upon this work to propose a

detection module that exploits the camera pose geometric

context to obtain better performances in pedestrian detec-

tion. Scene context has been recently shown to facilitate

object detection methods in outdoor image dataset, when

coarse estimated camera pose are available [2]. We follow

a similar approach but introducing both geometric and

temporal contextual knowledge. Context allows objects to be

physically placed within the 3D world and this further allows

reasoning between these objects and the 3D environment.

Estimated camera geometry adds a context to individual

object detections and temporal coherence provides them with

a history, supporting their presence in the video frames. To

this end 3D objects localization are accumulated over a time-

based sliding windows and are clustered in 3D. Redundant

detections in 3D, originating from the same target or clutter

are used to improve target detection performance.

We provide the following improvements to the results

proposed in [1]: (1) we improve scanning windows based

human detector, considering a PTZ camera tracking system

with 3D space-time context at frame-rate; (2) we demon-

strate how space-time context improves precision and recall

performance of recent state of the art for object detectors.

II. RELATED WORK

Besides the difficulties of Data Association and Filtering

[3], 3D Multiple Target Tracking (MTT) with a moving

camera is notoriously difficult because of target detection

and sensor registration (i.e. manage visual data to account

for camera zooming and pose changes). While these three

components are far from being solved individually, their

integration and interplay considerably enhance overall track-

ing performance. Among these three components, object

detectors have made tremendous progress over the last few

years and are getting applicable in complex surveillance

scenes [4], [5], [6]. The work [6] in particular improves upon

others using multi-scale deformable part models, learned

with discriminative training and demonstraes good perfor-

mance on difficult benchmarks. Recently [2] shows that



geometric scene context, estimated from a single image,

improves object detection and recognition. Authors propose

a probabilistic inference model to merge pre-trained detector

responses with scene knowledge as coarse camera viewpoint

and surface orientation estimation. The work [7] (closely

related to our work) combines detectors and geometric

context extracted using real time Structure from Motion

(SfM) with a moving camera. In [8], [9] miss-detection are

reduced by image rectification providing the detector with a

better viewpoint.

Further methods jointly addressing detection and tracking

are [10] and [11] among others. These works assume an

existence variable that follows a discrete Markov chain

parameterized by object birth and death probabilities. Yet

principled, these methods are very computationally intensive

and not always suitable for real time automated surveillance

purpose.

Specific multiple target detection and tracking with a PTZ

camera is addressed in [12]. Authors proposed a system built

upon [13] for tracking targets in 3D. The world-to-image

homography is computed from the hockey rink model and

adaptation to target scale changes is performed by examining

windows slightly larger/smaller than the current target size.

Available geometric context is not taken into account in

object detection.

III. REAL TIME PTZ CAMERA POSE AND FOCAL

LENGTH ESTIMATION

Our real time SfM module is based on the approach

described in [1]. SURF interest points [14] are matched onto

a set of bundle adjusted images (covering the whole field of

regards of the PTZ camera) each of which has an associated

world to image homography Gt. The homography associated

to the closest retrieved image is subsequently refined trough

RANSAC and the focal length for the current frame is

extracted from the combination of the nearest homography

with the world to image homography. Pedestrian have been

assumed to be closely vertical in the 3D scene plane position

of the two extremities and the imaged feet and heads location

for humans are related by a time variant planar homology:

Wt = I+ (µ− 1)
vt,∞ · lTt,∞
vT
t,∞ · lt,∞

. (1)

For the individual images of the sequence, the vanishing

line lt,∞ and the vanishing point vt,∞ change according to

the variation of the camera parameters due to the pan-tilt-

zoom operation, for each image at time t the Wt is completely

defined by: lt,∞ = Gt · [0, 0, 1]
T and vt,∞ = KtK

T
t ·lt,∞. The

cross-ratio µ, being projective invariant, remains constant

throughout the sequence while Kt is the internal camera

matrix parameterized by the extracted focal length.

IV. HUMAN DETECTION WITH CONTEXT

State of the art object detectors as [5], [6] use one or more

SVM trained linear filters to detect an object model in the

Figure 1. Randomly generated feasible pedestrian detections with context.
The geometric context is estimated according to [1]. In particular two views
with different scene depth are shown. Each bottom-right frame shows the
imaged height likelihood.

image. Objects from a particular category are localized in the

image by thresholding the filter response evaluated at each

position and scale using HOG features pyramid. Besides the

excellent performance, their application depends specifically

on the task to be accomplished. In the case of real time

tracking, detector recall performance is more appropriate

since contextual knowledge (if present) could be exploited

to refine the precision performance as well.

This refinement stage is generally handled by a sup-

pression of non-maximum responses using some kind of

prior knowledge over detections. Detector [5] implements

this stage by performing mean-shift [15] in the detection

space (i.e. position and scale). While [6] sorts the detections

by their filter score, and greedily select the highest ones

by excluding detections with bounding boxes that are at

least 50% overlapped with a bounding box of a previously

selected detection. The underline assumption here is that

detector response performance gracefully degrades in the

neighborhood of the target image location (locality context).

