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Abstract—In modern video surveillance systems, pan–tilt–
zoom (PTZ) cameras certainly have the potential to allow
the coverage of wide areas with a much smaller number of
sensors, compared to the common approach of fixed camera
networks. This paper describes a general framework that
aims at exploiting the capabilities of modern PTZ cameras
in order to acquire high resolution images of body parts, such
as the head, from the observation of pedestrians moving in
a wide outdoor area. The framework allows to organize the
sensors in a network with arbitrary topology, and to establish
pairwise master–slave relationship between them. In this way
a slave camera can be steered to acquire imagery of a target
keeping into account both target and zooming uncertainties.
Experiments show good performance in localizing target’s
head, independently from the zooming factor of the slave
camera.
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I. INTRODUCTION

Stationary cameras are not able to monitor a wide area

entirely. To overcome this problem, a PTZ camera net-

work can be exploited: several slave PTZ sensors could be

controlled by one or more master PTZ camera(s) in order

to follow the trajectory of some entities in the scene and

generate multi-view close-up imagery at high resolution. In

this paper the focus is on establishing at frame-rate the

time variant mapping between PTZ cameras present in a

network as they redirect the gaze and zoom to acquire high

resolution images of moving targets for biometric purpose.

The proposed approach exploits a prebuilt map of visual

2D landmarks of the wide area to support multi-view image

matching. The landmarks are extracted from a finite number

of images taken from a non calibrated PTZ camera.At run-

time, features that are detected in the current PTZ camera

view are matched to those of the base set in the map.

The matches are used to localize the camera with respect

to the scene and hence estimate the position of the target

body parts. The use of a prebuilt map with images taken

at multiple zoom levels for each PTZ camera improves

the performance of the approach with respect to a simpler

solution in which a single wide reference view is used, as in

[1]. Differently from [2], our solutions explicitly takes into

account camera calibration parameters and their uncertainty.

Figure 1. Pairwise relationships between PTZ cameras for a sample
network of three cameras.

II. RELATED WORK

After the VSAM project [3], new methods have been

proposed for calibrating PTZ cameras. Among them, [4]

and [5] do not require direct calibration but impose some

restrictions in the setup of the cameras. The viewpoints

between the master and slave camera are assumed to be

nearly identical so as to ease the feature matching. In [4],

a linear mapping is used that is computed from a look-up

table of manually established pan and tilt correspondences.

In [5], a lookup table is employed that also takes into account

camera zooming. In [2], it is proposed a method to link

the foot position of a moving person in the master camera

sequence with the same position in the slave camera view.

Real-time estimation of camera’s position and orientation

using visual landmarks has been proposed by other authors,

following the monoSLAM (monocular Simultaneous Local-

ization And Mapping) approach. There, internal camera pa-

rameters are typically known in advance [6], while in Struc-

ture from Motion techniques they are estimated jointly with

3D structure [7]. Scale-invariant feature transform (SIFT)

and matching based on best-bin first K-D tree search [8]

were used in [9] for robot localization and mapping to find

the visual landmarks and establish their correspondences.

III. GEOMETRIC RELATIONSHIP

Cameras in a network having an overlapping field of view

can be set in a master-slave relationship pairwise. According

to this, given a network of M PTZ cameras Ci viewing a



planar scene, N = {Cs
i}
M
i=1

, at any given time instant each

camera can be in one of two states s ∈ {MASTER, SLAVE}.

As shown in Fig. 1 the three reference planes Π1, Π2,

Π3 observed respectively by the cameras C1, C2 and C3

are related to each other through the three homographies

H
Π
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, H

Π

13
, H

Π

23
. Instead, at time t the current image plane

is related to the reference plane through the homographies

H
1
t , H2t and H

3
t . If the target X is tracked by C1 (acting as

MASTER) and followed in high resolution by C2 (acting as

zooming SLAVE), the imaged coordinates of the target are

first transferred from Π1 to Π2 through H
Π

12
and hence from

Π2 to the current zoomed view of C2 through H
2

t . Referring

to the general case of M distinct cameras, once H
k
t and H

Π

kl
,

k ∈ 1..M , l ∈ 1..M with l 6= k are known, the imaged

location of a moving target tracked by a master camera Ck

can be transferred to the zoomed view of a slave camera Cl

according to:

T
kl
t = H

l
t · H

Π

kl
(1)

IV. OFFLINE LEARNING OF THE SCENE

We consider a pin-hole camera model projecting the three-

dimensional world onto a two-dimensional image. Assuming

that the camera rotates around its optical center with fixed

principal point and without modeling the radial distortion,

the projection of a generic image i generated by a camera C,

can be modelled as Pi = [KiRi 0], where Ki is the 3×3 matrix

that contains the intrinsic parameters of the camera, and Ri

is the 3 × 3 matrix that defines the camera orientation; the

equal sign denotes equality up to a scale factor. As in [7], it

is possible to derive the inter-image homography, between

image i and image j generated by the same camera, as:

Hji = KjRjiK
−1

i .

For PTZ cameras, due to their mechanics, it is possible

to assume that there is no rotation around the optical axis

(θ = 0). We will also assume with good approximation that

the principal point lies at the image center, the pan-tilt angles

between spatially overlapping images are small and the focal

length does not change too much between two overlapping

images (fi ≃ fj ≃ f ). Under these assumptions, the image-

to-image homography can be approximated by:

Hji =





1 0 fψji
0 1 −fφji

−ψji

f

φji

f
1



 =




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0 1 h2
h3 h4 1



 (2)

where ψji and φji are respectively the pan and tilt angles

from image j to image i, [10]. Estimates for ψ, φ and f

can be calculated from the entries of Hji. The image-to-

image homography of eq. (2) makes run-time matching and

minimization in PTZ camera networks much simpler than

with the full 8 DOF homography.

To describe the scene observed by the sensors we collect

some images, off-line, at different levels of pan, tilt and

zoom, so as to cover the whole field of regard of each

PTZ camera. Local distinctive features are used as visual

landmarks of the scene to compute the inter-image homo-

graphies by exploiting bundle adjustment optimization on

the reference images as in [11]. Keypoints and associated

camera geometry information are stored in a k-d tree so

that quick matching and camera geometry retrieval can be

performed in real time.

V. ONLINE COOPERATIVE HEAD LOCALIZATION

At runtime keypoints extracted from the current frame It
are matched with those in the global k-d tree, according to

nearest neighbor search in the feature descriptor space. Once

the image Im with the highest number of matches is found,

the correct homography Gt relating It to Im is computed

using RANSAC. The homography Hmj that relates the image

Im with the image Ij in the reference plane Π retrieved

in the k-d tree is hence used to compute the likelihood to

estimate Ht in eq. (1). To this end, a particle filter is used

in order to recover the actual value of the state vector xt =
(ψt, φt, ft) where ψt and φt are respectively the pan and

tilt angle, and ft is the focal length. This triple completely

defines the homography Ht relating the current frame It to

the reference plane.

Given a certain observation zt of the state vector at

time step t, the particle filter builds an approximated rep-

resentation of the posterior pdf p(xt|zt) through a set of

weighted samples {(xit, w
i
t)}

Np

i=1
. Each particle is thus an

hypothesis on the state vector value, with a probability

associated to it. The estimated value of the state vector is

obtained as the weighted sum of all the particles. The particle

filter algorithm requires a probabilistic model for the state

evolution and an observation model, from which a prior pdf

p(xt|xt−1) and a likelihood p(zt|xt) can be derived. Since

there is no prior knowledge about the controls that steer

the camera, we adopt a simple random walk model as a

state evolution model. The particle filter uses as observations

the correspondences between the SURF keypoints of the

current PTZ view and the global map (without outliers). To

define the likelihood p(zt|xit) of the observation zt generated

by the actual camera state given the hypothesis xit for the

PTZ camera parameters we take into account the distance

between the back-projections of the corresponding keypoints

in Im and It in the camera reference plane Π. This is

performed by estimating the homography Gt relating It to

Im using RANSAC.

The recovered inliers, the homography Gt and the homog-

raphy Hmj associated to the nearest image retrieved Im are

then used to evaluate the likelihood as:

p(zt|x
i
t) ∝ exp−

1

λ

√

∑

n
k=1(Hit

−1
·qk−Hmj ·Gt·qk)

2

(3)

where H
i
t

−1
·qk and Hmj · Gt ·qk, k = 1..n, are respectively

the projection of the predicted and the matched keypoints

in the camera reference plane Π, while λ is a normalization

constant. The entire process is shown in Fig. 2.



Figure 2. Main processing steps for tracking PTZ camera parameters
(online).

Assuming a network of two cameras, where H
Π

12
is the

homography relating their reference planes, eq. (1) is re-

duced to: Tt = Ht · HΠ

12
. Under the assumption of vertical

stick–like targets moving on a planar scene the target head

can be estimated directly by a planar homology [12], [13],

exploiting the vanishing line in one of the camera reference

plane. According to this, at each time step t, the probability

density function of the planar homology Wt should be com-

puted once the probability density function of respectively

the vanishing point v∞,t and the vanishing line l∞,t in the

slave camera view at time t are known.