A. Imaged Height Context

In the case of object detection throughout a video se-

quence taken with a PTZ camera, space-time context over

frames is used to further refine over the locality of detection

responses. More formally we exploit the facts that: (1)

the detector gives in general a strong positive response

in the neighborhood of the object; (2) the detector does

not report with same frequency and uncertainty non-object

image region; (3) the higher the peak detection score, the

higher the probability for the image region to be a true

positive; (4) imaged scale and 3D world coordinate at which

a target can be detected in a given image are known (i.e. they

are estimated with the method in [1] as shown in Fig. 1).

Under these assumptions we proceed by filtering out all

the detections which does not correspond to the geometric

context. Given a set of n detection D = {Bi, si}
n
i=1 defined

by their bounding box B = (x1, y1, x2, y2) (upper left corner

coordinates and lower right corner respectively) and score

s, for each detection in the set D, eq. (1) is evaluated at the

foot location zl = (x1+x2

2
, y1, 1) to obtain the corresponding



head location zu = Wtzl.

For each detection in D, the corresponding detected height

and width are computed as hd = y2−y1, wd = x2−x1; while

the contextual height and width are respectively estimated

as: ĥ = ||zl − zu|| and ŵ =
ĥ

α
, where α is the imaged human

aspect ratio. The detections in D are finally filtered out as:

D′ = {(Bi, si) ∈ D : |hd − ĥ| < ǫh,
∣

∣

∣

hd

wd

−
ĥ

ŵ

∣

∣

∣
< ǫr} (2)

where ǫh and ǫr are system thresholds which values depend

on the accuracy of the SfM module.

B. Temporal Context in 3D Localizations

Object detections are converted to 3D observations using

the image to world homography G
−1
t and accumulated in

a 3D world coordinate plane to form clusters. Our idea

is to group a collection of 3D detected observations in

a sliding window buffer Xt = {xt′}
t
t′=t−τ of length τ ,

where xt′ = G
−1
t zt, with zt ∈ D′ are the filtered detection

responses provided by the height context in eq. 2. Cluster

analysis is performed in Xt using parametric Gaussian

Mixture Model Expectation Maximization [16]. Clusters

coordinate that are close each other are automatically joined

together by the EM process. The mode of the most confident

clusters provides the final detection results.

Observation in Xt are in the spatial vicinity of each other

at different time steps, therefore, the number of detected

localization grows with time for persistent detections. On

the other hand, if a detection event originates from clutter,

it is less likely to form any pattern or cluster of detections

in the vicinity of each other within τ . According to this

the mixture model selection-clustering algorithm will ignore

it automatically. Mutual exclusion principle is implicitly

enforced being the parameters space of clustering defined in

the Euclidean 3D scene plane. We’ve noted that the life span

of a detection event represented by this false alarm region

is very short when compared with that of a true target.

However targets motion may still compromise clustering

performance. According to this, further 3D knowledge is

enforced with 3D kinematic priors of moving targets by

removing clusters with large eigenvalues or with an eigen-

values ratio that exceeds a reasonable kinematic motion.

Finally in order to keep real time performance and to

select clusters that represent with high probability true posi-

tive detections, we limit number of samples used to feed EM

algorithm. According to this, elements in D′ are resampled

based on their SVM score. Posterior class probability used

to sample Xt are computed from the si ∈ D′, as described

in [17]. This resampling step gives also some kind of

randomization to the entire process, which may help to avoid

local minima during EM iterations.

V. EXPERIMENTAL RESULTS

Experimental results are performed on ten video se-

quences at a resolution of 320x240 at 20 fps, for a total of
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Figure 2. Qualitative Comparison: (left) part-based detector (center) en-
forced with geometric context (right) proposed method with both geometric
and temporal context. (a): targets enter the scene (b): large focal length.
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Figure 3. RPCs Comparison.

7920 frames. The video dataset is taken with a PTZ camera

framing moving targets that enter and leave the scene. We

used the human detector in [6]. Detection performance is

quantitatively evaluated using recall-precision curves (RPCs)

on manually labeled bounding boxes. A correct detection is

scored when: Ao =
area(Bd∩Bgt)

area(Bd∪Bgt)
> 0.5, where Ao is the area

of overlap between the predicted bounding box Bd and the

manually annotated ground truth Bgt.

Fig. 2 shows qualitatively the improvements achieved by

introducing our method in the part-based detector described

in [6]. In particular the figure shows two frames out of the

ten sequences with different levels of zoom and perspective

effects. It can be noted that less false positive detections

are generally present and that bounding boxes surrounding

pedestrians are more accurately localized. Increased accu-

racy in localization is achieved by using the modes of the

estimated clusters.

Quantitative comparisons are summarized in Fig. 3

through precision recall curves. The figure shows that a

significant improvement is obtained by our proposed method

in exploiting contextual knowledge.



VI. CONCLUSION

We have presented a system for human detection exploit-

ing contextual knowledge about camera/scene geometry and

temporal coherence in sequence taken with a PTZ camera.

Target scale inference, camera self-localization, object detec-

tion and clustering in 3D world coordinate frame are com-

bined to reduce the number of false alarms and to increase

also the detection rate in the final non-maximum suppression

stage. We have shown that object detector performance in [6]

improves considerably with the proposed method. Further

research may be investigated by integrating the proposed

system to automatically initialize targets template in order

to improve tracking data association.
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