Once the vanishing line l∞ is located in the slave camera

reference plane, sampling from p(xt|zt) allows to estimate

p(v∞,t|zt) and p(l∞,t|zt). For each particle i in the set

of the weighted samples {(xit, w
i
t)}

Np

i=1
that model Ht we

calculate: li
∞,t = [Tit]

−T · r∞ and vi
∞,t = ωit · l

i
∞,t, where

r∞ is the vanishing line in the master camera view and

ωit is the dual image of the absolute conic [7] computed

as: ωit = K
i
t · K

i
t

T
. The intrinsic camera parameters matrix

K
i
t is computed with reference to the i-th particle. The pdf

p(Wt|zt) =
1

N

∑N

i=1
δ(Wt − W

i
t) is then computed as:

W
i
t = I+ (µ− 1)

vi
∞,t · l

i
∞,t

T

vi
∞,t

T
· li

∞,t

. (4)

where µ, namely the cross–ratio, remains the same through

the entire sequence, while li
∞,t and vi

∞,t are respectively

the ith hypothesis for the vanishing line and the vanishing

point, varying as the camera moves. The pdf p(Mt|zt) of the

final transformation Mt that maps the target feet observed in

the image of the master camera to the target head in the

current image of the slave camera is computed as:

M
i
t = W

i
t · T

i
t = W

i
t · H

i
t · H

Π

12
(5)

where M
i
t represents a whole family of transformations.

Given the estimated p(xt|zt) of the slave camera and the

imaged position of the target as tracked from the master

camera, the distribution of the possible head locations bit

as viewed from the slave camera is estimated. We sample

L homographies from p(xt|zt), and the same number of

samples from the set of particles tracking the feet position

in the master camera view ait, to obtain:

bit = M
i
t · a

i
t i = 1..L (6)

It is worth to note that eq. (6) jointly takes into account

both zooming camera calibration uncertainty (through each

homography in M
i
t – see eq. (5)) and target tracking uncer-

tainty.

VI. EXPERIMENTAL RESULTS

The tracking accuracy of the proposed framework has

been evaluated in a wide outdoor parking area of 80x15

meters, observed by two IP PTZ Sony SNC-RZ30 cameras,

working in a master–slave configuration. Images from both

cameras were taken at 320×240 pixels of resolution. We

build two scene maps (one from each camera) with three

different level of zoom factors so as to provide a much

larger number of feature points at each camera pose and

zoom. Each map takes about 400MB of memory.

To evaluate the head localization error in the slave camera

we corrupt the two pairs of parallel lines needed to estimate

the vanishing line and the four points needed to estimate

the homography H
Π

12
, with a white, zero mean, Gaussian

noise with standard deviation between 0.1 and 9 pixels. This

procedure was repeated 1000 times and averaged over trials.

Plots of the mean error in head localization and the estimated

increase of focal length are reported in Fig. 3 for different

values of the noise. The effect of SURF keypoints (Fig. 3–

(a,b)) was compared with SIFT (Fig. 3–(c,d)).

As it can be seen, after a brief transient (necessary to

estimate the initial camera pose), the mean error falls to

small values and grows almost linearly as the focal length

increases. Two quick changes of direction of the camera

(around frame 250 and 370) to follow the maneuvering

target strongly contribute to the uncertainty in target’s head

localization. In this case it can be appreciated that SURF

performs much better than SIFT mostly because it detects

more keypoints and makes RANSAC less likely to fail. It is

also possible to see that errors on the vanishing line and on

the homography tend to cancel out, since they are correlated.

Regarding the focal length estimation, it can be seen that

the error grows also almost linearly as the noise increases.

Some frames (at different levels of zoom) of a sequence

analyzed with the proposed technique are shown in Fig. 4.

Detailed experimental results can be found in [14].

VII. CONCLUSION

In this paper we have shown how to combine distinctive

visual landmarks maps and PTZ camera geometry in order to

define and compute the basic building blocks of PTZ camera

networks.



Figure 3. Head localization accuracy and estimated camera focal length
advancement (in pixel) using SURF (a,b) and SIFT (c,d) keypoint matching.

Figure 4. Some frames of a sequence analyzed with the proposed
technique. (a) Master camera view: the target is detected by background
subtraction. (b) Slave camera view: the particles show the uncertainty of
the head and feet position of the target.

The main limitation of the proposed approach is that, as

time progresses, the number of feature matches in the map

considerably decreases, and this may lead to a failure in the

estimation of a consistent homography. Future research will

consider the possibility of landmarks maintenance over time

in a continuous changing background.
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